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Abstract. The objective of this paper is to examine the nature of irreversibilities in the form of entropy

generation for a micropolar fluid flow through an inclined porous pipe with convective boundary conditions. The

governing equations are non-dimensionlized and then linearized using a quasilinearization method. The resulting

linearized equations are solved by Chebyshev spectral collocation method. The velocity, microrotation and

temperature profiles are presented graphically for various values of governing parameters. Further, these profiles

are used to evaluate the entropy generation and Bejan number.
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1. Introduction

The performances of engineering processes and thermal

devices are always affected by irreversible losses that lead

to increase of entropy and decrease of thermal efficiency.

Thus the important factors are to be determined to mini-

mize the entropy generation and maximize the flow system

efficiency. To analyse the irreversibilities in the form of

entropy generation, the second law of thermodynamics is

applied. The factors that are responsible for the irre-

versibility are heat transfer across finite temperature gra-

dients, characteristic of convective heat transfer and

viscous dissipation. Most of the energy-related applications

such as cooling of modern electronic systems, solar power

collectors and geothermal energy systems depend on

entropy generation. The concept of entropy generation rate

in flow and thermal systems was introduced by Bejan [1]. It

is observed that the thermal system efficiency is enhanced

by minimizing the entropy generation of the system [2–4].

The flow through ducts or pipes is frequently used in fluid

distribution networks, cooling and heating applications. The

study of entropy generation within the fluid volume is

important in understanding the fluid flow in any process,

which is helpful to optimize the entropy generation or the

quality of energy to be preserved in any process. Several

researchers investigated the entropy generation of fluid flows

in pipes. In [5], the author examined the influence of tem-

perature-dependent viscosity with heating process on entropy

generation due to turbulent flow in a pipe. An analytical

method was proposed in [6] to investigate the entropy gen-

eration in the pipe flow by considering different pipe wall

temperatures and flow Reynolds numbers. The effect of

uniform wall heat flux boundary condition was analysed [7]

on entropy generation in a circular pipe as a two-dimensional

flow. The entropy generation in a circular pipe of non-

Newtonian fluid flow was developed [8] with varying vis-

cosity and it was noticed that the entropy generation number

is affected by the non-Newtonian parameter especially near

the pipe wall. The entropy generation in a circular pipe was

calculated in [9], using the non-Newtonian fluid flow model

with constant viscosity and it was observed that the entropy

generation increases on increasing the modified Stanton

number and dimensionless inlet wall to fluid temperature

difference. A numerical study was reported in [10] to

investigate both the first and the second law of thermody-

namics for thermally developing forced convection in a

circular tube filled by a saturated porous medium, with

uniform wall temperature and effects of viscous dissipation.

In [11], a review was presented on entropy generation for the

fully developed ice slurry pipe flow and it was found that as

the dimensionless group parameter or mass fraction of ice

increases, the volumetric average entropy generation number

increases. The effect of viscosity parameters on entropy

generation for Hagen–Poiseuille flow in a pipe was investi-

gated in [12] due to fluid friction and heat transfer. The effect

of heat flux distribution on entropy generation due to both

heat transfer and friction was presented in [13]. Ref. [14]

leads to the conclusion that minimum entropy generation

aspects must be considered to minimize the irreversibility

and to enhance the performance of the heat pipe while

designing. The dimensionless entropy generation was esti-

mated in [15] for a laminar flow through a circular tube

immersed in an isothermal fluid. The presence of irre-

versibility inside a porous vertical pipe was analysed in [16]*For correspondence
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to investigate the entropy generation. In [17], a numerical

method was proposed to discuss the fluid flow and heat

transfer in pipes partly occupied with porous medium and to

evaluate the entropy generation.

