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Abstract. The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot

engine and it is less pollutant and requires little maintenance. In this paper, Stirling heat engine is considered for

optimization with multiple criteria. A recently developed advanced optimization algorithm namely ‘‘teaching–

learning-based optimization (TLBO) algorithm’’ is used for maximization of output power, minimization of

pressure losses and maximization of the thermal efficiency of the entire solar Stirling system. The comparisons

of the proposed algorithm are made with those obtained by using the decision-making methods like linear

programming technique for multi-dimensional analysis of preference (LINMAP), technique for order of pref-

erence by similarity to ideal solution (TOPSIS) and fuzzy Bellman–Zadeh method that have used the Pareto

frontier gained through non-dominated sorting genetic algorithm-II (NSGA-II). The comparisons were also

made with those obtained by the experimental results. It is found that the TLBO algorithm has produced

comparatively better results than those given by the decision-making methods and the experimental results

presented by the previous researchers.

Keywords. Stirling heat engine; multi-objective optimization; thermal efficiency; pressure loss; teaching–

learning-based optimization algorithm.

1. Introduction

The Stirling engine has huge prospective to be useful for

exchanging heat into the mechanical effort with a high

thermal efficiency. Its thermal efficiency might be as high

as the Carnot efficiency. Stirling engine can be powered by

different heat sources and waste heat. It can utilize com-

pressible fluid as a working fluid. The schematic diagram of

Stirling engine is shown in figure 1 [1]. The compression

and expansion processes of the cycle take place in power

cylinder with a power piston. A displacer piston shuttles the

working fluid back and forth the heater, regenerator and

cooler at constant volume. For providing a closed engine

chamber, the gas circuit of displacer piston is closed using

the tubes. The displacer and the power piston have same

dimensions. In mono-phase operation, the power piston

contacts the engine chamber pressure on one side and

ambient pressure on the other side.

The Stirling engine has three dissimilar configurations

namely alpha, beta and gamma configurations and is shown

in figure 2 [2]. Markman et al [3] conducted an experiment

using the beta-configuration of the Stirling engine to

determine the parameters of a 200 W Stirling engine by

measuring the thermal-flux and mechanical-power losses to

maximize the engine efficiency. Orunov et al [4] presented

a method to calculate the optimum parameters of a single-

cylinder Stirling engine for maximizing the efficiency.

Abdalla and Yacoub [5] used saline feed raw water as the

cooling water and had improved the thermal efficiency of

the Stirling engine. Hirata et al [6] evaluated the perfor-

mance of a small 100 W displacer-type Stirling engine

Ecoboy-SCM81. An analysis model using an isothermal

method considering the pressure loss in the regenerator, the

buffer space loss, and the mechanical loss of the prototype

engine, was developed to improve the engine performance.

Costea and Feidt [7] studied the effect of variation of the

overall heat transfer coefficient on the optimum distribution

of the heat transfer surface conductance or areas of the

Stirling engine heat exchanger. Wu et al [8] analyzed the

optimal performance of a Stirling engine. The influences of

heat transfer, regeneration time and imperfect regeneration

on the optimal performance of the irreversible Stirling

engine cycle were discussed. In another work, Wu et al [9]

showed that the quantum Stirling cycle was different from

the classical thermodynamic one because of different

characters of the working fluids. The authors had studied*For correspondence
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the optimal performance of forward and reverse quantum

Stirling cycles. Costea et al [10] studied the finite speed of

the piston; friction and throttling in the regenerator to

validate the design of a solar Stirling engines.

Wu et al [11] presented the finite-time exergoeconomic

optimal performance of a quantum Stirling engine. The

maximum exergoeconomic profit, the optimal thermal

efficiency and power output corresponding to performance

bound of an endoreversible quantum Stirling engine were

presented. Organ [12] presented the optimization of Stirling

engine regenerator using the effects of various parameters

such as diameter, length and materials on regenerator per-

formance, irreversibility, and temperature gradient.

