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Abstract.

This paper proposes a new technique based on Galerkin method for solving nth order fuzzy

boundary value problem. The proposed method has been illustrated by considering three different cases
depending upon the sign of coefficients with benchmark example problems. To show the applicability of the
proposed method, an application problem related to heat conduction has also been studied. The results obtained
by the proposed methods are compared with the exact solution and other existing methods for demonstrating the

validity and efficiency of the present method.
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1. Introduction

In recent years, the study of fuzzy differential equations
(FDEs) has been expanding rapidly as a new branch of fuzzy
mathematics. The concept of fuzzy set theory was first
developed by Zadeh [1]. FDEs play an important role for
modelling physical and engineering problems because they
may mimic the real situation to handle the systems under
uncertainty. But, it is too difficult to obtain exact solutions of
FDEs, due to the complexity in fuzzy arithmetic. For example,
addition is not the inverse operation of subtraction. In a similar
manner multiplication is not the inverse operation of division
too. Hence, one may need reliable and efficient numerical
techniques to handle the corresponding FDEs.

There exist a variety of papers dealing with FDEs and
their applications. Some of these are reviewed and cited
here for better understanding of the present investigation.
Chang and Zadeh [2] first introduced the concept of a fuzzy
derivative, followed by Dubois and Prade [3], who defined
and used the extension principle in their approach. Other
fuzzy derivative concepts were proposed by Puri and
Ralescu [4] and Goetschel and Voxman [5] as an extension
of the Hukuhara derivative of multivalued functions. The
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FDEs and fuzzy initial value problems (FIVPs) are studied
by Kaleva [6, 7] and Seikkala [8].

Bede [9] described the exact solutions of FDEs in his
note in an excellent way. Buckley and Feuring [10] applied
two analytical methods for solving nth order linear differ-
ential equations with fuzzy initial conditions. In the first
method, they simply fuzzified the crisp solution to obtain a
fuzzy function and then checked whether it satisfies the
differential equation or not. And the second method was
just the reverse of the first method. Ahmada et al [11]
studied analytical and numerical solutions of FDEs based
on the extension principle. Oregan et al [12] obtained the
exact solution of fuzzy first-order boundary value problems
(BVPs). In all the above-cited papers they have converted
the FDEs to coupled or uncoupled system of differential
equations depending on the sign of the coefficients. Very
recently, a new analytical method has been developed by
Tapaswini and Chakraverty [13] based on fuzzy centre,
where only two crisp uncoupled differential equations are
required to solve with respect to sign of the coefficients.

All fuzzy initial value problems (FIVPs) or fuzzy
boundary value problems (FBVPs) may not be solved
exactly. Sometimes, it is even impossible to find their
analytical solutions. Hence, various numerical methods are
proposed by different authors for solving FDEs, which are
discussed in the following paragraph.
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A few authors have also investigated numerical methods to
obtain the solution of FBVPs. Wintner-type result for fuzzy
IVPs and a superlinear-type result for FBVPs are investigated
by Oregan et al [12]. A new condition has been developed by
Chen et al [14] to show that the two-point FBVPs and fuzzy
integral equation are equivalent. Generalized differentiability
concept has been applied by Khastan and Nieto [15] to obtain
the solution of two-point FBVPs. Nonhomogeneous FBVPs
using collocation method has been studied by Mohammed and
Fadhel [16]. Jamshidi and Avazpour [17] applied shooting
method for second-order fuzzy boundary value problems
(SOFBVPs) under generalized differentiability. Undeter-
mined fuzzy coefficients method has been applied by Guo
et al [18] to obtain the solution of SOFBVPs. Dahalan et al
[19] implemented half-sweep alternating group explicit
method to obtain the numerical solution. Optimal homotopy
asymptotic method (OHAM) has been applied by Jameel and
Ismail [20] to solve nth order two-point FBVPs. Also, some
application problems have been modelled through FBVPs,
e.g., Chen et al [21] solved two-point boundary value
undamped uncertain dynamical systems.

It is revealed from the above literature review that various
authors applied different methods to solve FDEs. In general
these methods are sometimes problem dependent and less
efficient for large systems. Also less work has been done in the
field of FBVP. Hence, here an alternative attempt has been
made by using Galerkin’s method to solve FBVPs. The novelty
of the method is that this method along with the r-cut form
converts the FDE into a crisp linear system of equations, which
may very easily be solved by any well-known methods.
Moreover the sign of the coefficients in the FDE plays an
important role. As such different signs of the coefficients may
also be handled in a straightforward way by using the proposed
method. The powerfulness of the procedure has been demon-
strated first by a few simple (fuzzy) mathematical example
problems. And finally an application problem has also been
considered to show the efficacy and applicability of the method.

This paper is organized as follows. In section 2, we have
given basic preliminaries related to the present investiga-
tion. Next, the proposed method has been investigated in
section 3. Further, in section 4, various numerical examples
along with one application problem related to heat transfer
have been solved and discussed. Finally in the last section
conclusions are drawn.

2. Preliminaries

In this section, we present some notations, definitions and
preliminaries, which are used further in this paper [13, 22-24].

Definition 2.1 Fuzzy number

A fuzzy number U is convex normalized fuzzy set U of
the real line R such that

{MD(X) :R—1[0,1], VxeR}

where Hy is called the membership function of the fuzzy

set and it is piecewise continuous.
Definition 2.2 Triangular fuzzy number
A triangular fuzzy number U is a convex normalized
fuzzy set U of the real line R such that
1. There exists exactly one xo € R with [l (x0) =1 (x is
called the mean value of l~]), where [l is called the
membership function of the fuzzy set.
2. uy (x) is piecewise continuous.
Let us consider an arbitrary triangular fuzzy number
U= (a, b, ¢). The membership function [l of U will be
defined as follows:

0, x<a
z_a, a<x<b
u;(x): c—)(g
, b<x<c
c—b
0, x>c

The triangular fuzzy number U= (a, b, ¢) can be repre-
sented with an ordered pair of functions through r-cut
approach, viz. [u(r),a(r)] = [(b — a)r +a, —(c — b)r + ¢|,
where r € [0, 1].