The flow of fluids over boundaries of porousmaterials have

many applications in practice, such as transpiration cooling,

boundary layer control and biomedical engineering as well as

drinking water treatment. In general, in many heat transfer

processes, the local wall heat flux is a linear function of the

local wall temperature. This phenomenon is found in the

temperature boundary condition of the third kind. Recently, a

novel mechanism for the heating process has drawn the

involvement of many researchers, namely, convective

boundary condition (CBC), where heat is supplied to the

convecting fluid through a bounding surface with a finite heat

capacity. Further, this results in the heat transfer rate through

the surface being proportional to the local difference in tem-

perature with the ambient conditions. Besides, it is more

general and realistic, particularly in various technologies and

industrial operations such as transpiration cooling process,

textile drying and laser pulse heating. The effect of variable

viscosity and convectiveheatingon the entropygeneration due

to flow in a MHD channel with permeable walls was reported

in [18]. The entropy generation for nano-fluid flow over a

vertical porous channel was studied in [19] with convective

heating under MHD effect. The entropy generation mini-

mization method was applied in [20] to the optimization of

MHD flow that takes place in a porous channel with slip flow

and convective boundary conditions. It is noticed that the

minimum entropy generation is found for the optimum values

of Hartman number, Prandtl number, Biot number, suction/

injection Reynolds number and Eckert number.

Several fluids used in engineering and industrial pro-

cesses, such as poly-liquid foams and geological materials,

exhibit flow properties that cannot be explained by Newto-

nian fluid flow model. To explain the behaviour of such

fluids, different models have been introduced. Among these,

micropolar fluids [21] have distinct features, such as the local

structure effects, which are microscopic and micro-motion of

elements of the fluid, the presence of stresses due to couple,

body couples and non-symmetric stress tensor. Micropolar

fluids are the fluids with microstructure. The flow charac-

teristics of haematological and colloidal suspensions, poly-

meric additives, liquid crystals, geomorphological

sediments, lubricants, etc. accurately resemble the microp-

olar fluids. The aspect of rotation of fluid particles in

micropolar fluid model is governed by an independent

kinematic vector called the microrotation vector, which

makes it different from other non-Newtonian fluids.

Thus, in the present paper the micropolar fluid is used to

investigate the entropy generation numerically in a porous

inclined circular pipe. The governing equations in cylin-

drical polar coordinate system are simplified and numeri-

cally solved using a spectral quasi-linearization method

(SQLM) to obtain the entropy generation and Bejan number

in a circular pipe.

2. Mathematical formulation

Consider the steady axisymmetric fully developed laminar

incompressible micropolar fluid through an infinite length

pipe of circular cross section with porous walls (see fig-

ure 1). The radius of the pipe is a and the pressure gradient

is assumed to be constant. The pipe is inclined with an

angle a. Choose the cylindrical polar coordinate system

(r; h; z), where z-axis is the direction of fluid flow. The flow

depends on r only since the flow is fully developed and the

pipe is of infinite length. The z component of the velocity

vector does not vanish but the transpiration cross-flow

velocity w0 remains constant, where w0\0 is the velocity

of the suction and w0 [ 0 is the velocity of the injection.

The surface of the pipe is convectively heated with a hot

fluid that provides a heat transfer coefficient h. Assume that

the temperature of the hot fluid is T2 and the ambient

temperature is T1.

Based on these assumptions, the governing equations

[22, 23] of micropolar fluid flow and heat transfer in the

absence of body force and body couple are as follows.

2.1 Continuity equation:

ou

oz
¼ 0: ð1Þ

2.2 Momentum equation:

� op

oz
þ j

r
rþ r

dr
dr

� �
þ ðlþ jÞ d2u

dr2
þ 1

r

du

dr

� �

þ qg�bðT � T1Þ sin a ¼ qw0

du

dr
:

ð2Þ

Figure 1. Schematic diagram of the problem.
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2.3 Angular momentum equation:

�2jr� j
du

dr
þ c

d2r
dr2

þ 1

r

dr
dr

� r
r2

� �
¼ qj�w0

dr
dr

: ð3Þ

2.4 Energy equation:

Kf

d2T

dr2
þ 1

r

dT

dr

� �
þ lþ j

2

� � du

dr

� �2

�2b
r
r

dr
dr

þ j
2

du

dr
þ 2r

� �2

þ c
dr
dr

� �2

þ r2

r2

" #
¼ qCpw0

dT

dr

ð4Þ

where u(r) is the component of velocity in the flow direc-

tion, r the microrotation component, T is the temperature, q
is the density, p is the pressure of the fluid, l is the dynamic

viscosity, j is the vortex viscosity, c is the spin-gradient

viscosity, g� is the acceleration due to gravity, b is the

coefficient of thermal expansion and Kf the thermal con-

ductivity. The boundary conditions are proposed as follows:

du

dr
¼ 0; r ¼ 0;

dT

dr
¼ 0; at r ¼ 0 ð5aÞ

u ¼ 0; r ¼ 0; �Kf

dT

dr
¼ hðT � T1Þ; at r ¼ a ð5bÞ

where h is the heat transfer coefficient.

Introducing the following dimensionless quantities:

r ¼ ag; u ¼ u0f ðgÞ; r ¼ u0

a
gðgÞ; hðgÞ ¼ T � T1

T2 � T1

ð6Þ

in Eqs. (2)–(4), we get the following non-linear system of

differential equations:

1

1� N
f 00 þ 1

g
f 0

� �
þ N

1� N
g0 þ 1

g
g

� �
þ gs sinðaÞh� A ¼ Rf 0

ð7Þ

Nð2� NÞ
m2ð1� NÞ g00 þ 1

g
g0 � 1

g2
g

� �
� 2N

1� N
g � N

1� N
f 0 ¼ Rajg

0

ð8Þ

h00 þ 1

g
h0 þ Br

2� N

2ð1� NÞ f 02 þ 1

2

N

1� N
f 0 þ 2gð Þ2

�
� 2B

g
gg0

�

þ Br
Nð2� NÞ
m2ð1� NÞ g02 þ 1

g2
g2

� �
¼ PrRh0

ð9Þ

where primes denote differentiation with respect to g, N ¼
j

jþl is coupling number, Gr ¼ q2g�bðT2�T1Þa3
l2 is the Grashof

number, Re ¼ qu0a
l is the Reynolds number, gs ¼ Gr

Re
is the

buoyancy parameter, R ¼ qw0a
l is the suction/injection

parameter, A ¼ a2

lu0

dp
dZ

is the constant pressure gradient,

m2 ¼ a2jð2lþjÞ
cðlþjÞ is the micropolar parameter, aj ¼ j

a2
is the

micro-inertia parameter, Br ¼ lu2
0

Kf ðT2�T1Þ is the Brinkman

number, B ¼ b
la2

is the material constant and Pr ¼ lCp

Kf
is the

Prandtl number.

The corresponding boundary conditions are

f 0ðgÞ ¼ 0; gðgÞ ¼ 0; h0ðgÞ ¼ 0; at g ¼ 0 ð10aÞ

f ðgÞ ¼ 0; gðgÞ ¼ 0; h0ðgÞ þ BihðgÞ ¼ 0; at g ¼ 1

ð10bÞ

where Bi ¼ ah
Kf

is the Biot number.

3. Method of solution

The system of Eqs. (7)–(9) along with the boundary con-

ditions (10) are solved using the SQLM [24–26], which was

coined by Motsa. The quasilinearization method (QLM) is

a generalization of the Newton–Raphson method [27] for

solving nonlinear boundary value problems. In this method

the iteration scheme is obtained by linearizing the nonlinear

component of a differential equation using the Taylor series

expansion. Chebyshev spectral method is then used to solve

the resulting linearized system of equations.

Let fr, gr and hr be an approximate current solution and

frþ1, grþ1 and hrþ1 be an improved solution of the system of

equations (7)–(9). By taking Taylor’s series expansion of

non-linear terms in (7)–(9) around the current solution and

neglecting the second and higher order derivative terms, we

get the linearized equations as follows:

a1;rf
00
rþ1 þ a2;rf

0
rþ1 þ a3;rg

0
rþ1 þ Ngrþ1 þ a4;rhrþ1 ¼ a5;r

ð11Þ

� b1;rf
0
rþ1 þ b2;rg

00
rþ1 þ b3;rg

0
rþ1 � b4;rgrþ1 ¼ 0 ð12Þ

c1;rf
0
rþ1 þ c2;rg

0
rþ1 þ c3;rgrþ1 þ c4;rh

00
rþ1 þ c5;rh

0
rþ1 ¼ c6;r

ð13Þ

where the coefficients as;r; s ¼ 1; 2; ::: are known functions

calculated from previous iterations and are defined as

follows:
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a1;r ¼ g; a2;r ¼ 1� gð1�NÞR; a3;r ¼ Ng; a4;r ¼ gsgð1�NÞsinðaÞ;