Kaushik and Kumar [13] investigated the finite time ther-

modynamic analysis of an endoreversible Stirling heat

engine and used finite time thermodynamics to optimize the

power output and the corresponding thermal efficiency of

the endoreversible Stirling heat engine. In another study,

Kaushik and Kumar [14] applied finite time thermody-

namics to optimize the power output and the corresponding

thermal efficiency of an irreversible Ericsson and Stirling

heat engines.

Gu et al [15] attempted to design a high efficiency

Stirling engine using a composite working fluid, e.g. two-

component fluid: gaseous carrier and phase-change com-

ponent and single multi-phase fluid, together with super-

critical heat recovery process. Hsu et al [16] studied the

integrated system of a free-piston Stirling engine and an

incinerator. The efficiency and the optimal power output,

including the effect induced by internal and external

irreversibility were described. Petrescu et al [17] presented

a method to calculate the efficiency and power of a Stirling

engine. The method was based on the first law of thermo-

dynamics for processes with finite speed and the direct

method for closed systems.

Martaj et al [18] studied the thermodynamic analysis of a

low temperature differential Stirling engine at steady state

operation, and energy, entropy and exergy balances.

Timoumi et al [19] developed a numerical model based on

lumped analysis approach. Formosa and Despesse [20]

implemented an isothermal model for presenting engine

power output and efficiency due to dead volume. Li et al

[21] optimized the absorber temperature and corresponding

thermal efficiency and developed a mathematical model for

the overall thermal efficiency of solar-powered high tem-

perature differential dish Stirling engine. Tlili [22] studied

the effects of regenerating effectiveness and heat capaci-

tance rate of external fluids in heat source/sink at maximum

power and efficiency.

Ahmadi et al [23] used NSGA-II algorithm for opti-

mization of Stirling heat engine. Maximization of output

power and overall thermal efficiency and minimization of

the pressure loss were considered as objective functions.

Ahmadi et al [24] investigated the optimal power of an

endoreversible Stirling cycle with perfect regeneration and

genetic algorithm (GA) was used for the optimization of

this endoreversible Stirling engine. Ahmadi et al [25] used

NSGA-II algorithm for dimensionless thermo-economic

optimization of solar dish-Stirling engine. In another work,

Ahmadi et al [26] used NSGA-II algorithm for optimization

of solar dish-Stirling engine. Maximization of output power

and overall thermal efficiency and minimization of the rate

of entropy generation were considered as an objective

functions.

From the literature review, it is observed that only very

few advanced optimization algorithms like GA and NSAG-

II had been used by the researchers for the optimization of

Stirling heat engine. However, these algorithms require

tuning of their specific parameters. For example, GA

requires crossover probability, mutation probability and a

selection operator; NSGA-II requires crossover probability,

mutation probability, real-parameter SBX parameter and

real-parameter mutation parameter. The proper tuning of

the algorithm-specific parameters is very essential factor

which affects the performance of the optimization algo-

rithms. The improper tuning of algorithm-specific param-

eters either increases the computational effort or yields the

local optimal solution [27]. In addition to the algorithm-

specific parameters of an algorithm, common control

parameters such as population size and the number of

iterations are to be considered. The common control

parameters are common to any population-based algorithm

and these also need proper tuning. The designer’s burden

will be reduced if there is no need to tune at least some of

the parameters required by the algorithm. Hence, to over-

come the problem of tuning of algorithm-specific

Figure 1. Schematic diagram of the Stirling engine [1].

Figure 2. Basic mechanical configurations for Stirling engine.

(a) Alpha-configuration. (b) Beta-configuration. (c) Gamma-con-

figuration [2].
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parameters, a recently developed algorithm-specific

parameter-less algorithm known as teaching–learning-

based optimization (TLBO) algorithm [28, 29] is used in

the present work for the multi-objective optimization of

Stirling engine.

