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Abstract. ‘‘Sequential pattern mining’’ is a prominent and significant method to explore the knowledge and

innovation from the large database. Common sequential pattern mining algorithms handle static databases.

Pragmatically, looking into the functional and actual execution, the database grows exponentially thereby

leading to the necessity and requirement of such innovation, research, and development culminating into the

designing of mining algorithm. Once the database is updated, the previous mining result will be incorrect, and

we need to restart and trigger the entire mining process for the new updated sequential database. To overcome

and avoid the process of rescanning of the entire database, this unique system of incremental mining of

sequential pattern is available. The previous approaches, system, and techniques are a priori-based frameworks

but mine patterns is an advanced and sophisticated technique giving the desired solution. We propose and

incorporate an algorithm called STISPM for incremental mining of sequential patterns using the sequence tree

space structure. STISPM uses the depth-first approach along with backward tracking and the dynamic lookahead

pruning strategy that removes infrequent and irregular patterns. The process and approach from the root node to

any leaf node depict a sequential pattern in the database. The structural characteristic of the sequence tree makes

it convenient and appropriate for incremental sequential pattern mining. The sequence tree also stores all the

sequential patterns with its count and statistics, so whenever the support system is withdrawn or changed, our

algorithm using frequent sequence tree as the storage structure can find and detect all the sequential patterns

without mining the database once again.
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1. Introduction

Sequential pattern mining is an important and significant

breakthrough innovation in data mining. The task of

sequential pattern mining is to find all sequential patterns

in the sequence database. It is widely used mainly in

transactional data analysis, web log analysis, customer

purchase behavior analysis and its pattern, weather pre-

diction, and among others. Sequential pattern mining was

first introduced by Agrawal and Srikant [1] as

‘‘AprioriAll.’’

Sequential Pattern Mining is bonded together and

related to association rule mining and they are at par

with an exception of time factor, which links the events

in sequential pattern mining. Sequential patterns indicate

the link and relationship between transactions, while

association rule depicts and denotes intratransaction

relationships. Association rule mining delivers and

performs such mining results that are about the items

brought together frequently and also those items must be

the part of the same transaction. Sequential pattern

mining precisely performs and maintains the results in

the chronology that are purchased by the same customer

at different times in various transactions executed by him

or her [2].

Earlier, many techniques, research work, and systems for

mining Sequential Pattern for transactions were proposed,

most of which were based on the A priori-based mining

algorithm. The shortcomings of a priori-based mining

algorithms of sequential patterns are that multiple scanning

of the database and a large number of candidate sequences

are needed to be stored. In order to minimize the large set

of candidate sequences, Han et al [3] proposed a pattern-

growth mining method based on projection, called FreeS-

pan. FreeSpan used the advantages of projected database to

minimize the search space.

Common sequence mining algorithms manage and

maintain a static database, which means the data in the
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database will not change. Practically speaking, in real-

world applications and executions, new transactions are

generally incorporated into databases on their rising or

increasing pattern. In this case, the originally desired and

expected frequent sequences may become invalid and new

frequent sequences may appear in the resulting and sub-

sequent updated databases [4–7]. Thus, designing an

efficient and effective algorithm that can maintain and

manage sequential pattern as the database keeps growing

is critical. In view of this, the concept of incremental

mining of sequential patterns is proposed and made

available for innovation and desired results. The concept

of incremental mining algorithms uses the intermediate

data collected and accumulated from the previous mining

process. It achieves the knowledge and pattern extraction

by implementing the latest revised and updated part of the

database and thereafter refreshes the older database, as

and when required.

In this paper, a sequential tree approach for incremental

sequential pattern mining is presented to find out and

locate the sequences that are frequent in the updated and

revised database. The proposed approach and mechanism

uses tree space structure with the depth-first and backward

tracking approach. Also, the proposed method gets rid of

such patterns that are infrequent using dynamic lookahead

pruning method. The path from the root node to any leaf

node denotes a sequential pattern in the database. The

structural characteristic and features of sequence tree

make it appropriate for incremental sequential pattern

mining.

The remaining part of the paper is organized in the fol-

lowing order. Section 2 reviews the related algorithms.

Section 3 describes the concepts of the structure of

sequence tree space. Section 4 describes the sequential

pattern and incremental mining. Section 5 illustrates a

unique algorithm for sequential patterns mining and theo-

retical foundation for our approach. Section 6 provides an

example to illustrate the proposed algorithm. Section 7

elaborates the performance evolutions and test results.

Finally, Section 8 presents the conclusions.

2. Related work

In 1995, Agrawal and Srikant [1], through their research,

introduced the mining sequential patterns for the first time.

Since then there have been many types of research and

innovations in this field and several efficient methods have

been initiated and developed to explore and search the

frequent sequence in a set of data sequence that includes a

series of transactions, happening or occurring chronologi-

cally. There are two main approaches or methodologies in

sequential pattern mining: mining with a static database

called sequential pattern mining and mining on an updated

database called incremental mining.

2.1 Algorithms for discovering sequential patterns

AprioriAll: Agarwal and Srikant proposed the AprioriAll

[1] algorithm, which splits sequential pattern mining into

three phases: (1) itemset, (2) transformation, and (3)

sequence.

The itemset phase uses AprioriAll to find all frequent

itemsets. The second step of transformation phase trans-

forms the database with each transaction being substituted

by the set of all frequent itemsets in that transaction. In the

third and final phase, AprioriAll multiple passes over the

database to generate candidates and to count the support of

candidates.