It may be noted that the lower and upper bounds of the

fuzzy numbers satisfy the following requirements:

i. u(r) is a bounded left continuous non-decreasing
function over [0, 1].
ii. u(r) is a bounded right continuous non-increasing
function over [0, 1].
il u(o) <u(a),0<a<1

Definition 2.3 Fuzzy arithmetic

For any two arbitrary fuzzy numbers X = [x(r),x(r)],
y = [y(r),y(r)] and scalar k, the fuzzy arithmetic is defined
as follows:

i. ¥ =y if and only if x(r) = y(r) and %(r) = y(r)
ii. ¥ +75 = [x(r) + y(r), X(r) + 3(r)]

iii. ¥ x5 =

o (kx(r), kx(r)], k<O
iv. kx = .
lkx(r), kx(r)], k>0
Definition 2.4 [15, 25] Let F: (a,b) — Rr and

to = (a,b). X is called differentiable at fy if there exists
F'(fy) € RF such that
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(1) for all A > 0 sufficiently close to 0, the Hukuhara
difference F(ty + h)O F(ty) and F(t))O F(ty — h) exist
and (in metric D)

m F(to + ]’l)@F(to) .
h—0+ h N

m F(to)@F(lo — ]’l)

=F'(t
h—0* h (fo),

or

(2) for all &> 0 sufficiently close to 0, the Hukuhara
difference F(#))OF (to + h) and F(fy — h)OF(ty) exist
and (in metric D)

zo)@F(zo+l1) F(to— )@F(zo)

lim = lim = F'(to).
h—0* h—0*

Chalco-Cano and Roman-Flores [25] used Definition 2.4
to obtain the following results.

3. Proposed method

In this section, we propose a new technique based on
Galerkin type to solve nth order FDE. Accordingly let us
consider the general form of the problem as

) + any ()" (55r) + -
+ao(t)y(t;r) = g(t;r),

where ¢;(t), 0 <i<n — 1, is continuous on some interval I,
subject to fuzzy boundary conditions

+a1() (l‘ I‘) (1)

Fa:r) = [B0). B 50:r) = [50). 500

and y(z;r) is the solution to be determined.
Now an approximate solution is assumed involving the
unknown fuzzy constants ¢;, fori =1, 2,3, ..., n as

5(67) = Boltir) +1 3 @0 @)

where (1 r) = [Mﬁ(r) + Ny(r), MB(r) +N)7(r)], M=
bl N=4f=(t—a)(b—1),and Vi(t) =11
Now one may write Eq. (2) as

y(t57) = do(t; r)+ZEi¢i(t> (3)
i=1
where ¢,;(1) =f Pi(1).

Here it can be clearly seen that y(¢; r) satisfies the given
boundary conditions. Next, by substituting Eq. (3) in
Eq. (1), the residual 1~?(t; r,C1, Ca,. .
as

., ¢,) may be obtained

R(t; r,cy, Cay ..

a= (8060430000
+%1@<%”Wnﬂ+§ia#””@>+

+ay (1 ( o (1) +Zc¢ )
+aO()<¢ofr+ZC¢ ) g(rr) (4)

The residual k(t; r,C1, C2,..., Cy) is then orthogonal-
ized with the functions ¢; for j =1, 2,..., n. This gives

b

/ﬁmnzhawwz”@@wza (5)

a

Solving the above system (5) one may obtain the fuzzy
constants ¢;. Next, substituting the value of these constants
in Eq. (3) one may have the approximate solution of the nth
order FBVP. To compare the results of proposed method
we have also applied the method of Bede [9] to find the
exact solution. Now three cases as below may arise:

Case 1 When the coefficients
a1 (1), ao(z) are all positive.

From Eq. (1) we have

anfl(t)a a1172(t)7 BT}

Y5 ) +an (Y V() 4
+ao(t)y(t;r) = g(t; 1),

Y () +ana (YD () 4
+ao(t)y(t;r) = g(t;r).
In view of Egs. (6) and (7), (by using Eq. (3)) we have

the residues R(f;r,¢y,¢s,---,¢,) and R(t;r, ¢y, Ca,y ...y Ch),
respectively, as

R(t; rycyy €y ) = <2§")(t; r) + Z£i¢f”>(t)>
i=1
Fapi () (¢>§"-'><z; "+ ig,»qbf"-”(r)) "
i=1

(s St)
(0

tr+z¢>5)

+a1(f)X’(l; r)

+a 1)y (t;7) (7)

+Cl1

+a0

and
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R(t;r,cy,ca,y. -

+ ap—1 (t) (

+a (1) (55;)(1; r)+ z": Cid’ﬁ'(f))
i=1

+ ao(1) (&o(fé r)+ i5i¢i(t)> —8(t;r)

B ~(n)
cn) = (qﬁo (t;r) +

_(n—1

) n
PENCUEDY c‘nﬁf"“(r)) +o
i=1

The residual ﬁ(t; r,C1,Ca,..

Qn)aR(I; rvzhEZa .
functions ¢; for j =1, 2, ..., n. This gives

b
/ { (gﬁ% 7+ Zg,-f/)f")(r))

a

-7En) = [K(tv V,Q], £27"

.,Cn)] is then orthogonalized with the

Tapaswini et al

b
[ #4870+ a0 + - + i o a
’ = i,
b
[ et = (670 + a8 0+ + alng, )}
=f(tr)

and

bl

[ 8{atn = (670 + 030+ + (o) Jar
' zﬁ(t; r)

Then the following system is obtained:

n— . n— Efx'in :f>(ta r)
+a,(t) (22 1>(;;r)+zgi¢i( 1)(t)> 4+... (10 = J L for j=1.2,...n (14)
. =1 ;OCJ',‘C, —fj"([; V)
+ag(t)| ¢ (t;r) + c;;(t) | —glt;r) popidt -
ol )(0( ) ; ( )> *( )} ! The above system (14) can be written in the form of a

n

linear system of equations AX = B as follows:

b
_(n)
J3{60 @n+ Y a0 Az [ A
a i=1 A2 A] 2nx2n
—(n—1) 1 where
+an i (1) <¢0 (t; ) +Za¢§"1>(t)> 4. (1)
i=1 _0611 12 13 X1n
+ ap(t) q?)()(t; r)+ Z cipi(t) | —&(t;r) ¢t 021 Oy Op3 Olan
i—1 A= | %1 %32 033 O3n ,
We may write Egs. (10) and (11) as
b L%l G2 %3p c Ohan | ,xp
1 ) y o 0 0 0
[ eofsr 0+ +aom)a 000
b Ay=10 0 O ,
= [odetsn = (870 + - +alg,0) o Lo
a LO 0 O 01,
(12)
X = [£15£27- . ~a£n761a527' BT En]
b
/ C_,‘qu{d)i(n)(t)—F +a0(t)q_')i(t)}dt and B = [}jl(t;r)7j_f2(t;r),...,]ﬁn(t;r),ﬁ(t;r),fz(t; r)v‘“v
=l fu(t;r)]. The fuzzy constants ¢; for i=1,2,...,n are
b obtained by solving the above system of equations
= / @{g(;; r) — ((j;(”)(t) N aO(t)(lT)()(t)) }dt (Eq. (14)). Substituting these constants in Eq. (3) we get the
J ’ approximate solution of the FBVP.
(13) Case 2 When the coefficients a, (1), a, 2(t),...,

Let us assume

a1 (1), ap(r) are all negative.