Multi-objective optimization has been defined as finding

a vector of decision variables, while optimizing (i.e. mini-

mizing or maximizing) several objectives simultaneously,

with a given set of constraints. In the present investigation,

multi-objective optimization is carried out to achieve the

optimization of three objective functions: maximization of

output power and the thermal efficiency of the entire solar

Stirling system and minimization of pressure losses. The

multi-objective optimization is conducted with eleven

decision variables including the temperatures of heat source

and heat sink and their difference with working fluids,

rotation speed, mean effective pressure, stroke, heat source

temperature, heat sink temperature, number of gauzes of

the matrix, regenerator’s length, piston diameter, and

regenerator diameter are considered.

In the present work, an attempt is made to see if there is

any improvement possible in the design of Stirling engine

by using an advanced optimization algorithm known as

teaching–learning-based optimization (TLBO) algorithm.

The reason for choosing the TLBO algorithm is that it is

simple, robust, algorithm-specific parameter-less and gives

optimal solutions comparatively with less number of

function evaluations and with less computational effort

[28]. The TLBO algorithm is applied in the present work

for simultaneously optimizing the three objectives consid-

ered by Ahmadi et al [23] for the design of Stirling engine.

The next section presents the details of the analysis of the

Stirling engine cycle with irreversibilities and the consid-

ered design problem.

2. Analysis of the Stirling engine cycle
with irreversibilities

Stirling cycle consists of four major processes as shown

in figure 3 [30]. Process 1-2 is an isothermal process in

which the compressing working fluid rejects the heat at

constant temperature (TC) to heat sink which has a

constant temperature (TL). Then the working fluid crosses

over the regenerator and is warmed up to Th in an iso-

choric process 2-3. In process 3-4, the working fluid

expands at a constant temperature Th, and obtains the

heat from the heat source at a constant temperature (TH).

The last process 4-1 is an isochoric cooling process

where the regenerator absorbs heat from the working

fluid. In an actual cycle it is impractical to have an ideal

heat transfer in the regenerator in which the entire

amount of absorbed heat (in process 4-1) is transferred to

the working fluid into the isochoric heating process

(process 2-3).

The ideal Stirling engine cycle is shown on p–V and T–S

diagrams in figure 3. The T–S diagram is modified to

include the effects of heat transfer through a temperature

difference at the source and sink and for incomplete

regeneration. Additional heat from the external source is

shown to be needed in the process, Qx-3, due to incomplete

regeneration. Similarly, the unregenerated heat is shown

being rejected in the process, Qy-1. Fluid friction of the gas

causes most of the pressure loss as it passes through the

regenerator.

The mathematical model presented by Ahmadi et al [23]

is considered in the present work and the details are given

below.

The pressure losses are presented as [7, 10, 17, 31],

X
DPi ¼ DPthroat þ Dpf þ Dpw; ð1Þ

where DPthroat is the pressure drop due to the internal

friction produced in the regenerator.

DPthroat ¼
15

c
pm

2R sþ 1ð Þ TL þ DTLð Þ

� �
� N � D2

c

NRD
2
R

� �
: ð2Þ

Dpf is the pressure drop due to mechanical resistance of

parts of engine and is experimentally found by using the

following equation:

Dpf ¼
ð0:94 þ 0:0015snrÞ � 105

3l0
1 � 1

k

� �
: ð3Þ

l0 ¼ 1 � 1

3k
: ð4Þ

The pressure drop due to the piston speed is given by

Dpw ¼ snr

60

� �
:

4pm

ð1þ kÞð1þ sÞ

� �
k lnk
k� 1

� � ffiffiffi
c
R

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TL þDTL

p
� �

� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TH �DTH

TL þDTL

s" #
:

ð5Þ

DQR is heat loss through two regenerative processes in the

cycle and is calculated asFigure 3. Thermodynamic state diagrams of ideal Stirling cycle

[30].
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DQR ¼ mgCvgXðTH � DTH � TL � DTLÞ: ð6Þ

The heat released between heat source and working fluid

(Qh) is given by

Qh ¼ mg 1 � Dpw:ðkþ 1Þðsþ 1Þ
4pm

� bDpthroat

2pm

� fDpf

pm

� �

� RðTH � DTHÞ ln k:

ð7Þ

The net heat released from heat source (QH) is given by

QH ¼ Qh þ DQR: ð8Þ

The pure flux transferred to working fluid is

Q
:

H
¼ ðQh þ DQRÞ

nr

60
: ð9Þ

Substituting Eqs. (6–8) into Eq. (9):

QH ¼ 1 � Dpw kþ 1ð Þ sþ 1ð Þ
4pm

� bDpthroat

2pm

� fDpf

pm

� ��

�R TH � DTHð Þ ln kþ XmgCvg TH � DTH � TL � DTLð Þ
�
nr

60
:

ð10Þ

The output power of engine is given by [17, 31]:

power ¼ g _QH ¼ 1 � TL þ DTL

TH � DTH

� �
� gII;irr

_QH: ð11Þ

DTL ¼ Tc � TL: ð12Þ

DTH ¼ TH � Th: ð13Þ

gc ¼ 1 � TL þ DTL

TH � DTH

� �
: ð14Þ

By substituting Eqs. (12–14) in Eq. (11), we have

g ¼ gcgII;irr: ð15Þ

power ¼ gcgII;irr Q
:

H
; ð16Þ

where gc is Carnot efficiency and gII;irr is the second law

efficiency and is given by

gII;irr ¼ gII;irrðXÞ � gII;irrðDpÞ: ð17Þ

The deficient regenerating is calculated as

gII;irrðXÞ ¼
1

1 þ ðXÞ
ððc�1Þ ln kÞ

� �
� gc

ð18Þ

with

X ¼ yX1 þ ð1 � yÞX2; ð19Þ

where y is the second adjusting coefficient and X1, X2 are

the regenerative losses coefficient values representing

‘‘optimistic’’ and ‘‘pessimistic’’ evaluation respectively.

The value of y = 0.72 allowed for better match between the

analytical and experimental results [7, 10, 17, 31]: In

Eq. (19),

X1 ¼ 1 þ 2M þ e�B

2ð1 þMÞ : ð20Þ

X2 ¼ M þ e�B

1 þM
: ð21Þ

M ¼ mgCvg

mRCR

: ð22Þ

mR ¼ p2D2
RLdqst

16ðbþ dÞ : ð23Þ

B ¼ ð1 þMÞ � hAR

mgCvg

� 30

nr

: ð24Þ

The convection coefficient h is computed as

h ¼
0:395 4pm

RTL

� �
: s:nr

30

	 
0:424
Cpv

0:576

ð1 þ sÞ 1 � ðpÞ
4 b

dð Þþ1½ �ð Þ

� �
� D0:576

R Pr0:667

: ð25Þ

On the other hand,

AR ¼ p2D2
RL

4ðbþ dÞ : ð26Þ

The effect of mechanical friction, piston speed and pressure

drop in regenerator are calculated as

gII;irrðDpÞ ¼ 1 �
3l1 �

P Dpi

p1

g0 � TH�DTH

TLþDTL

� �
� ln k

: ð27Þ

g0 ¼ gII;irrðXÞ � gC� ð28Þ

p1 ¼ 4pm

ð1 þ kÞð1 þ sÞ : ð29Þ

The above analysis shows that the pressure losses and

their effect on the efficiency and output power of the engine

depend on the piston speed and are thereby to the engine

rotational speed.

Three objective functions considered for the present

study are the same as those considered by Ahmadi et al [23]

and these are: system pressure losses
P

Dpið Þ, the output

power (Power) and the Stirling engine thermal efficiency

ðgÞ. The number of decision variables is also same as those

considered by Ahmadi et al [23] and these are given as:

engine’s rotation speed (nr); mean effective pressure (Pm);

stroke (s); temperature of heat source (TH); temperature of
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heat sink (TL); temperature difference between heat source

and working fluid (DTL); temperature difference between

heat sink and working fluid (DTH); number of gauzes of the

matrix (NR); regenerator’s length (L); piston diameter (DC);

and regenerator diameter (DR).