Generalized Sequential Patterns (GSP): Srikant and

Agarwal introduced GSP [8] algorithms that compose

several passes over the database and discover frequent k-

sequences at kth database scan. At each pass, every data

sequence is checked to update the support counts of the

candidate contained in this sequence. Initially, each item is

a candidate 1-sequence for the first pass. Frequent 1-se-

quences are determined after checking and monitoring all

the data sequences in the database. In the subsequent pas-

ses, frequent (k-1) sequences are self-joined to produce

candidate sequences. Thereafter, the supports of these

candidate sequences are counted by examining all data

sequences, and then those candidates having a minimum

support become the frequent sequences. This process stops

when there is no more candidate sequence.

Sequential Pattern mIning with Regular expressIon

constraints (SPIRIT): Garofalakis et al [9] proposed a

family of algorithms for sequential pattern mining with

regular expression constraints. Its general idea is to use

some relaxed constraint that has excellent characteristics to

reduce or prune. There are many versions of the algorithm

that differ in the volume and magnitude to which the

constraints are enforced to prune the search space of pat-

terns during the computation. The main distinguishing

factor among the schemes is the degree to which the regular

expression constraints are enforced to prune the search

space.

Despite this, all the algorithms discussed above have to

re-mine the database. After the database is appended with

new data sequences, it is required repeat mining for

maintaining the rules discovered earlier and also for dis-

covering and exploring new rules. Re-mining requires more

time than the earlier mining process because the appending

increases the size of the database. Next, we explore some

approaches for updating patterns without re-mining.

2.2 Approaches for incremental mining

of sequential pattern and association rule

The incremental mining algorithms [4, 10] generally plan to

use intermediate information collected during the earlier

mining process. Satisfactory research on incremental
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mining has ongoing since several years. We introduce some

previous work here, which helps in discovering and

exploring the sequential pattern.

Update with Early Pruning (UWEP): UWEP [11] made

use of a dynamic lookahead strategy in the incremented

database to refresh the frequent item sets and interactively

mined the association rules. It also follows the approaches

of FUP2 [4] and partition update [12] algorithm. The major

benefits of UWEP [11] were to refresh or scan the old

database not more than once and the incremented database

once and it evaluates the least number of candidates to find

out the new frequent patterns. In the first scan of the

database, a Tidlist is formed for each item in the database

and uses Tidlist to find out the support of supersets of that

item. Also, it removes the item sets that are likely to get

infrequent as early as possible, since it uses a dynamic

lookahead strategy. This lookahead pruning leads to the

reduction of candidates to a minimum in the new incre-

mented database. Also, UWEP (Ayan et al 1999) encour-

ages such candidates that are in the old and incremented

database. Thus the majority of candidate sets are removed

just because of their absence in the incremented set of

transactions and this is done without refreshing the existing

database.

Fast Sequential Pattern Update Algorithm (FASTUP):

Lin and Lee [5] introduced incremental sequential pattern

mining. FASTUP is an enhanced GSP [8] taking into

account the previous mining result, before generating and

validating candidates, using the generating pruning method.

The main idea is that FASTUP, by means of the previous

result, takes advantage of information about sequence

thresholds to generate candidates; it can, therefore, avoid

generating some sequences, depending on their support.

Item constraint: An item constraint specifies a subset of

items that should or should not be present in the patterns.

Incremental Mining of Sequential Patterns (IncSpan):

Cheng et al [13] developed a method for incremental

mining sequential patterns and explores buffering semi-

frequent patterns in sequential patterns mining, which is a

statistics-based approach. A sequence is semi-frequent if its

support is less than min sup but no less than l*minimum

support and a sequence is infrequent if its support is less

than l*minimum support. The SFS forms a kind of

boundary (or ‘‘buffer zone’’) between the frequent subse-

quences and infrequent subsequences. IncSpan uses two

optimization techniques: one is reverse pattern matching

and the other is shared projection.

Progressive mIning of Sequential pAtterns (Pisa): PISA

[14] discovered sequential patterns in defined time period

of interest (POI). POI is a sliding window, whose length is a

user-specified time interval, continuously advancing as the

time goes by. The basic idea behind Pisa is to maintain

progressive sequential tree to keep the information from

one POI to another. Pisa utilizes a progressive sequential

tree to efficiently maintain the latest data sequences, dis-

cover the complete set of up-to-date sequential patterns,

and delete obsolete data and patterns accordingly. By

changing Start time and End time of the POI, Pisa can

easily deal with a static database and an incremental data-

base as well.

An incremental mining algorithm for maintaining

sequential patterns using pre-large sequences: Hong et al

[15] developed a novel and an efficient incremental mining

algorithm capable of updating sequential patterns based on

the concept of pre-large sequences. A pre-large sequence is

not truly large, but approximately large. A lower support

threshold and an upper support threshold are used to realize

this concept. Pre-large sequences act like buffers and are

used to reduce the movement of sequences directly from

large to small and vice versa during the incremental mining

process. The proposed algorithm does not require rescan-

ning original databases until the accumulative amount of

newly added customer sequences exceeds a safety bound,

which depends on database size. The safety bound also

increases monotonically along with the increase in database

size.

Pei et al later proposed PrefixSpan [16] for dealing with

the problem of FreeSpan [3], that is, the length of original

database sequences could not be shortened during the

mining process. Their principle is to check the frequency of

patterns from the prefix subsequences. For those prefixes

that pass the frequency threshold, the suffix sub-sequences

of each original sequence would be inserted into their

projected database. Each projected database would then

generate its frequent patterns recursively. The advantage of

partitioning the search space into the projected database is

that each projected database would contain only the

required mining information with respect to the prefix.

Along with the growth of the frequent patterns, the pro-

jected database will shrink, making Prefix Span perform

better than FreeSpan for dense databases. PrefixSpan also

outperforms FreeSpan in general. Since the generated

projected databases occupy a lot of memory space, when

the database or the number of items is huge, the memory

space may be insufficient to store the projected databases.