From Eq. (1) we have
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Y (8 7) + apa (03" (850) 4 - (15)
+ai (1) (t;7) + ao(1)y(t;r) = g(t;7),
y(”)(t; r) + an,l(t)z(”_l)(t; r)+-

+ao(t)y(t;r) = g(t;r).

4 ar()y'(tr) (16)

In view of Egs. (15) and (16), (by using Eq. (3)) we may

have the residues R(t;r,cy,¢p,...,¢,) and ﬁ(t;r,El,

Ca,...,Cn), TEspectively, as

R(t;r.c1, €055 ) = (Qf)”)(t; r)+ ZQ@,.(”)O))

+ ao (1) (dm(t; r) + Z cigi(t) | —g(t;r)
(17)
and
ﬁ(l; r, 517 Ez, ceey En) = <(?5(()n)(t; V) + i C[qbf")(l))
i=1
+ an1(1) <Q§)””(t; r) + ig@f"”(l))
= (18)

+ay(t ( tr+z¢ )
+ ao(t ( tr—|—Z O (t )—gtr)

The residual R(t; F,C1,Cayevy Cy) = [R(8; 7yCyy Coye e vy

gn),f?(t; F,C1,C2,...,Cy)] is then orthogonalized with the
functions ¢; for j =1, 2, ..., n. This gives

b

/B(t; FiCly €y Cy) Pyt (19)
b

/ R(t:r, G0, Car o C) . (20)

a

We may write Egs. (19) and (20) as

/¢]{ZC¢ 1)+ an( )i@'d’f"—l)(l)-ﬁ----

i=1

+ﬁan§3a@@}m
b B
/¢{guw(¢W>+%lo¢"W0+

a

+ao(t)¢o(f))}dt

and

/¢ g(157) — (B0(1) + 4 (06" (1) + -

+%ogﬁ0}:ﬁmn

the following system is obtained:
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where

Ay

and B = [}_Cl(t; r),]_‘2

(t; 7).

<zn:nﬁ —&—Zé,lc,): (t;r).

The above system (23) may again be represented as a
system of linear equation AX = B such as

|

Ay

X =

M
M2y
31

L M1

[on1
021
031

_5n1

M2
M2

UEY)

Mn2

O12
02
032

5n2

[glaQZa sy

5r),..

Ay
Ay Ay

Ay

M3
M3
N33

'13n
013

023
033

6311

CpyC1,C25 0 - -y

:|2n><2n

Min i
Mo
M3y

5 nn

)

L EF )R, o,

The fuzzy constants ¢; for i=1,2,...,

Smita Tapaswini et al

(23)

<4 nXn

n are

obtained by solving the above system of equations Eq. (23).
Substitute these constants in Eq. (3) to get the approximate
solution of Eqs. (15) and (16) for this case.

Case 3 When the coefficients day_u—1(?), dpm—2(1),

..,(11(1‘), ap

have

¥ 857+ ana (" (a57) 4

(t) for n>m are negative. From Eq. (1) we

(Y0 )+ s (D 1) 4
+ao(t)y(t;r) = g(t; 1),

T ) + apy (OF I (857) 4 - - -
+ anfmfl(t)y(n7M7l)(t. V) +-

+ao(t)y(t;r) = g(557).

We may have the residues R(t; r, ¢y, ¢, --

R([;I",Cl,C27...7

cn), respectively, as

(24)

+ ()5 (£ 7)

(25)

., ¢,) and

B(t7 r7£17 QZ7~ R} Qn) = (Qin)(ty I") +

i=1

—&-an,[(l) <?(()n—])(t; V) + igi(bi(n—l)(t) 4.

+a0()<¢0 L Jchqu ) —g(t;r)

R(t7 V,EI,EQ, .. ’7En) = (&gn)(h r) + ici(bfn)(t))

i=1

+ a1 (1) <¢§"1)(t; r) + z:: c@f"”(;)) +
+anm()<¢” " (t;r) +Zc¢” ™) >

+ap i ( ( "D () +Zc¢" "= 1()>+...
+ ao(t ( (t;r —|—Zc¢ >—gtr)

(27)
-7En) = [E(tv ragh 927 ey
¢,),R(t;r,c1,¢2,...,¢y)] is then orthogonalized with the
functions ¢J- forj=1, 2, ..., nas done in previous cases.

The residual ﬁ(t; r,C1,Co,..

Next we get
b
and
b
/E(I;nzlazb"'vzn)(bjdt (29)

a

Egs. (28) and (29) are now written as
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e g
+a0 Zcz

n

+an (D)Y@ (0)

i=1
b

-/ ¢j{g<r; 7 - (g

a

+ an—m(t)g[()nim) (t) + Ay (t)é(()nfm—l) (t) 4+ .

+ao(t)¢0(f))}dl

b
/ d)j{z 5i¢,.(")(f) +
i=

a

4 an,m(t) Z 5i¢i(n—nl)(t)
i=1

Fann (03t + a(t) S it

i

i=1 i=1

/¢ g(t;r)

}

(1) +an1 (D" (1) + -

fa

¢ () + an (LD (1) + -+

+ an (D) (1) + 1 (0" (1) +

+ an(t) by (1)) e (31)
Again by assuming
b
[ 8{0 + amag 00 4+ arnd 0t = &
b
/¢{%w4m¢“””m+~~+m@¢@+m@Nﬁ“

= Kjis

b
/ o {at:r) = (670 + an 1 (N8 (1) + -

+ anfmd)(n_m) (t) + anfmfl(z)(()n_m_l) (t) + -

+ao(0)bo(1)) } =1, (1:7)

and

/¢

() + an (NP (1) + -+

+anim¢0n m) (I) —i—a,,,m,l@i"_m_l)(t) 4.