The constraints are nothing but the ranges of variables

and are given by

1200� nr � 3000 rpm: ð30Þ

0:69�Pm � 6:89 MPa: ð31Þ

0:06� S� 0:1 m: ð32Þ

800� TH � 1300 K: ð33Þ

288� TL � 360 K: ð34Þ

64:2�DTH � 237:6 K: ð35Þ

5�DT � 25 K: ð36Þ

250�NR � 400: ð37Þ

6 � 10�3 � L� 73 � 10�3: ð38Þ

0:05�Dc � 0:14 m: ð39Þ

0:02�DR � 0:06 m: ð40Þ

The values of the constraints are in a way somewhat

arbitrary, in the sense that other aspects which need to be

considered like those from fabrication viewpoint are not

given due importance. Especially, the upper value of tem-

perature (TH = 1300 K) puts a severe constraint on the

selection of material of construction for the hot end of the

engine (heat absorbing part/heat receiver). The designer has

to be careful while deciding the values of the constraints.

However, the constraints represented by Eqs. (30–40) were

considered by Ahmadi et al [23] and hence, the same

constraints are considered in the present work for making

fair comparison.

The next section presents the details of the TLBO

algorithm.

3. Teaching–learning-based optimization
algorithm

Teaching–learning-based optimization (TLBO) algorithm

is a teaching–learning process inspired algorithm proposed

by Rao et al [29] based on the effect of influence of a

teacher on the output of learners in a class. The algorithm

mimics the teaching–learning ability of teachers and

learners in a classroom. Teacher and learners are the two

vital components of the algorithm and describe two basic

modes of the learning, through teacher (known as teacher’s

phase) and interacting with the other learners (known as

learner’s phase).

The output in TLBO algorithm is considered in terms of

results or grades of the learners which depend on the quality

of teacher. So, teacher is usually considered as a highly

learned person who trains learners so that they can have

better results in terms of their marks or grades. Moreover,

learners also learn from the interaction among themselves

which also helps in improving their results. TLBO is a

population-based method and a group of learners is con-

sidered as population and different design variables are

considered as different subjects offered to the learners and

learners’ result is analogous to the ‘‘fitness’’ value of the

optimization problem. In the entire population, the best

solution is considered as the teacher. The flowchart of

TLBO algorithm is shown in figure 4 [32]. The working of

TLBO is divided into two parts, ‘‘teacher phase’’ and

‘‘learner phase’’. For more details on TLBO algorithm and

its code, one may refer to https://sites.google.com/site/

tlborao and Rao [28].

Like many population-based optimization algorithms, the

TLBO algorithm also requires certain population size and

number of iterations (but it does not have any algorithm-

specific parameters to tune and hence, the burden on the

designer to tune the algorithm-specific parameters is

relieved). Improper selection of population size and number

of iterations may also lead to sub-optimal solutions. The

population size and number of iterations affect the perfor-

mance of the algorithm and hence to get optimal values of

the design variables and thereby the objective functions,

one has to execute the optimization algorithm with different

population sizes and number of iterations. In this paper,

after conducting various trials, it has been observed that a

population size of 50 and 40 number of iterations have

given the optimal results of the design variables (and

thereby the optimum values of the objective functions). The

number of function of evaluations required by TLBO

algorithm to achieve optimum solution is equal to 4000 (i.e.

2 9 40 9 50 as the evaluations are done in both the tea-

cher’s and learner’s phases). The same optimum results are

obtained for increased number of function evaluations also.

However, less number of function evaluations reduces the

computational time and effort.