Sequential PAttern Mining (SPAM): Ayres et al [17]

proposed SPAM algorithm for finding all frequent

sequences within a transactional database. The algorithm is

especially efficient when the sequential patterns in the

database are very long. A depth-first search strategy is used

to generate candidate sequences, and various pruning

mechanisms are implemented to reduce the search space.

The transactional data are stored using a vertical bitmap

representation, which allows for efficient support counting

as well as significant bitmap compression.

Sequential PAttern Discovery using Equivalence classes

(SPADE): Zaki [18] proposed an efficient sequential pat-

tern mining algorithm based on vertical format. It utilizes

combinatorial properties to decompose the original problem

into smaller sub-problems. SPADE use a lattice-theoretic

approach to decompose the original search space (lattice)

into smaller pieces (sub-lattices), which can be processed
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independently in main memory. All sequences are discov-

ered in three database scans, or only a single scan with

some Pre-processed information.

Incremental Sequence Mining (ISM): Parthasarathy et al

proposed ISM (Parthasarathy et al 1999) algorithm is

actually an extension of SPADE [18]. ISM uses concepts of

negative border and an efficient memory management

scheme that create an Increment Sequence Lattice (ISL). It

exploits its properties to prune the search space for poten-

tial new sequences. The ISL consists of all elements in the

negative border and the frequent set and is initially con-

structed using SPADE [18]. In the ISL, each node of the

ISL contains the support for the given sequence. The

algorithm consists of two phases. Phase 1 is for updating

the supports of elements in negative border and frequent

sequence and Phase 2 is for adding to the negative border

and frequent sequence beyond what was done in phase.

Frequent Pattern Projected Sequential Pattern Mining

(FreeSpan): Han et al [3] developed FreeSpan algorithm to

mine sequential patterns by a database projection technique.

FreeSpan first finds the frequent items after scanning the

database once. The sequence database is then projected,

according to the frequent items, into several smaller interme-

diate databases. Finally, all sequential patterns are found by

recursively growing subsequence fragments in each database.

Han et al [19] proposed the Frequent-Pattern-tree (FP-

tree) structure for efficiently mining association rules

without generation of candidate itemsets. The FP-tree was

used to compress a database into a tree structure, which

stored only large items. It was condensed and complete for

finding all the frequent patterns. The construction process

was executed tuple by tuple, from the first transaction to the

last. After that, a recursive mining procedure called FP-

Growth was executed to derive frequent patterns from the

FP-tree. They demonstrated that the approach could have a

better performance than Apriori. The FP-tree mining

approach belongs to batch mining; that is, all transactions

must be processed in a batch way.

Lin et al [20] attempt to further modify the FUFP-tree

[21] algorithm for incremental mining based on the pre-

large concept [15]. Based on two support thresholds, the

proposed approach can effectively handle cases in which

item sets are small in an original database but large in

newly inserted transactions. The proposed algorithm does

not require rescanning the original databases to construct

the FUFP tree until a number of new transactions have been

processed. The number is determined from the two support

thresholds and the size of the database.

3. The structure of sequence tree space

Tree space structure is an approach to representing the

database of sequential pattern. This sequence tree not only

stores the frequent sequences of the original database, but

also stores the non-frequent sequences of the original

database, and the support of each sequence is also stored in

the sequence tree. The construction of tree space structure

begins from the root node and the number of edges is equal

to the number of items in the database and the weight of the

edges is equal to the number of data item values, i.e., X1,

X2, X3, …, Xn. In the next step, we take X2, X3, X4, …, Xn

and use the concept of backtracking to find out the possible

sequence pattern and so on for every initial edge. Thus, we

give the definition of the sequence tree as follows:-

Definition 3.1: The root node of the sequence tree is an

empty node. In addition to the root node, each node in the

sequence tree contains two attributes: One stores sequence

in the database and the other stores the support of the

sequence. The path from the root node to any leaf node

represents the largest sequence in the database. The support

of any node is not smaller than the support of its child

nodes (table 3).

We give an example to illustrate the sequence tree space.

A Sequence Database D for table 1 is shown in table 2. The

sequence tree of the sequence database D is shown in fig-

ure 1. From the sequence tree shown in figure 1 we can see

that the set of all sequences in the sequence database D with

its support is {(10):4, (20):4, (30):3, (10 20):0, (10)(20):4,

(10 30):0, (10)(30):3, (20 30):1, (20)(30):2, (10 20 30):0, (10

20)(30):0, (10)(20)(30):2, (10)(20 30):1}. The sequence tree

stores all the frequent sequences and nonfrequent sequences

with its support in the original database. So, we can find all

the sequential patterns in the sequence database through

traversing the sequence tree. The quoting of sequence tree

space in STISPM makes the algorithm take full advantage of

the results of previous mining. When the database is updated,

STISPM can find all the sequential patterns in the database

through traversing the sequence tree without mining the

Table 1. Database of customer item purchased.

Transaction Id Transaction time Items bought

C1 Jan 10, 2012 10

C1 Jan 20, 2012 20

C1 Jan 25, 2012 30

C2 Jan 15, 2012 10

C2 Jan 20, 2012 20,30

C3 Jan 25, 2012 10

C3 Jan 28, 2012 20

C3 Jan 30, 2012 30

C4 Jan 20, 2012 10

C4 Jan 25, 2012 20

Table 2. Sequence database representation.

Transaction Id (TID) Item sequence

C1 ((10) (20) (30))

C2 ((10) (20, 30))

C3 ((10) (20) (30))

C4 ((10) (20))
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database once again. We propose the algorithm that uses the

sequence tree, called Tree_D. We use Tree_Generate (D) to

construct the sequence tree for the original database, and

when the database is updated, the Tree_d tree is generated

again using Tree_Generate (d).