+ ao(t)go(t))} =fi(t;r)

51

the following system is

<Zé‘j, +Zu],c,> =f tr) for j=1,2,...,n
(32)
Eq. (32) is written finally in the form of AX = B as
A Ay
A =
|:A2 A] :|2n><2n
where
ESTRRSTRRSE Ein |
S Cn n Son
A = G ol o ,
L énl énZ éSn e gﬂn d nxn
[ o s fip |
Hor Hoa Hp3 Hop
Ay = | M3 Mz Mz o Hzy ,
LHa1 M2 Hay Hon | nxn
X=lc1,¢2, 1€, €102y, &) and B=[f (t;7), f,
(t; r)a"'v]in(t;r)vfl(t; r)afz(t;r)7"~7f (t 7’)} The fuzzy

constants ¢; for i = 1, 2, ..., n are obtained by solving the
above system of equations [Eq. (32)] as done previously.
These constants are substituted in Eq. (3) to get the
approximate solution of the BVP.

4. Numerical implementation of the proposed
method

In the following paragraphs, example problems are solved
using the proposed method with different cases and are also
compared with exact solutions. We also obtain the exact
solution by following the method of Bede [9].

Example 1 Let us consider the following second-order
fuzzy linear differential equation with positive coefficients
(Case 1):

V' +y+t=0 (33)
subject to the fuzzy boundary conditions

y(0)=y) =

The exact fuzzy solution are found, Bede [9], as

[0.1F — 0.1, 0.1 — 0.17].
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Y(t; r) = —t+ (0.1r — 0.1) cos(r)

+ (1.13376 + 0.05463027) sin(r),
Y(t; r) = —t+ (0.1 —0.1r) cos(z)

+ (1.24303 — 0.05463027) sin(z).

Let the approximate solution of Eq. (33) be

B 3
V(i) = doltr) + ) Ciil0) (34)
i=1
where ¢(t;7) = [(0.1r — 0.1), (0.1 — 0.1r)].
Now, y(#;r) can be written as
V(t:r) = do(tir) +1(1 =)@ +1E2 +7°¢)  (35)

which satisfies the fuzzy boundary condition.
Therefore residue R can be written as

R(t,r,cy,¢5,03) = (=01 +0.1r) + ¢
+ (=241t + (2 —6t+1 —F)c,
+1(6 — 12t + 12 — £)cs,
R(t,r,¢1,¢2,¢3) = (0.1 = 0.17) + 1t + (=2 + 1 — )¢
+(2—6t+1 —12)e +1(6 — 12t + 1 — ).
(36)

Here the residue R is orthogonalized to the functions
¢, (1), p,(¢) and p5(¢). This gives

1
/ $1(t; r)k(t7 r7f515,52af53)dt = 07
0

1 (37)

/ b (; 1) R (17,1, T2, C3)dr = 0,

0

and
1

/$3(1; FR(t;r,¢1,Ca, T3)dt = 0.

0

(38)

On solving the above equations we get the following
system:

10.0595238 0.0297619 0.0123016 0 0 0o 1(a [ 0.0133333 + 0.00333333r ]
0.0297619 0.0218254 0.0130952 0 0 0 1) 0.00785714 + 0.00166667r
0.0170635 0.0154762 0.0111472 0 0 0 e 0.005 + 0.000952381r

0 0 0 0.0595238 0.0297619 0.0123016 | | & [ 0.02 - 0.00333333
0 0 0 0.0297619 0.0218254 0.0130952 | | & 0.0111905 — 0.00166667r
L 0 0 0 0.0170635 0.0154762 0.0111472 | G3 | 0.00690476 — 0.0009523817 |

Solving for ¢, ¢; and ¢3 from the above system, we get

¢ = [0.132778 + 0.054623 r, 0.242024 — 0.054623 r]

2 = [0.190205 + 0.00469417 r, 0.199594 — 0.00469417 r]

and

¢3 =[—0.0187767 — 0.00469417 r, —0.028165 4 0.00469417 r].

By substituting the values of fuzzy constants to Eq. (39),
we have

y(t;r) = (0.1r — 0.1) + #(r — 1)(0.132778 + 0.054623r
+ £(0.190205 + 0.00469417r)
+ £#(—0.0187767 — 0.00469417r)),

y(t;r) = (0.1 = 0.17) + 1(r — 1)(0.242024 — 0.054623r
4 1(0.199594 — 0.00469417r)
+ 2(—0.028165 + 0.00469417r)).

Hence from this one may have the final solution as
Y(t;7) = [y(t;7),y(t;7)]. Now the results obtained by the
proposed method are compared with the exact solution for
particular value of ¢. The solution bounds are shown in
tables 1 and 2. Corresponding fuzzy plots are given in

figure 1.

Example 2 Now, we take the following second-order
fuzzy linear differential equation

V'+y=11€l0,1] (39)

subject to the fuzzy boundary conditions as

y0)=0@3+r,5-r), y(1)=(@r2-r).