In this paper, the TLBO algorithm is applied for the

design optimization of Stirling heat engine. The three

objectives are combined into scalar objective via a weight

vector. For this problem, the combined objective function

(Z) is defined as follows:

Maximize

Z ¼ w1 � Z1=Z1max þ w2 � Z2=Z2max � w3 � Z3=Z3min;

ð41Þ

where Z1, Z2 and Z3 are the objective functions of power,

efficiency and pressure loss respectively and w1, w2 and w3

are the weights given to the objective functions 1, 2 and 3

respectively. The designer can give any weight to the

objective functions. But the condition is that summation of
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all weight values should be equal to 1. Equal weights are

considered in this problem for demonstration, i.e.

w1 ¼ w2 ¼ w3 ¼ 1=3. The values of Z1max, Z2max and Z3min

are the maximum power, maximum efficiency and mini-

mum pressure loss respectively, which are obtained by

individually considering the respective single objective

functions (ignoring the other objective functions) and

solving the considered individual objective function under

the same constraints. The values of Z1max, Z2max and Z3min

are shown in table 1 and these are obtained by applying the

TLBO algorithm considering the individual objective

functions under the same constraints.

4. Results

The case study considered in this paper is adopted from

Ahmadi et al [23]. The objective functions, constraints and

the ranges of variables considered in the present work are

same as those considered by Ahmadi et al [23]. The range

of speed is 1200 rpm to 3000 rpm and the range of tem-

perature of heat source is 800–1300 K and the range of

piston diameter is from 50 to 140 mm. The specifications of

the Stirling engine are considered as given below [23]:

N ¼ 8; t ¼ 3:249 � 10�5 m2=s
	 


; c ¼ 1:667;Cv ¼ 3115:6

� J kg�1 K�1
	 


;Pr ¼ 0:71;mg ¼ 0:001135 kgð Þ;
qst ¼ 8030 kg m�3

	 

;Cpg ¼ 5193 J kg�1 K�1

	 

;

CR ¼ 502:48 J kg�1 K�1
	 


; k ¼ 1:2; b ¼ 6:88 � 10�5;

f ¼ 0:556; d ¼ 4 � 10�5 mð Þ:

Ahmadi et al [23] used NSAGA-II for achieving Pareto

optimal frontier of three objective functions, output power,

thermal efficiency of Stirling engines and system pressure

loss. Each point on the Pareto frontier represents the opti-

mal solution of the problem. The decision-making methods

were used to find out the final optimal solution from the

Pareto frontier which was gained through NSGA-II algo-

rithm. Well-known decision-making procedures including

the fuzzy Bellman–Zadeh, LINMAP and TOPSIS methods

were used by Ahmadi et al [23] to select the best solution

from among many Pareto optimal solutions given by the

NSGA-II algorithm. The Bellman–Zadeh procedure

Reject
No Yes

X''j,P,i = X'j,P,i + ri(X'j,P,i –X'j,Q,i)

Is new solution better 
than existing?

Is termination 
criterion satisfied?

Final value of solution

Yes

No

Accept

Teacher 

phase

Student 

Phase

Select two solutions randomly X'total-P,i and X'total-Q,i

Is X'total-P,i better than 
X'total-Q,i

X''j,P,i = X'j,P,i+ri(X'j,Q,i –X'j,P,i)

Reject
No

No Yes

Calculate the mean of each design variable

Identify the best solution (teacher)

Modify solution based on best solution
X'j,k,i = Xj,k,i + ri(Xj,kbest,i – Mj,i)

Is new solution better 
than existing? Accept

Yes

Decide number of students (population size), subjects (decision variables), termination criterion

Keep previous solution

Keep previous solution

Figure 4. Flowchart of TLBO algorithm [32].
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implements the fuzzy non-dimensionalization, while the

other methods (i.e. LINMAP and TOPSIS) used Euclidian

non-dimensionalization.

The proposed TLBO algorithm is now applied to the multi-

objective optimization (containing three objectives) of power

Stirling heat engine problem. The number of function eval-

uations required by TLBO algorithm is equal to 4000. The

output power and thermal efficiency of the Stirling engine are

maximized along with the minimization of the pressure los-

ses of the Stirling engine simultaneously. Table 1 shows the

optimum values of the three objective functions when they

were attempted individually (i.e. considering only one

objective at a time ignoring the other objectives but consid-

ering the same set of constraints) and combinedly (i.e. con-

sidering the combined objective function and solving the

same for the same set of constraints). It may be observed that

optimum values of the individual objective functions are

better than those when attempted simultaneously. It is due to

the reason that an increase or decrease in the value of one

objective may lead to decrease or increase in the value of

another objective. This happens in multi-objective opti-

mization problems and the values of the three objective

functions obtained by solving the combined objective func-

tion represent the compromise solutions, i.e. these are the

solutions obtained by satisfying all the constraints consid-

ering all the objectives simultaneously.