4. Problem formulation

4.1 Mining of sequential patterns

Let ‘DB’ be a set of customer transactions, where each

transaction T consists of Transaction-id, Transaction time,

and a set of items involved in the transaction. Let I = {i1,

i2… im} be a set of literals called items. An itemset is a

nonempty set of items. A sequence s is a set of itemsets,

ordered according to their time stamp, denoted by\s1-

s2_sn[, where si is an itemset. The size of sequence s,

written as |s|, is the total number of items in all the elements

in s. Sequence s is a k-sequence if |s| = k.

For example,\(5)(7)(8)[,\(1,2)(4)[, and\(3)(5,9)[ are

all 3-sequences. A sequence s =\s1s2_sn[ is a subsequence

of another sequence s’ =\s1’s2’…sm’[ if there exists

1 � i1\ i2\…\in � im such that s1 � s’i1,s2 � s’ i2,…,

and sn � s’in. Sequence s’ contains sequence s if s is a subse-

quence of s’. For example,\(1)(2,5)[ is a subsequence

of\(1)(2,3,5)(6)[.

Every sequence in the sequence database ‘DB’ is referred

to as a data sequence. Each data sequence is associated with

a transaction-id (cid). The number of data sequences in

‘DB’ is represented by |DB|. The support of sequence s;

denoted by s.sup, is the number of data sequences that

contains divided by the total number of data sequences in

DB. The minsup is the user specified minimum support

threshold. A sequence s is a frequent sequence, or

sequential pattern, if s.sup � minsup.

4.2 Incremental mining of sequential pattern

The database used in mining for knowledge discovery is

dynamic in nature. The database is updated with new

transactions after the pattern mining process. This kind of

update is called incremental update. The knowledge

discovered from these databases is also dynamic. The

process to find out the new set of all sequential patterns

after database update is known as incremental mining of

sequential pattern. The objective of incremental mining is

to avoid re-learning of rules from the old data and apply

knowledge that has already been discovered.

Let D be the original database and minsup the minimum

support.

Let d be the increment database where new transactions

or new customers are added to D.

Assume that each transaction on d is sorted by customer-

id and transaction time.

D ? d = D[d is the updated database that contains all

sequences from D and d.

Let LD
K be the set of K frequent sequences in D.

The Problem of incremental mining of sequential pat-

terns is to find K frequent sequences in D ? d, noted LD?d
K ,

with respect to the same minimum support.

5. The proposed algorithm

However, a number of algorithms have been proposed for the

maintenance of sequential patterns over the static database

using sequence tree space representation of the database. But

not much work has been done on the incremental mining of

sequential patterns which process the database in the form of

sequence tree space structure .The majority of methods for

incremental mining of sequential pattern require multiple

scans of transactions in the original database and generate a

huge number of candidate sequences to discover sequential

patterns for the updated database. In this paper, we propose

an efficient incremental mining algorithm for computing the

sequential patterns without candidate generation after a

nontrivial number of new transactions are added to the

original database. Assume that the minimum support remains

the same (table 3).

5.1 An overview

The proposed algorithm is a sequential tree approach for

incremental sequential pattern mining (STISPM) that

Figure 1. Sequence tree space structure.
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follows the approaches of UWEP [11] and AprioriAll [1].

The advantages of STISPM are that it does not scan the

existing database and it does not generate candidate

sequences in order to determine the new set of frequent

sequences. Moreover, it prunes sequences that are not fre-

quent from the set of generated sequences as early as

possible by a dynamic lookahead pruning strategy [11].

Every time we find those sequences that are frequent in

added transactions but not frequent in the whole database

and remove all its superset from the existing frequent

sequences. In this way, many sequences that are not fre-

quent in the updated database are pruned in early stages.

However, discovering the frequent sequences is a nontrivial

issue, where the efficiency of an algorithm is very high

because this algorithm does not generate candidate

sequences. A sequence is called k-sequences if the number

of items in the sequences is k. We denote LK as the set of

frequent K-sequences. Candidate sequences are those that

are potentially frequent sequences. Let CK denote the set of

candidate K-sequences. The various notations used in the

algorithm are shown in table 3.

5.2 The STISPM algorithm

This algorithm STISPM is presented in figure 2. Inputs to

the algorithm are Tree_D, Tree_d, minsup and N. The

output of the algorithm is LD?d
m , the set of frequent

sequences in updated database.

The algorithm can be described in the following steps

Step I: For K = 1, find all the frequent K-sequences

from Tree_d and add them in Td
K shows by

Line 3 of figure 2.

Step II: Find all the frequent K-sequences from Tree_D

and add them in LD
K shows by Line 4 of

figure 2.

Step III: Find P_set (collection of those K-sequences

which are frequent in D but not frequent in d)

then call Prune procedure (see figure 3

discussed in detail later), that will remove those

K-sequences and their supersets, which are

frequent in D but not frequent in d and D ? d.

Lines 5–8 of figure 2 shows this step.

Step IV: Find R_set (collection of those K-sequences,

which are frequent in d but not frequent in D).

Generate a set of sequences Ld
K, which are

frequent in D and d with the help of R_Set and

Td
K.After that Call Prune_R procedure (see

figure 4 discussed in detail later), to find the

frequentness of the K-sequences in the whole

database (D ? d), which are frequent in d but

not frequent in D, if it is frequent in (D ? d)

then add the K-sequences in the set of frequent

sequences of D ? d (LD?d) and also add it in

the set of frequent K-sequences that are

frequent in both D and d (Ld
K). Lines 9–14 of

figure 2 show this step.