a5;r ¼ Agð1�NÞ; b1;r ¼ Ng2; b2;r ¼
Nð2�NÞ

m2
g2;

b3;r ¼
Nð2�NÞ

m2
g�ð1�NÞRajg

2; b4;r ¼ 2Ng2þNð2�NÞ
m2

;

c1;r ¼ 2Brg2ðf 0r þNgrÞ; c2;r ¼�2BBrð1�NÞggr þ
2Nð2�NÞ

m2
Brg2g0

r;

c3;r ¼ 4BrNg2gr þ 2BrNg2f 0r � 2BBrð1�NÞgg0
r þ

2Nð2�NÞ
m2

Brgr;

c4;r ¼ g2ð1�NÞ; c5;r ¼ gð1�NÞ�PrRg2ð1�NÞ;

c6;r ¼ Br g2f 02r þN

2
g2f 02r þ 2Ng2g2

r þ 2Ng2f 0r gr � 2Bð1�NÞggrg
0
r

�

þNð2�NÞ
m2

g2g02
r þNð2�NÞ

m2
g2

r

�

:

The Chebyshev spectral collocation method [28] is used to

solve these linearized equations (11)–(13). Approximations

are performed using the Chebyshev interpolating polyno-

mials for the unknown functions; further, they are collo-

cated at the Gauss–Lobatto points represented as

nj ¼ cos
pj

J
; j ¼ 0; 1; 2; :::; J ð14Þ

where J is the number of collocations. The transformation

of physical region [0, 1] results in the region ½�1; 1� using
the mapping

g ¼ nþ 1

2
; �1� n� 1: ð15Þ

The functions frþ1, grþ1 and hrþ1 are approximated at the

collocation points for j ¼ 0; 1; 2; :::; J by

frþ1ðnjÞ ¼
XJ

k¼0

frþ1ðnkÞTkðnjÞ;

grþ1ðnjÞ ¼
XJ

k¼0

grþ1ðnkÞTkðnjÞ;

hrþ1ðnjÞ ¼
XJ

k¼0

hrþ1ðnkÞTkðnjÞ;

ð16Þ

where Tk is the kth Chebyshev polynomial defined by

TkðnÞ ¼ cos½kcos�1n�.
The variable derivatives D at the collocation points j ¼

0; 1; 2; :::; J: satisfy the equations

dnfrþ1

dgn
¼

XJ

k¼0

Dn
jkfrþ1ðnkÞ;

dngrþ1

dgn
¼

XJ

k¼0

Dn
jkgrþ1ðnkÞ;

dnhrþ1

dgn
¼

XJ

k¼0

Dn
jkhrþ1ðnkÞ

ð17Þ

where Chebyshev spectral differentiation matrix is D ¼ 2D

and n is the order of differentiation. Substituting Eqs. (16)

and (17) into Eqs. (11)–(13) leads to the matrix equation

ArXrþ1 ¼ Br; ð18Þ

In Eq. (18), Ar is a ð3J þ 3Þ � ð3J þ 3Þ square matrix and

Xrþ1 and Br are ð3J þ 3Þ � 1 column vectors defined by

the relations

Ar ¼
A11 A12 A13

A21 A22 A23

A31 A32 A33

2
64

3
75; Xrþ1 ¼

Frþ1

Grþ1

Hrþ1

2
64

3
75; Rr ¼

r1;r

r2;r

r3;r

2
64

3
75

ð19Þ

where

Frþ1 ¼ ½frþ1ðn0Þ; frþ1ðn1Þ; :::; frþ1ðnJ�1Þ; frþ1ðnJÞ�T ;
Grþ1 ¼ ½grþ1ðn0Þ; grþ1ðn1Þ; :::; grþ1ðnJ�1Þ; grþ1ðnJÞ�T ;
Hrþ1 ¼ ½hrþ1ðn0Þ; hrþ1ðn1Þ; :::; hrþ1ðnJ�1Þ; hrþ1ðnJÞ�T ;
A11 ¼ a1;rD