Exact fuzzy solution are obtained again by following the

method of Bede [9] as

Y(t;r) =t+ (3+r)cos(t) — (34 r)cot(1) sin(z)
+ (r — 1)cosec(1) sin(z),
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Table 1. Fuzzy solution of Example 1 at r = 0.1.
r y(t;r) Y(t7r) Error y(t;r) Y(t;r) Error
0 —0.08635504166 —0.0863127972 4.2244e—-5 0.1235531518 0.1235958847 4.2733e—5
0.1 —0.07585963199 —0.07581736311 4.2269e—5 0.1130577421 0.1131004506 4.2709e—5
0.2 —0.06536422231 —-0.06532192901 4.2293e—5 0.1025623325 0.1026050165 4.2684e—5
0.3 —0.05486881264 —0.05482649492 4.2318e—5 0.09206692278 0.09210958239 4.2660e—5
0.4 —0.04437340297 —0.04433106083 4.2342e—-5 0.08157151311 0.0816141483 4.2635e—5
0.5 —0.03387799329 —0.03383562673 4.2367e—5 0.07107610343 0.0711187142 4.2611e—-5
0.6 —0.02338258362 —0.02334019264 4.2391e—-5 0.06058069376 0.06062328011 4.2586e—5
0.7 —0.01288717395 —0.01284475854 4.2415e—-5 0.05008528409 0.05012784602 4.2562e—5
0.8 —0.002391764276 —0.002349324451 4.2440e—-5 0.03958987442 0.03963241192 4.2538e—5
0.9 0.008103645397 0.008146109643 4.2464e—5 0.02909446474 0.02913697783 4.2513e—5
1 0.01859905507 0.01864154374 4.2489e—5 0.01859905507 0.01864154374 4.2489e—-5
Table 2. Fuzzy solution of Example 1 at t = 0.01.
r y(t;r) Y(t;r) Error y(t;r) Y(t;r) Error
0 —0.09866668715 —0.09865754043 9.1467e—6 0.1024157693 0.1024250464 9.2771e—6
0.1 —0.08861256433 —0.08860341109 9.1532e—6 0.09236164645 0.09237091708 9.2706e—6
0.2 —0.07855844151 —0.07854928175 9.1598e—6 0.08230752363 0.08231678773 9.2641e—6
0.3 —0.06850431869 —0.06849515241 9.1663e—6 0.07225340081 0.07226265839 9.2576e—6
0.4 —0.05845019587 —0.05844102306 9.1728e—6 0.06219927799 0.06220852905 9.2511e—6
0.5 —0.04839607305 —0.04838689372 9.1793e—6 0.05214515517 0.05215439971 9.2445e—6
0.6 —0.03834195023 —0.03833276438 9.1858e—6 0.04209103234 0.04210027036 9.2380e—6
0.7 —0.0282878274 —0.02827863504 9.1924e—6 0.03203690952 0.03204614102 9.2315e—6
0.8 —0.01823370458 —0.01822450569 9.1989¢—6 0.0219827867 0.02199201168 9.2250e—6
0.9 —0.008179581761 —0.00817037635 9.2054e—6 0.01192866388 0.01193788234 9.2185e—6
1 0.00187454106 0.001883752993 9.2119e—6 0.00187454106 0.001883752993 9.2119e—6
3 3 19
— = — 0 0 0
10 20 210
3 13 79
- — — 0 0 0 1
20 105 840 c
19 79 103 =
0.1 210 840 1260 (%]
Fuzzy Galerkin 0.0 . 2> 0 0 0 i i E 1
Solutions  _g "' o A, &, . 10 20 210 Ch
00 """'"i: o o o 3 1B 7 B
20 105 840 | \ @
19 79 103
0 0 — — —
L 210 840 1260
SRR
Figure 1. Fuzzy solution of Example 1 for Case 1 using the 8+ 6
proposed method. 1 r
20 12
- . 1 r
Y(t;r) =t + (5—r)cos(t) — (5 —r)cot(1) sin(¢) 60 + 20
+ (1 — r)cosec(1) sin(z). = 1 r
Now, by using the proposed method we have 132 6
~ r
do(t;7)=11=0)B+r)+tr, 1 =0)5—r)+ (2 —1r)]. 0 1
Subsequently, by applying the procedure discussed pre-
viously, we get the following system of equations: T
L 60 20 .
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Table 3. Fuzzy solution of Example 2 at r = 0.1.

r y(t;r) Y(;r) Error y(t;r) Y(t;r) Error

0 2.77412851 2.774064053 6.4457e—5 4.873214797 4.873150872 6.3925e—5
0.1 2.879082824 2.879018394 6.4430e—5 4.768260483 4.768196531 6.3952e—5
0.2 2.984037138 2.983972735 6.4403e—5 4.663306169 4.66324219 6.3979¢—5
0.3 3.088991453 3.088927076 6.4377e—5 4.558351854 4.558287849 6.4005e—5
0.4 3.193945767 3.193881417 6.4350e—5 4.45339754 4.453333508 6.4032e—5
0.5 3.298900082 3.298835758 6.4324e—5 4.348443225 4.348379167 6.4058e—5
0.6 3.403854396 3.403790099 6.4297e—5 4.243488911 4.243424826 6.4085e—5
0.7 3.50880871 3.50874444 6.4270e—5 4.138534597 4.138470485 6.4112e—5
0.8 3.613763025 3.613698781 6.4244e—5 4.033580282 4.033516144 6.4138e—5
0.9 3.718717339 3.718653122 6.4217e—5 3.928625968 3.928561803 6.4165e—5
1 3.823671653 3.823607463 6.4190e—5 3.823671653 3.823607463 6.4190e—5
Table 4. Fuzzy solution of Example 2 at t = 0.01.

r y(t;r) Y(tr) Error y(t;r) Y(t;r) Error

0 2.978725494 2.978703791 2.1703e—5 4.989550726 4.989529659 2.1067e—5
0.1 3.079266755 3.079245084 2.1671e—5 4.889009464 4.888988366 2.1098e—5
0.2 3.179808017 3.179786378 2.163%e—5 4.788468202 4.788447073 2.1129¢e—5
0.3 3.280349279 3.280327671 2.1608e—5 4.687926941 4.687905779 2.1162e—5
0.4 3.38089054 3.380868965 2.1575e—5 4.587385679 4.587364486 2.1193e—5
0.5 3.481431802 3.481410258 2.1544e—5 4.486844418 4.486823192 2.1226e—5
0.6 3.581973063 3.581951551 2.1512e—-5 4.386303156 4.386281899 2.1257e-5
0.7 3.682514325 3.682492845 2.1480e—5 4.285761895 4.285740605 2.1290e—5
0.8 3.783055587 3.783034138 2.1449¢—5 4.185220633 4.185199312 2.1321e-5
0.9 3.883596848 3.883575432 2.1416e—5 4.084679371 4.084658019 2.1352e—-5
1 3.98413811 3.984116725 2.1385e—5 3.98413811 3.984116725 2.1385e—5

On solving the above system we have obtained the fuzzy
constants ¢; for i =1,...3 and putting these values in
Eq. (39) we have

ytsr) =1 —=t)3+r)+tr+t(l —1)
(14(2332 +1435r)  14(=557+41r)t 14 (14 r)tz)
36777 12259 299 ’

o) =01=-05-r+Q2-rt+:t(1-1)
( 14(—5202 + 1435r)  14(475+41r)t 14

e 2
36777 2259 209 3+r)t)‘

Again, it may be worth mentioning that the results
obtained by proposed method are compared with exact
solution for different values of 7, which are tabulated in
tables 3 and 4. Plots for Example 2 are depicted in figure 2.

Example 3 Consider the following FDE (Case 2):
V'=y=1 (40)
subject to the fuzzy boundary conditions as
37(0) - [rf 1,1 7”]&?(0) = [rf 1,1 *r]a
() =[r+(e—2),e—rl.

We have obtained the exact fuzzy solution as follows:

Figure 2. Fuzzy solution of Example 2 using the proposed
method.