Step V: Increment K, then obtained in the previous

steps, shown by line 15 of figure 2.

Step VI: Repeat Steps II–VI till K = N.

Table 3. Notations used in the paper.

Notation Definition

TID Transaction identification number

D Set of old transaction

d Set of new transaction

D ? d Set of transaction after update

N Length of maximal sequences in LD?d

minsup Minimum support threshold

SuppD(X) Support of X in D

Suppd(X) Support of X in d

CD
K Candidate K-sequences in D.

Cd
K Candidate K-sequences in d.

Tree_D Sequence tree of set of old transaction in Database D

Tree_d Sequence tree of set of new transaction in Database d

Ld
K Frequent K-sequences in d and D ? d

LD
K Frequent K-sequences in D

Td
K Frequent K-sequences in d

LD?d
K Frequent K-sequences in D ? d

LD?d Set of frequent sequences in D ? d

LD Set of frequent sequences in D

P_set Frequent sequences in D which are not frequent in d.

R_set Frequent sequences in d which are not frequent in D.

SD?d
m Subset of m-frequent sequences in D ? d

LD?d
m Maximal frequent sequences in D ? d

STISPM (Tree_D, Tree_d, minsup, N)
1 K=1
2 While K< = N
3 Td

K= All K- sequences in Tree_d with support ≥ minsup 
4 LD

K= All K- sequences in Tree_D with support ≥ minsup 
5 P_set = LD

K – Td
K

6 If P_set ≠φ then
7 Prune (P_set)
8 End if
9 R_set = Td

K – LD
K

10 Ld
K = Td

K– R_Set
11 LD+d =LD+d U Ld

K

12 If R_set ≠ φ then
13 Prune_R (R_set)
14 End if
15 K = K+1
16 End while
17 K= N (Length of Maximal sequences in LD+d)
18 For K > 1
19 For each K-sequences do
20 delete all subsequences from LD+d
21 End for
22 End for

Figure 2. Algorithm STISPM.
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Step VII: Find the length (n) of maximal sequence in the

(LD?d). Delete all sub-sequences of length (1 to

n) from (LD?d). Shown by lines 17–22 of

figure 2.

The procedure Prune (see figure 3) deals with the fre-

quent K-sequences in D but not frequent in d. For

sequences X, find its count in (D ? d) by taking the sum of

the count in Tree_D and Tree_d and check whether it is

frequent in the whole database (D ? d). If it is frequent,

then append all supersets of X that are in Tree_D to the

P_set so that the frequency of these supersets in whole

database D ? d can be checked here itself. Add X to LD?d,

then we remove the X from the P_set. Lines 3–7 of figure 3

show these steps. If the sequence X is not frequent in

D ? d, then remove X and its supersets from Tree_D

because supersets of X cannot be frequent if there the

subset is not frequent and also remove X and its superset

from P_set, lines 8–10 of figure 3 shows these steps.

The procedure Prune_R (see figure 4) deals with the

frequent K-sequences in d but not frequent in D. For

sequences X, find its count in (D ? d) by taking sum of

count in Tree_D and Tree_d and check whether it is fre-

quent in whole database (D ? d). If sequence X is frequent

in D ? d, then add sequence X in the set of frequent

sequences of D ? d (LD?d). Lines 3–8 of figure 4 show

these steps.

The procedure Tree_Generate (see figure 5) generate tree

of sequence pattern along with count by processing of

database. Count shows how many times concern pattern

present in different transactions of database. Lines 1–7

show these steps.

The lemmas on which this algorithm is based are as

follows.Their proofs can be found [4, 22–24]. Basically

these lemmas are related to the association rule but we have

used in Sequence mining.

Lemma 1 Given a set of infrequent sequence X in the

database D, then any superset of X will also be infrequent in D.

Assume X is an infrequent sequence in the updated

database, by Lemma 1, any superset of X will also be

infrequent. As compared to the previously designed algo-

rithms, STISPM functions differently in the sense that it

prunes all the supersets of frequent sets in D before they are

converted to be infrequent. As stated in the previous algo-

rithms, a K-sequence is checked only in the Kth iteration, but

STISPM do not wait for the Kth iteration, it takes out the

superset of infrequent sets in LD that are infrequent in LD ? d.

Lemma 2 Let X be a sequence, then X [ L D? d only if

either X [ LD or X [ Ld

Corollary 1 Let X is a sequence.If X is infrequent in both

D and d, then X cannot be frequent in D ?d.

Prune(P_set)
1  While P_set ≠ φ do
2 X = first element of P_set
3 Find sum of count of X in Tree_D and Tree_d for evaluation of support X in D+d
4 find SuppD+d(X)
5 If SuppD+d (X)>=minsup then
6 add X to LD+d
7 remove X from P_set
8 Else
9 remove X and its supersets from Tree_D
10 remove X and its supersets from P_set
11 End if 
12 End while

Figure 3. Prune procedure.

Prune_R (R_set)
1  While R_set ≠ φ do
2  X = first element of R_set
3  Find sum of count of x in Tree_D and Tree_d for evaluation of support X in D+d
4  find SuppD+d 

(X)

5 If SuppD+d 
(X) >= minsup then

6 add  X to LD+d
7 add  X to LK

d

8 End if 
9 End while

Figure 4. Prune_R procedure.
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Assume X is a candidate K-sequence in d. If X [L D? d and

if X 62 LD, then X must belong to Ld. If X 62LD and X 62Ld then

X 62LD?d, by corollary 1.Otherwise, find out the support of X

in D ? d. Since, we have the support of X in D and d, we can

quickly find out whether it is frequent or not. If (supportD
(X) ? supportd (x)\minsup |D ? d|, then X is not frequent

in D ? d. By Lemma 1, all supersets of X that are infrequent

are eliminated from LD, Otherwise, added to LD?d.