Table 2 shows the comparison of optimal results of

power Stirling heat engine obtained by using TLBO algo-

rithm, TOPSIS method, LINMAP method, fuzzy Bellman–

Zadeh method and experimental results of Petrescu et al

[17]. Petrescu et al [17] compared the analytical results

with experimental results. Two objectives namely; output

power and thermal efficiency of Stirling engines were

considered. However, Petrescu et al [17] had not consid-

ered the system pressure loss in their work. They showed

the accurate analysis of the performance in terms of power

and efficiency for Stirling engines over a range of condi-

tions. In table 2 the values of DTL and DTH are missing

corresponding to experimental results because these values

are related to system pressure loss and were not considered

by Petrescu et al [17].

It may be observed from table 2 that the optimum

values of the design variables suggested by Ahmadi et al

[23] using TOPSIS and LINMAP methods are exactly

same. The results of optimization using TLBO algorithm

have given the optimum values of engine’s rotation speed

(nr) as 1800 rpm, which is lower than the speeds sug-

gested by other methods. The optimum value of mean

effective pressure (Pm) is 2585.83 kPa which is higher

than that given by other methods except the experimental

results. The optimum value of stroke (s) is 60 mm which

is almost same as that given by other methods except the

experimental results. The optimum value of temperature

of heat source (TH) is 1200 K which is higher than those

given by other methods. As compared to the results given

by other methods and experimental results, the optimum

values obtained by TLBO algorithm for the temperature of

heat sink (TL) and temperature difference between heat

sink and working fluid (DTL), number of gauzes of the

matrix (NR) and piston diameter (DC) are comparatively

higher.

The optimum value of the temperature difference

between heat source and working fluid (DTH) is lower than

those given by the other methods. The optimum value of

regenerator’s length (L) is 71 mm which is almost similar to

those given by the other methods, but much higher than that

given by the experimental results of Petrescu et al [17]. The

optimum value of regenerator diameter (DR) is 60 mm and

this is almost similar to those given by the other methods,

but lower than that given by Petrescu et al [17]. The opti-

mum values suggested by the application of TLBO algo-

rithm are well within the given ranges of the variables

considered by Ahmadi et al [23]. Thus, the values of power,

efficiency and pressure losses obtained by the TLBO

algorithm are meaningful as the obtained values of the

design variables satisfy the constraints and these constraints

are nothing but the ranges of variables.

It is observed from table 2 that the optimum values of the

three objective functions suggested by the TLBO algorithm

by solving the multi-objective optimization problem (by

converting it into a combined objective function) are better

than those suggested by the other methods and the experi-

mental approach. For the maximum power, the results

obtained by using the TLBO algorithm are 74.05, 18.02 and

42.54% better than those given by the TOPSIS and LIN-

MAP methods, fuzzy Bellman–Zadeh method and

Table 1. Optimization results obtained by TLBO algorithm for Stirling heat engine.

Objective functions

Optimum value of the objective function

when attempted individually

Optimum value of the objective function when the combined

objective function is attempted

Maximization of power

(kW)

15.62 6.89

Maximization of thermal

efficiency (%)

22.01 15.07

Minimization of total

power loss (kPa)

11.65 18.70
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experimental results respectively. In maximization of

thermal efficiency ðgÞ, the results obtained by using the

TLBO algorithm are 3.5, 3.85 and 18.66% better than the

TOPSIS and LINMAP methods, fuzzy Bellman–Zadeh

method and experimental result respectively. Similarly, in

minimization of total power loss ð
P

DpiÞ, the results

obtained by using the TLBO algorithm are 5.02 and 0.679%

better than the TOPSIS and LINMAP methods and fuzzy

Bellman–Zadeh method respectively.