2 þ a2;rD; A12 ¼ a3;rDþ NI; A13 ¼ a4;rI;

A21 ¼ �b1;rD; A22 ¼ b2;rD
2 þ b3;rD� b4;rI; A23 ¼ 0;

A31 ¼ c1;rD; A32 ¼ c2;rDþ c3;rI; A33 ¼ c4;rD
2 þ c5;rD;

r1;r ¼ a5;r; r2;r ¼ 01; r3;r ¼ c6;r:

Here I and 0 represent the ðJ þ 1Þ � ðJ þ 1Þ identity matrix

and zero matrix, respectively.

The corresponding boundary conditions are

frþ1ðn0Þ ¼ 0; grþ1ðn0Þ ¼ 0;

XJ

k¼0

D0khrþ1ðnkÞ þ Bihrþ1ðn0Þ ¼ 0;
ð20aÞ

XJ

k¼0

DJkfrþ1ðnkÞ ¼ 0; grþ1ðnJÞ ¼ 0;
XJ

k¼0

DJkhrþ1ðnkÞ ¼ 0:

ð20bÞ

The boundary conditions (20) are incorporated in the

matrix system (18), and thus the solution is obtained as

Xrþ1 ¼ A�1
r Br: ð21Þ

The initial approximations f0, g0 and h0 are chosen to be

functions that satisfy the boundary conditions (20), i.e.,

f0ðgÞ ¼
g2 � 1

2
; g0ðgÞ ¼ 0; h0ðgÞ ¼

g2

2
� 2þ Bi

2Bi
:

ð22Þ

732 D Srinivasacharya and K Hima Bindu



4. Entropy generation

For incompressible micropolar fluids the volumetric rate of

entropy generation [29] is given by the relation

SG ¼ Kf

T2
1

dT

dr

� �2

þ
lþ j

2

T1

du

dr

� �2

þ j
2T1

2rþ du

dr

� �2
� 2b

T1

r
r

dr
dr

þ c
T1

dr
dr

� �2

þ r2

r2

" #
:

According to Bejan [4], the dimensionless entropy gener-

ation number Ns is the ratio of the volumetric entropy

generation rate to the characteristic entropy generation rate.

Thus the entropy generation number is given by the relation

Ns ¼ h02 þ Br

Tpð1� NÞ
2� N

2
f 02 þ N

2
ðf 0 þ 2gÞ2

�

� 2Bð1� NÞ
g

gg0 þ Nð2� NÞ
m2

g02 þ 1

g2
g2

� �� ð23Þ

where Tp ¼ T2�T1

T1
is the temperature difference(dimension-

less), and the characteristic entropy generation rate is
Kf ðT2�T1Þ2

a2T2
1

. Equation (23) can be expressed alternatively as

follows:

Ns ¼ Nh þ Nv: ð24Þ

The first term on the right hand side of this equation

denotes the entropy generation due to heat transfer irre-

versibility and the second term represents the entropy

generation due to viscous dissipation.

To evaluate the irreversibility distribution, the parameter

Be (Bejan number), which is the ratio of heat transfer

entropy generation to the overall entropy generation (24), is

defined as follows:

Be ¼ Nh

Nh þ Nv

: ð25Þ

The Bejan number varies from 0 to 1. Subsequently, Be ¼ 0

reveals that the irreversibility due to viscous dissipation

dominates, whereas Be ¼ 1 indicates the dominance of heat

transfer irreversibility. It is obvious that Be ¼ 0:5 indicates

that the heat transfer irreversibility is the same as the fluid

friction irreversibility in the entropy production.