Lemma 3 Let X be a sequence. If X[LD and X[Ld, then

X[LD ? d .

In this case, we place X into LD?d with the total support.

If X is infrequent in D, we check for X in D ? d by

whether it is frequent or not. Also we know the support of

X in D [support D (X)], it can be find out by rescan of D.

We add X into LD?d if support D?d(X)[= minsupD?d.

Lemma 4 STISPM generates the minimum number of can-

didate set.

Due to the lookahead pruning technique, the STISPM

generates the minimum number of candidate sets.

6. Study with example

This section presents a working model STISPM. Table 4

contains four different transactions and each transaction has

a maximum of five different items represented in D and

three more transactions are added given in d.

Take the minsup = 50%

Find the large sequences in Database ‘D’ by traversing tree

Tree_D with support C minsup.

LD
1 = {10, 20, 30, 40, 60}

LD
2 = {(10 20), (10)(30), (10)(40), (10)(60), (20)(40), (30

40), (40)(60)}

LD
3 = {(10 20) (40), (10) (30 40), (10) (40) (60)}

LD
4 = {/}

These are existing frequent sequences.

So LD = LD
1[ LD

2 [L D
3

LD ={10, 20, 30, 40,60, (10 20), (10)(30), (10)(40),

(10)(60), (20)(40), (30 40), (40)(60), (10 20)(40), (10)(30

40), (10)(40)(60)}

STISPM finds new frequent sequences in D ? d.

Step by step execution of the STISPM algorithm is as

follows

K = 1

First Iteration
Generate (Td

1) the frequent 1-sequences in d by traversing

tree Tree_d with support C minsup.

Td
1 = {10, 30, 40, 50, 60}

//set of large one sequence in d (new added transactions)
LD

1 = {10, 20, 30, 40,60}

//set of large one sequence in D
P_set = LD

1 – Td
1

//P_set is the collection of sequence which is large in D
but not large in d
P_set = {20}

Tree_Generate (D)
\\ T is representing the tree space Diagram.
\\ R1, R2, R3,…., Rn Records of Database.
\\ X1, X2, X3, ….,Xn No. of Items in each record.
\\ Count is representing no. of times Itemset present in records.

1. Starting from the first record R1.
2. Initially take root node and no of edges according to the no of elements in first record. The value of 

element (X1, X2,…., Xn) .shows the weight of edge and count =1
3. In second step take edge from X2,X3,….,Xn in depth-first approach and generate all possible item set 

and enhance the value of count.
4. In the third step take edge from X3, X4,…., Xn in depth-first approach and next n steps take edge Xn in 

depth-first approach and enhance count.
5. These steps are recursively used for each of initial record and recursively generate the item set and 

enhance the value of count.
6. The steps 1 to 5 repeat for every record in Database D
7. Finally, we get a tree space diagram, which is the all possible itemsets of tree space diagram which are 

generated by using the forward and backward approach, i.e. backtracking.

Figure 5. Tree_Generate procedure.

Table 4. Sample sequence database.

Transaction Id (TID) Itemsets

D

C1 (10 20) (30 40) 50

C2 10 40 60

C3 (10 20) 40

C4 10 (30 40) 60

d

C5 10 (30 40) (50 60)

C6 (10 20) (30 40) (50 60)

C7 10 (30 40) 50
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Prune (P_set, K)

//pruning procedure that will prune all the supersets of a
sequences from the LD if that sequences is not large in
D 1 d otherwise it check the largeness in D 1 d of the
superset of that sequences present in LD by adding them
in the P_set.
For all X [ P_set do

X = (20)

Find support of (20) in D ? d by adding count of (20) from

tree Tree_D and Tree_d respectively.

Count of X = 20 in Tree_D is 2

Count of X = 20 in Tree_d is 1

Now sum of count is 3 corresponding to X = 20.

SuppD?d(20) = 3\minsup

So, we will remove (20) and all the supersets of (20) from

LD, Tree_D and P_set

Now LD is

LD = {10, 30, 40, 60, (10)(30), (10)(40), (10)(60), (30 40),

(40)(60), (10)(30 40), (10)(40)(60)}

Now

P_set = {/}

R_set = Td
1 - LD

1

R_set = {50}

//R_set is the collection of sequence which is large in d
but not large in D
Ld

1 = Td
1- R_set

Ld
1 = {10, 30, 40, 60}

LD ? d = LD ? d [ Ld
1

LD ? d = {10, 30, 40, 60} //add Ld
1 to LD1d

R_set 6¼ {/}

Prune_R (R_set, K)

//this procedure check the largeness of K-sequences in
D 1 d which are frequent in d but not frequent in D by
taking sum of count in tree Tree_D and Tree_d.
X = 50

Count of X = 50 in Tree_d is 3.

Count of X = 50 in Tree_D is 1.

Now sum of count is 4 corresponding to X = 50.

So SuppD?d(50) = 4 = minsup.

Add X = (50) to LD1d and Ld
1

Now R_set = {/}

Now we have

LD ? d = {10, 30, 40, 50, 60}

Ld
1 = {10, 30, 40, 50, 60}

//Continue with the main program

K = 2 (Second Iteration)
Generate (Td

2) the frequent 2-sequences in by traversing tree

Tree_d with support C minsup.