Y(t;r) = —14¢€ + (r—1)cos(t) + (r — 1) sin(z) tan (%)

Y(6r) = =1+ ¢ + (1 = r)cos(r) + (1 — r) sin(r) tan (%)

Next, by following the proposed method we have
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bo(t;r) = [(1=0)(r = 1) +1(r+ (e =2)), (1 =1)(1 —7)
+tle —r)].

yt) =1 —=)(r—1)+t(r+e—2)+t(1—1)

(10608211 + 1848717e — 6748420r)

86476182
The following system is now obtained as 14
—————(—138672 + 148304¢ — 48203r)¢
101 1 1 1 11 14412607 + ¢ 7) ,
3 5 10 30 80 105 B B )
12 111 ‘ 335179 (—1345 + 897e + 2242r)t
6 15 10 60 105 168 c
1 1 3 1 1 1 = B
0 10 35 105 168 252 e yO)y=1—-0)1—=r)+tle—r)+tt—1)
11 1 1 1 1 2 7
- — - —————(—2888629 + 1848717¢ + 6748420r
30 60 105 3 6 10 & 86476182( )
! ! ! ’ B C _ 4 235078 + 148304e + 48203
60 105 168 20 105 840| \ ~ Taaiago7 (2078 e +48203n)t
1 1 1 1 1 3
105 168 252 10 10 35 - 3139 + 897e — 2242r)¢*
[105 168 252 10 10 35 335179 (D139 +897e r)
r 1 e
6 4 12
r 7 e
1260 20 Again the solution obtained by proposed method is
r 1 e compared with the exact solution. Results are given in
20 15 30 tables 5 and 6, and plots for this example are shown in
= PE e figure 3.
S ARTIET . .
6 12 12 Example 4 Next, we consider the following FDE (Case
r 1 e 3):
[ — + PR
12 20 20 Al | o
Y =3y +2y=0 (41)
r 1 e
L 20 T 30 30 subject to the fuzzy boundary conditions
And the solution may be found to be FO0)=[r+1,3—1],
y1)=[r+2,4—r]
Table 5. Fuzzy solution of Example 2 at r = 0.1.
r y(t;r) Y(t;r) Error y(t;r) Y(t;7) Error
0 —0.9443985268 —0.9443724913 2.6036e—5 1.154687761 1.154714327 2.6566e—5
0.1 —0.8394442125 —0.8394181503 2.6062e—5 1.049733446 1.049759987 2.6541e—5
0.2 —0.7344898981 —0.7344638094 2.608%e—5 0.944779132 0.9448056456 2.6514e—5
0.3 —0.6295355837 —0.6295094685 2.6115e—5 0.8398248176 0.8398513046 2.6487e—5
0.4 —0.5245812693 —0.5245551275 2.6142e—5 0.7348705033 0.7348969637 2.6460e—5
0.5 —0.4196269549 —0.4196007866 2.6168e—5 0.6299161889 0.6299426228 2.6434e—5
0.6 —0.3146726406 —0.3146464457 2.6195e—5 0.5249618745 0.5249882818 2.6407e—5
0.7 —0.2097183262 —0.2096921047 2.6222e—5 0.4200075601 0.4200339409 2.6381e—5
0.8 —0.1047640118 —0.1047377638 2.6248e—5 0.3150532457 0.3150795999 2.6354e—5
0.9 0.0001903025858 0.0002165771 2.6275e—5 0.2100989313 0.210125259 2.6328e—5
1 0.105144617 0.1051709181 2.6301e—5 0.105144617 0.1051709181 2.6301e—5
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Table 6. Fuzzy solution of Example 2 at r = 0.01.

r y(5;7) Y(t;r) Error y(t;r) Y(t;r) Error

0 —0.9953709952 —0.9953627672 8.2280e—6 1.015454236 1.015463101 8.8650e—6
0.1 —0.8948297336 —0.8948214738 8.2598e—6 0.9149129749 0.9149218079 8.8330e—6
0.2 —0.794288472 —0.7942801803 8.2917e—6 0.8143717133 0.8143805145 8.8012e—6
0.3 —0.6937472105 —0.6937388869 8.3236e—6 0.7138304517 0.7138392211 8.7694e—6
0.4 —0.5932059489 —0.5931975935 8.3554e—6 0.6132891901 0.6132979276 8.7375e—6
0.5 —0.4926646873 —0.4926563 8.3873e—6 0.5127479286 0.5127566342 8.7056e—6
0.6 —0.3921234257 —0.3921150066 8.4191e—6 0.412206667 0.4122153408 8.6738e—6
0.7 —0.2915821641 —0.2915737132 8.4509¢—6 0.3116654054 0.3116740474 8.6420e—6
0.8 —0.1910409025 —0.1910324198 8.4827e—6 02111241438 0.2111327539 8.6101le—6
0.9 —0.09049964095 —0.09049112634 8.5146e—6 0.1105828822 0.1105914605 8.5783e—6
1 0.01004162064 0.01005016708 8.5464e—6 0.01004162064 0.010050167 8.5464e—6

The exact fuzzy solution for this problem may be
obtained as follows:

67172t(_3e3t 4 3e4t + 282+3z _ 2el+4t)

Y(t;r) = =
— e
N (1 _ r)eflfzt(_ez + e3 + el+t _ e3+t)
—1+e ’
Y([ ) 67172t(—3e3t + 364’ + 262+3t _ 261+4t)
) =
’ —1l+e
N (r _ 1)6—1—2[(_62 + el + el — e3+t)
—1l+e '

Here we may have ¢o(r;r) = [(1 — 1)(r+ 1) + t(r +2),
(1-=)3—=7r)+t(4—r)] and

(4 2 7o, 1 17
15 15 210 20 20
i i 3_7 i 0 i (4]
15 35 420 20 70 .
17 37 7 1 1 0 =2
210 420 90 20 70 o
o L4 2 1)
20 20 15 15 210 )
Lo, L2 4 37 )
20 70 15 35 420 \ 4
1 1 17 37 7
L20 70 210 420 90
— r -
3
1+r
60 ' 6
1+r
60 10
| 2_r
3 3
7 r
20 6
13 r
L6010

Fuzzy Galerkin t;'z
Solutions _g s

Figure 3. Fuzzy solution of Example 3 for Case 2 using the
proposed method.