5. Results and discussion

Figures 2–6 show the variation of velocity, microrotation,

temperature, entropy generation and Bejan number with g
for different values of coupling number (N), angle of

inclination (a), suction parameter (R), Biot number (Bi) and

Brinkman number (Br) for Pr ¼ 0:75, gs ¼ 0:5, m ¼ 2,

A ¼ �2, B ¼ 0:1 and Tp ¼ 1.

In order to validate the accuracy of our method, we have

compared the results of velocity and microrotation with the

analytical solution of [21] in the absence of gs, R and a as a

special case by taking N ¼ 0:5, m ¼ 2 and A ¼ �2. The

comparison in this case is found to be in good agreement, as

shown in table 1.

Figure 2a–e presents the effect of coupling number (N)

on non-dimensional velocity, microrotation, temperature,

entropy generation and Bejan number. The coupling of

linear and rotational motion arising from the micromotion

of the fluid molecules is characterized by coupling number.

Hence, the coupling between the Newtonian and rotational

viscosities is represented by N. The microstructure effect is

significant as N ! 1, and for a smaller value of N the

substructure individuality is limited. The fluid is non-polar

as its micropolarity is lost at j ! 0, i.e., N ! 0. Thus, as

N ! 0 Eqs. (7) and (8) reduce to the corresponding equa-

tions for viscous fluid. Hence it can be seen from figure 2a

that the velocity in the case of micropolar fluid is less than

that of viscous fluid. Furthermore, from figure 2b it is

observed that for fixed N, the microrotation increases and

then decreases as radial distance from the axis increases. It

is observed from figure 2c–e that the temperature, entropy

generation and Bejan number decrease with increase in

coupling number (N).

The effects of angle of inclination (a) of the circular pipe
on the velocity, microrotation, temperature, entropy gen-

eration and Bejan number are shown in figure 3. Figure 3a

shows that the velocity increases with increase in angle of

inclination a, this is due to increase in forces acting upon

the fluid flow. It is observed from figure 3b that the

microrotation increases as angle of inclination increases. It

is clear from figure 3c–e that temperature, entropy gener-

ation and Bejan number increases with increase in a. The
peak values of temperatures are observed at the centre of

the pipe. The maximum entropy generation is observed at

the pipe wall due to high velocity and temperature

gradients.

The variations of suction/injection parameter on veloity,

microrotation, temperature, entropy generation and Bejan

number are presented in figure 4a–e. Increase in the suc-

tion/injection parameter causes an increase in all the gov-

erning parameters.

Figure 5 shows the effect of Biot number on velocity,

microrotation, temperature, entropy generation and Bejan

number. It is observed from figure 5a and b that the velocity

and microrotation decrease with an increase in Biot num-

ber. As the Biot number increases, the circular pipe thermal

resistance enhances and the velocity decreases signifi-

cantly. Figure 5c reveals that the temperature decreases as

Biot number increases as the Biot number depends on heat

transfer coefficient h, which leads to decrease in tempera-

ture. Decrease in entropy generation is observed with an

increase in Biot number Bi as shown in figure 5d. This is

due to the fact that both velocity and temperature gradients

within the pipe decrease as Bi increases. Figure 5e shows
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(a)

(c) (d)

(e)

(b)

Figure 2. Effect of coupling number on (a) velocity, (b) microrotation, (c) temperature, (d) entropy generation and (e) Bejan number.
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(a)

(c) (d)

(e)

(b)

0

Figure 3. Effect of angle of inclination on (a) velocity, (b) microrotation, (c) temperature, (d) entropy generation and (e) Bejan number.
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(a)

(c) (d)

(e)

(b)

Figure 4. Effect of suction parameter on (a) velocity, (b) microrotation, (c) temperature, (d) entropy generation and (e) Bejan number.
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(a)

(c) (d)

(e)

(b)

Figure 5. Effect of Biot number on (a) velocity, (b) microrotation, (c) temperature, (d) entropy generation and (e) Bejan number.
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(a)

(c) (d)

(e)

(b)

Figure 6. Effect of Brinkman number on (a) velocity, (b) microrotation, (c) temperature, (d) entropy generation and (e) Bejan number.
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that the Bejan number decreases as Biot number increases.

This implies an increase in dominant effect of fluid friction

irreversibility as Bi increases.