Td
2 = {(10)(30), (10)(40), (10)(50), (10)(60), (30 40),

(30)(50), (30)(60), (40)(50), (40)(60), (50 60}

LD
2 = { (10) (30), (10)(40), (10)(60), (30 40), (40)(60)}

P_set = LD
2 – Td

2

//P_set is the collection of sequence which is large in D
but not large in d
P_set = {/}

R_set = Td
2- LD

2

R_set = {(10)(50), (30)(50), (30)(60), (40)(50), (50 60)}

//R_set is the collection of sequence which is large in d
but not large in D
Ld

2 = Td
2 - R_set

Ld
2 = {(10) (30), (10) (40), (10) (60), (30 40), (40) (60)}

LD ? d = LD ? d [ Ld
2

LD ? d = {10, 30, 40, 50, 60, (10) (30), (10) (40), (10) (60),

(30 40), (40) (60)} //add Ld
2 to LD1d

R_set 6¼ {/}

Prune_R (R_set, K)

//this procedure check the largeness of K-sequences in
D 1 d which are frequent in d but not frequent in D by
taking sum of count in tree Tree_D and Tree_d.
X = (10) (50)

Count of X = (10) (50) in Tree_d is 3.

Count of X = (10) (50) in Tree_D is 1.

Now sum of count is 4 corresponding to X = (10) (50).

So SuppD?d (50) = 4 = minsup.

Add X = (10) (50) to LD1d and Ld
2

X = (30) (50)

Count of X = (30) (50) in Tree_d is 3.

Count of X = (30) (50) in Tree_D is 1.

Now sum of count is 4 corresponding to X = (30) (50).

So SuppD?d (30)(50) = 4 = minsup.

Add X = (30) (50) to LD1d and Ld
2

X = (30) (60)

Count of X = (30) (60) in Tree_d is 2.

Count of X = (30) (60) in Tree_D is 1.

Now sum of count is 3 corresponding to X = (30) (60).

So SuppD?d (30) (60) = 3\= minsup.

X = (40) (50)

Count of X = (40) (50) in Tree_d is 3.

Count of X = (40) (50) in Tree_D is 1.

Now sum of count is 4 corresponding to X = (40)(50).

So SuppD?d (40) (50) = 4 = minsup.

Add X = (40) (50) to LD1d and Ld
2

X = (50) (60)

Count of X = (50) (60) in Tree_d is 2.

Count of X = (50) (60) in Tree_D is 0.

Now sum of count is 2 corresponding to X = (50) (60).

So SuppD?d (50) (60) = 2\= minsup.

Now R_set = {/}

Now we have

LD ? d = {10, 30, 40, 50, 60, (10) (30), (10)(40), (10) 50),

(10)(60), (30 40), (30)(50), (40)(50), (40)(60)}

Ld
2 = {(10) (30), (10) (40), (10) (50), (10) (60), (30 40),

(30) (50), (40) (50), (40) (60)}

//Continue with the main program

K = 3
Third Iteration
Generate (Td

3) the frequent 3-sequences in by traversing tree

Tree_d with support C minsup.

Td
3 = {(10)(30 40), (10)(30)(50), (10)(40)(50),

(10)(40)(60), (30 40)(50), (30 40)(60)}

LD
3 = {(10) (30 40), (10) (40) (60)}

P_set = LD
3 – Td

3
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//P_set is the collection of sequence which is large in D
but not large in d
P_set = { /}

R_set = Td
3 - LD

3

R_set = {(10) (30) (50), (10) (40) (50), (30 40) (50), (30

40) (60)}

//R_set is the collection of sequence which is large in d
but not large in D
Ld

3 = Td
3- R_set

Ld
3 = {(10) (30 40), (10) (40)(60)}

LD ? d = LD ? d [ Ld
3

LD ? d = {10, 30, 40, 50, 60, (10) (30), (10)(40), (10) 50),

(10)(60), (30 40), (30)(50), (40)(50), (40)(60)

(10) (30 40), (10) (40)(60)}}//add Ld
3 to LD1d

R_set 6¼ {/}

Prune_R (R_set, K)

//This procedure check the largeness of k-sequences in
D 1 d which are frequent in d but not frequent in D by
taking sum of count in tree Tree_D and Tree_d.
X = (10) (30) (50)

Count of X = (10) (30) (50) in Tree_d is 3.

Count of X = (10) (30) (50) in Tree_D is 1.

Now sum of count is 4 corresponding to X = (10) (30) (50)

So SuppD?d (10) (30) (50) = 4 = minsup.

Add X = (10) (30) (50) to LD1d and Ld
3

X = (10) (40) (50)

Count of X = (10) (40) (50) in Tree_d is 3.

Count of X = (10) (40) (50) in Tree_D is 1.

Now sum of count is 4 corresponding to X = (10) (40) (50)

So SuppD?d (10) (40) (50) = 4 = minsup.

Add X = (10) (40) (50) to LD1d and Ld
3

X = (30 40) (50)

Count of X = (30 40) (50) in Tree_d is 3.

Count of X = (30 40) (50) in Tree_D is 1

Now sum of count is 4 corresponding to X = (30 40) (50)

So SuppD?d (30 40) (50) = 4 = minsup.

Add X = (30 40) (50) to LD1d and Ld
3

X = (30 40) (60)

Count of X = (30 40) (60) in Tree_d is 2.

Count of X = (30 40) (60) in Tree_D is 1.

Now sum of count is 3 corresponding to X = (30 40) (60)

So SuppD?d (30 40) (60) = 3\= minsup.

Now R_set = {/}

Now we have

LD ? d = {10, 30, 40, 50, 60, (10) (30), (10)(40), (10) 50),

(10)(60), (30 40), (30)(50), (40)(50), (40)(60)

(10) (30 40), (10) (40)(60), (10)(30)(50), (10)(40)(50), (30

40)(50)}

Ld
3 = {(10) (30 40), (10) (40) (60), (10) (30) (50), (10) (40)

(50), (30 40) (50)}

//Continue with the main program

k = 4
Fourth Iteration
Generate (Td

4) the frequent 4-sequences in by traversing tree

Tree_d with support C minsup.