Hence the solutions are

) =0+l =0+ Q+rt+ (-1
<7(—1709 +2434r)  7(—3079 + 2394r)

10022 10022
21(105 +2987)1
10022 )
yer) =@+l =)+ @-ri+ (1 -0t
(_ 7(=3159 +2434r) | 7(=1709 +2394r)r
10022 10022
21(—701 + 298r)7
a 10022 )

Here also above results are compared with the exact
solution and are incorporated in tables 7 and 8. Corre-
sponding plots for this example are shown in figure 4.

Example S Let us now consider the following FDE (Case
2):

' —ty = (£ =2 =5t —3)e', 0<t< 1 (42)

subject to the fuzzy boundary conditions
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Table 7. Fuzzy solution of Example 4 at r = 0.1.
r y(5;7) Y(t;r) Error y(t;r) Y(t;r) Error
0 1.012122481 1.010808546 0.0013 3.28915904 3.288607747 5.5129e—4
0.1 1.125974309 1.124698506 0.0013 3.175307212 3.174717787 5.8942¢—4
0.2 1.239826136 1.238588466 0.0012 3.061455384 3.060827827 6.2756e—4
0.3 1.353677964 1.352478426 0.0012 2.947603556 2.946937867 6.6569e—4
0.4 1.467529792 1.466368386 0.0012 2.833751728 2.833047907 7.0382¢—4
0.5 1.58138162 1.580258346 0.0011 2.7198999 2.719157947 7.4195e—4
0.6 1.695233448 1.694148306 0.0011 2.606048072 2.605267987 7.8009e—4
0.7 1.809085276 1.808038266 0.0010 2.492196244 2.491378027 8.1822e—4
0.8 1.922937104 1.921928226 0.0010 2.378344416 2.377488067 8.5635e—4
0.9 2.036788932 2.035818186 9.7075e—4 2.264492588 2.263598107 8.9448e—4
1 2.15064076 2.149708147 9.3261e—004 2.15064076 2.149708147 9.3261e—004
Table 8. Fuzzy solution of Example 4 at r = 0.01.
r y(t;r) Y(t;r) Error y(t;r) Y(t;r) Error
0 0.9983957523 0.9979767927 4.1896e—4 3.031727094 3.031632921 9.4173e—5
0.1 1.100062319 1.099659599 4.0272e—4 2.930060527 2.929950115 1.1041e—4
0.2 1.201728887 1.201342406 3.8648e—4 2.82839396 2.828267308 1.2665e—4
0.3 1.303395454 1.303025212 3.7024e—4 2.726727393 2.726584502 1.4289¢—4
0.4 1.405062021 1.404708018 3.5400e—4 2.625060826 2.624901695 1.5913e—4
0.5 1.506728588 1.506390825 3.3776e—4 2.523394259 2.523218889 1.7537e—4
0.6 1.608395155 1.608073631 3.2152e—4 2.421727692 2.421536083 1.9161e—4
0.7 1.710061722 1.709756438 3.0528e—4 2.320061124 2.319853276 2.0785e—4
0.8 1.811728289 1.811439244 2.8904e—4 2.218394557 2.21817047 2.2409e—4
0.9 1.913394856 1.91312205 2.7281e—004 2.11672799 2.116487663 2.4033e—4
1 2.015061423 2.014804857 2.5657e—4 2.015061423 2.014804857 2.5657e—4

3
Fuzzy Galerkin 2

Solutions

Figure 4. Fuzzy solution of Example 4 for Case 3 using the
proposed method.

$(0) = [0.2r — 0.2, 0.2 — 0.27],

¥(0) = [0.2r + 0.8, 1.2 — 0.27],
$(1) = [0.2r — 0.2, 0.2 — 0.2r].

Here we may have ¢q(f;r) = [(0.2r —0.2) + (1 — 1)

(0.2r +0.8), (0.2 —0.27) + (1 — 1)(1.2 — 0.2r)]

and

applying the procedure as discussed in section 3, one may

have

y(t;7) = (0.2r — 0.2) + (0.8 + 0.2r)(1 — 1)t + £(1 — 1)

(—8.27196 — 0.21426r
+1(1.06088 + 0.00826r

+2(0.57229 + 0.00819r
+£3(0.20881 + 0.00009

)
)
[
)

y(t;7) =.(02-02r)+ (1.2 =02r)(1 — )t +¢(1 — 1)
(~8.70050 + 0.21426r)
+1(1.07710 — 0.00826r

)
+£(0.58867 — 0.00819r)
)

+£3(0.20900 — 0.00009

Here also above results are compared with the special
case r =1 [26] and are incorporated in table 9. Corre-
sponding plots for this example are shown in figure 5.

Example 6 In this example we have considered a 1-mm
diameter, 50-mm long aluminium pin fin as shown in
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Table 9. Fuzzy solution of Example 4.

r=0.5 r=09 r=1
t y(t;7) y(t;7) y(tr) y(t;7) Y(t;7) Y(t;r) [26]
0 —0.1 0.1 —0.02 0.02 0 0 0
0.1 —0.763 —0.5642 —0.6835 —0.6437 —0.6636 —0.6636 0.09947
0.2 —1.259 —1.061 —~1.179 —~1.14 —~1.16 ~1.16 0.1954
0.3 —1.591 —1.394 —1512 —1.473 —1.493 —1.493 0.2835
0.4 —1.767 —157 —1.688 —1.649 —1.669 —1.669 0.358
0.5 —1.794 —1.596 —~1.715 —1.675 ~1.695 ~1.695 0.4122
0.6 —1.681 —1.483 —~1.602 —1.562 —1.582 —1.582 0.4373
0.7 —1.44 —1.241 —~1.36 —132 —1.34 —1.34 0.4229
0.8 —1.084 —0.8846 —1.004 —0.9644 —0.9844 —0.9844 0.3561
0.9 —0.6311 —0.4311 —0.5511 —0.5111 —0.5311 —0.5311 0.2214
1 -0.1 0.1 —0.02 0.02 0 0 0

Fuzzy Galerkin '01'50
Solutions _-lh.s

0.0

Figure 5. Fuzzy solution of Example 3 for Case 2 using the
proposed method.

Wall (

S

Figure 6. A pin-fin Seshu [27].

figure 6 used to enhance the heat transfer from a surface
wall maintained at 300°C. The governing differential
equation is

T  Ph,

k 2 A (T —Tw) (43)

subject to the fuzzy boundary conditions

T(0;7) = [20r 4 280,320 — 20r],
T

‘jl_x (L) =10.8r — 0.8,0.2 — 0.2r].