The effects of Brinkman number on velocity, micro-

rotation and temperature fields are shown in figure 6a–c.

Velocity, microrotation and temperature increase as

Brinkman number increases. The analogous importance

between viscous dissipation and fluid conduction is

determined by the Brinkman number. As Br increases,

more heat is generated by the viscous dissipation effect

in the fluid. This generated heat by viscous dissipation

effect results in higher temperature profiles. It is

observed from figure 6d that the contribution of entropy

is nil at the centre of the pipe since the velocity and

temperature gradients are zero. As Brinkman number

increases, the entropy generation increases. It is observed

from figure 6e that the Bejan number increases with

increase in the value of Br. It is observed that the heat

transfer irreversibility dominates at the pipe wall and

fluid friction irreversibility dominates at the centre of the

pipe.

6. Conclusions

Entropy generation analysis of incompressible micropolar

fluid flow through an inclined circular pipe with convective

heating has been carried out. The velocity, microrotation

and temperature distributions are achieved numerically

using the SQLM, which are used to compute the entropy

generation number. The effects of different parameters on

velocity, microrotation and temperature are presented

graphically. The influences of same parameters on entropy

generation and Bejan number are also discussed.

• The fluid velocity, microrotation and temperature

decrease with increasing values of coupling number

and Biot number.

• Fluid temperature increases with increasing angle of

inclination, suction parameter and Brinkman number

while temperature decreases with increasing coupling

number and Biot number.

• For all the parametric values, from the Bejan number

graphs it is observed that the fluid friction irreversibil-

ity dominates around the centre of the pipe and heat

transfer irreversibility dominates at the pipe wall.

• The entropy generation decreases with increasing

coupling number and Biot number.

• All the Bejan number profiles show a minimum value

at the centre of the pipe and maximum value at the pipe

wall.

List of symbols
a radius of the pipe

A constant pressure gradient

B micropolar constant

Be Bejan number

Bi Biot number

Br Brinkman number

f dimensionless velocity

g dimensionless microrotation

g� acceleration due to gravity ðm s�2Þ
gs buoyancy parameter

j� micro-inertia density ðm2Þ
Kf thermal conductivity ðWm�1KÞ
m2 micropolar parameter

N coupling number

Nh entropy generation due to heat transfer

Nm entropy generation due to viscous dissipation

Ns dimensionless entropy generation number

Pr Prandtl number

T temperature

T1 ambient temperature

Table 1. Comparison of SQLM solutions for the velocity and microrotation with that of analytical solution [21] for gs ¼ 0, R ¼ 0 and

a ¼ 0.

Velocity f ðgÞ Microrotation gðgÞ

g Analytical solution [21] Present Deviation (%) Analytical solution [21] Present Deviation (%)

1 0 0 0 0 0 0

0.9755 0.01213 0.012128 0.016 0.00675 0.006758 0.118

0.9045 0.04605 0.046052 0.004 0.02309 0.023092 0.008

0.7939 0.09479 0.094809 0.02 0.04001 0.040029 0.047

0.6545 0.14845 0.148466 0.01 0.04944 0.049459 0.038

0.5 0.19688 0.196902 0.011 0.04821 0.048232 0.045

0.3455 0.23292 0.232950 0.012 0.03835 0.038355 0.013

0.2061 0.25435 0.254385 0.013 0.02458 0.024587 0.028

0.0955 0.26370 0.263735 0.013 0.01173 0.011728 0.017

0.0245 0.26609 0.266128 0.014 0.003032 0.003027 0.164

1 0.26626 0.266296 0.013 0 0 0
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T2 hot fluid temperature

Tp dimensionless temperature difference

u dimensional velocity ðms�1Þ
w0 uniform suction/injection velocity

Greek symbols
a inclined angle

b; c gyration viscosity coefficients ðkg m s�1Þ
q density of the fluid ðkg m�3Þ
j vortex viscosity ðkg m�1s�1Þ
r angular velocity or component of the microrotation

vector

h dimensionless temperature

l viscosity of the fluid ðkg m�1s�1Þ

Superscripts
0 differentiation with respect to g
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