Td
4 = {(10) (30 40) (50)}

LD
4 = {/}

P_set = LD
4 – Td

4

//P_set is the collection of sequence which is large in D
but not large in d
P_set = {/}

R_set = Td
4 - LD

4

R_set = {(10) (30 40) (50)}

//R_set is the collection of sequence which is large in d
but not large in D
Ld

4 = Td
4 – R_set

Ld
4 = {/}

LD ? d = LD ? d [ Ld
4

LD ? d = LD ? d [{/}

LD ? d = {10, 30, 40, 50, 60, (10) (30), (10)(40), (10) 50),

(10)(60), (30 40), (30)(50), (40)(50), (40)(60)

(10) (30 40), (10) (40)(60), (10)(30)(50), (10)(40)(50), (30

40)(50)}//add Ld
4 to LD1d

R_set 6¼ {/}

Prune_R (R_set, K)

//This procedure check the largeness of k-sequences in
D 1 d which are frequent in d but not frequent in D by
taking sum of count in tree Tree_D and Tree_d.
X = (10) (30 40) (50)

Count of X = (10) (30 40) (50) in Tree_d is 3.

Count of X = (10) (30 40) (50) in Tree_D is 1.

Now sum of count is 4 corresponding to X = (10) (30 40)

(50)

So SuppD?d (10) (30 40) (50) = 4 = minsup.

Add X = (10) (30 40) (50) to LD1d and Ld
4

Now R_set = {/}

Now we have

LD ? d = {10, 30, 40, 50, 60, (10) (30), (10)(40), (10) 50),

(10)(60), (30 40), (30)(50), (40)(50), (40)(60)

(10) (30 40), (10) (40) (60), (10) (30) (50), (10) (40) (50),

(30 40) (50), (10) (30 40) (50)}

Ld
4 = (10) (30 40) (50)

//Continue with the main program

K = 5
Fifth Iteration
Td

5 = Generate frequent 5-sequence from Tree_d

Td
5 = {/}

Now set of frequent Sequences in D ? d

LD ? d = {10, 30, 40, 50, 60, (10) (30), (10)(40), (10) 50),

(10)(60), (30 40), (30)(50), (40)(50), (40)(60)

(10) (30 40), (10) (40) (60), (10) (30) (50), (10) (40) (50),

(30 40) (50), (10) (30 40) (50)}

After applying steps 17–22 of figure 1 we get Size of

Longest Sequences is (n =) 4.

4-Sequences = {(10) (30 40) (50)}

Set of All SubSequences of {(10) (30 40) (50)} is

SD?d
m = {10,30,40,50, (10)(30), (10)(40), (10)(50),

(30)(50), (40)(50), (30 40), (10)(3040), (10)(30)(50),

(10)(40)(50), (30 40)(50)}

LD?d
m = L D?d - SD?d

m

LD?d
m = {60, (10)(60), (40)(60), (10)(40)(60), (10) (30

40) (50)}
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//End of main Prog.
Ld?D

m = {60, (10)(60), (40)(60), (10)(40)(60), (10)(30

40)(50)}

//The output is in LD1d
m (the maximum frequent

Sequences on whole dataset)

7. Performance analysis of STISPM algorithm

This section is devoted for the discussion of the perfor-

mance of the developed incremental algorithm STISPM for

mining of sequential pattern. Algorithm STISPM imple-

mented in JAVA and test runs are performed on HP com-

patible PC with a CORE i3 Processor of 1. 80 GHz and

4 GB of main memory running the Microsoft Windows 8.1

operating system. As for the test data, we have used the

synthetic datasets of the form Cx. Ty. Lz. Dm. dn. This

format means

Cx is the average no. of transaction per customer in the

Dataset

Ty is the average no. of items per transaction

Lz is the average length of Maximal large sequence

|D| = m is the number of transaction in old dataset

|d| = n is the number of transaction in newly added dataset

We have used the synthetic data of the format C4. T3. L5.

D50 k. dn where n varies from 10,000 to 50,000.

Figure 6 shows the execution time for n = 30,000,

40,000 and 50,000. The minimum support value is

increased from 30% to 50%. To test the scalability with the

number of transactions of d, the incremented database size

n is set 10,000, 20,000, 30,000, 40,000 and 50,000. Fig-

ure 7 shows the results. Consider the two support values

30% and 40%. The execution time increases with the

growth of d size. Thus, STISPM shows good scalability.

8. Conclusions

In this research paper, we propose an algorithm STISPM

for an incremental mining of sequential patterns using

depth-first approach with backward tracking and dynamic

look ahead pruning strategy. The structural characteristics

of the sequence tree incorporate and enable STISPM to

derive the full advantage of the results of the preceding

mining. The unique feature and the advantages of STISPM

is that it does not scan the existing database and also does

not generate the candidate’s sequences so as to find out and

evaluate the new set of frequent sequences. Moreover,

STISPM prunes the sequences that are not frequent as

quickly as possible by a dynamic lookahead pruning strat-

egy. Every time we execute and implement STISPM to find

and get those sequences which are frequent in subsequent

transaction but is not frequent in the whole database except

the added one. Now the mechanism and technique

systematically deletes all such supersets that are frequent in

the added transaction from the existing frequent sequences

and also from the sequence tree. In this manner, many of

the sequences that are not frequent in the updated database

is pruned precisely in the beginning itself, and this early

stage pruning reduces the size of sequential tree drastically.

This new innovative technique is very expedient and effi-

cient in comparison to mining database technique which is

long and tedious and performing every operation since the

beginning.
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