Here the considered parameters are defined as below.

k = coefficient of thermal conductivity,
P = perimeter,
A, = cross-sectional area,

h = convective heat transfer coefficient,
T, = fuzzy wall temperature,

T+, = ambient temperature.

Let k=200W/m/°C for aluminium, /& =20W/m’
°C, T = 30°C. Thus Eq. (43) is reduced to
T ~
— =400(T — 30).
iz ( )
The exact bounds of the fuzzy solutions are found as
follows:

T(x;r) = e 2%(220.212 + 30e*™ + 29.7878¢"
+ 17.603r 4 2.39702¢*% ),

T(x;r) = e 2%%(255.428 + 30e*™ + 34.5721*"
— 17.6127r — 2.3873¢*%r).

Here we may have ¢o(fr) = [(20r + 280) +
x(0.870.8), (320 —20r) + x(0.2 — 0.2r)]. Fuzzy solutions
are obtained using the present procedure and are presented
in tables 9-13. Tables 9 and 11 gives the lower and upper
bounds of the fuzzy solutions, respectively, along with the
comparison of Bede [9] for r = 0.6 with different values of
x. Also comparisons have been made in table 12 with the
crisp solution obtained by Bede [9] and Seshu [27] for
different values of x and r = 1. Similarly table 13
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Table 10. Comparison of various lower bound solutions for uncertain temperature in a fin for » = 0.6.
Quadratic solution Cubic solution Quartic solution
X Present Bede [9] Present Bede [9] Present Bede [9]
0 292 292 292 292 292 292
0.005 274.28 273.32 273.300 273.300 273.32 273.300
0.01 258.77 257.08 257.03 257.03 257.08 257.03
0.015 245.42 243.11 243.02 243.02 243.11 243.02
0.02 234.16 231.28 231.15 231.15 231.28 231.15
0.025 224.95 221.45 221.29 221.29 221.45 221.29
0.03 217.711 213.55 213.25 213.25 213.55 213.25
0.035 212.40 207.48 207.24 207.24 207.48 207.24
0.04 208.95 203.19 202.91 202.91 203.19 202.91
0.045 207.31 200.63 200.31 200.31 200.63 200.31
0.05 207.42 199.78 199.41 199.41 199.78 199.41
Table 11. Comparison of various upper bound solutions for uncertain temperature in a fin for » = 0.6.
Quadratic solution Cubic solution Quartic solution
X Present Bede [9] Present Bede Bede [9] Present Bede [9]
0 308 308 308 308 308 308
0.005 289.20 288.18 288.16 288.18 288.23 288.18
0.01 272.74 270.95 270.89 270.95 271.05 270.95
0.015 258.58 256.13 256.03 256.13 256.28 256.13
0.02 246.64 243.57 243.44 243.57 243.77 243.57
0.025 236.86 233.15 232.98 233.15 23341 233.15
0.03 229.18 224.77 224.55 224.77 225.08 224.77
0.035 223.55 218.33 218.08 218.33 218.70 218.33
0.04 219.89 213.78 213.48 213.78 214.21 213.78
0.045 218.15 211.06 210.72 211.06 211.56 211.06
0.05 218.27 210.16 209.77 210.16 210.73 210.16
Table 12. Comparison of the solutions for uncertain temperature in a fin for » = 1.
Quadratic solution Cubic solution Quartic solution
X Present Bede [9] Seshu [27] Present Bede [9] Seshu [27] Present Bede [9] Seshu [27]
0 300 300 300 300 300 300 300 300 300
0.005 281.74 280.75 281.59 280.73 280.75 280.87 280.80 280.75 280.80
0.01 265.76 264.02 265.12 263.96 264.02 264.11 264.11 264.02 264.11
0.015 251.99 249.62 250.59 249.53 249.62 249.62 249.77 249.62 249.77
0.02 240.40 237.43 238.00 237.29 237.43 237.33 237.62 237.43 237.62
0.025 230.90 227.31 227.34 227.14 227.31 227.16 227.55 227.31 227.55
0.03 223.45 219.16 218.62 218.95 219.16 219.02 219.46 219.16 219.46
0.035 217.97 21291 211.84 212.66 21291 212.83 213.27 21291 213.27
0.04 214.42 208.49 207.00 208.20 208.49 208.51 208.90 208.49 208.90
0.045 212.73 205.85 204.09 205.52 205.85 205.98 206.33 205.85 206.33
0.05 212.85 204.97 203.12 204.59 204.97 204.16 204.65 204.97 204.91

incorporates the solution bounds for x = 0.2 with different
values of r.

It is worth mentioning that the main value of the paper
may not be the example problems as discussed above. Here

the main contribution is the new Galerkin type method to
handle nth order FDEs. As such some known FDEs are
solved as test problems to have the confidence on the
proposed method. The solutions by the proposed method in
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Table 13. Comparison of various bound solutions for uncertain temperature in a fin for x = 0.2.

Quadratic solution Cubic solution

Quartic solution

Present Present Present Bede [9]

r T(x) T(x) T(x) T(x) T(x) T(x) T(x) T(x)

0 224.81 255.99 221.93 252.65 222.23 253.00 222.05 252.79
0.1 226.37 254.43 223.47 251.11 223.77 251.46 223.59 251.26
0.2 227.93 252.87 225.00 249.58 225.31 249.92 225.13 249.72
0.3 229.48 251.31 226.54 248.04 226.85 248.39 226.66 248.18
0.4 231.04 249.75 228.08 246.51 228.39 246.85 228.20 246.65
0.5 232.60 248.19 229.61 244.97 229.93 245.31 229.74 245.11
0.6 234.16 246.63 231.15 243.44 231.46 243.77 231.28 243.57
0.7 235.72 245.08 232.69 241.90 233.00 242.23 232.81 242.04
0.8 237.28 243.52 234.22 240.37 234.54 240.70 234.35 240.50
0.9 238.84 241.96 235.76 238.83 236.08 239.16 235.89 238.96
1 240.40 240.40 237.29 237.29 237.62 237.62 237.43 237.43

all the test problems are found to be very close to the exact
solutions. Finally the proposed method has been applied to
an application problem too. The proposed method may be
found to be a straightforward and alternate way to handle
nth order FBVPs.

5. Conclusions

In this paper, the Galerkin method has been successfully
applied to find fuzzy solution of nth order fuzzy boundary
value problems. The proposed methodology is applied for
both positive and negative coefficient of the fuzzy differ-
ential equations. Also the obtained results are compared
with the exact as well as other existing method(s) and are
found to be in good agreement.
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