Figure 5 shows the convergence of the TLBO algorithm

for single objective optimization of Stirling heat engine

problem. It shows the convergence rate of the TLBO

algorithm for the power (P), efficiency (g) and pressure

losses ð
P

DPiÞ when considering the individual objectives

and the convergence takes place after 15th, 19th and 12th

iteration of the TLBO algorithm, respectively. Figure 6

shows the convergence rate of the TLBO algorithm for the

combined objective function and the convergence takes

place after 7th iteration of TLBO algorithm. It may be

observed that the TLBO algorithm takes less number of

iterations for convergence.

Figure 7 shows the effects of the design variables on

the three objectives, i.e. P, g and
P

DPi of Stirling

engine. It may be observed that increasing mean effec-

tive pressure increases P and g and slightly decreasesP
DPi (figure 7(a)). Increasing engine speed decreases g

and increases
P

DPi and P first increases then decreases

and again increases with increasing engine speed (fig-

ure 7(b)). The
P

DPi increases with the increase in

stroke, however, the g increases only slightly and the P

remains almost constant with increase in the stroke

(figure 7(c)). The P, g and the
P

DPi increase with the

temperature of heat source (figure 7(d)) and decrease

with the temperature of heat sink (figure 7(e)). The val-

ues of g and
P

DPi almost remain constant and P

decreases with increasing temperature difference of heat

source and working fluid (figure 7(f)). The values of g
and P remain constant and the value of the

P
DPi

slightly decreases with increasing temperature difference

of heat sink and working fluid (figure 7(g)). Figures 7(h–

k) show that the values of P and
P

DPi remain almost

constant and g increases with increasing number of

gauzes of the matrix, regenerator’s length, piston diam-

eter and regenerator diameter.

It is observed that in the case of power P, the most

important design variables are mean effective pressure

(Pm), engine speed (nr), temperature of heat source (TH)

and temperature difference of heat source and working

fluid (DTH). Similarly, in the case of efficiency g, the

important design variables are mean effective pressure

(Pm), engine speed (nr), temperature of heat source (TH),

temperature of heat sink (TL), temperature difference of

heat source and working fluid (DTH), regenerator’s length

(L) and regenerator diameter (DR). In the case of pressure

losses
P

DPi, the important design variables are engine

speed (nr), stroke (s), temperature of heat sink (TH) and

temperature of heat sink (TL). It is observed that the

TLBO algorithm gives better results than the TOPSIS,

LINMAP, fuzzy Bellman–Zadeh method and the experi-

mental results.

Table 2. Optimization results for Stirling heat engine.

Decision variables

Objective functions

Z1 Z2 Z3

nr

(rpm)
Pm

(kPa) S (mm)

TH

(K) TL (K)

DTH

(K)

DTL

(K) NR L (mm)

Dc

(mm)

DR

(mm)

Power

(kW) g (%)

P
Dpi

(kPa)

TOPSIS [23] 2120 2550.3 60.5 989.6 298.4 74.4 11.8 339 70 101.6 59.5 6.076 14.56 19.69

LINMAP [23] 2120 2550.3 60.5 989.6 298.4 74.4 11.8 339 70 101.6 59.5 6.076 14.56 19.69

Fuzzy Bellman–

Zadeh [23]

2056 2437 60.5 989.3 299.5 76.4 12.1 338 71.8 106.1 58.9 5.84 14.51 18.82

Experimental

results [17]

2500 4130 100 977 288 - - 308 22.6 22.6 69.9 3.96 12.7 -

TLBO (present

work)

1800 2585.83 60 1200 300.87 64.2 13.5 350 71 122.2 60 6.89 15.07 18.70

The numbers in bold indicate better values.
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Figure 5. Convergence graphs of TLBO algorithm for power,

thermal efficiency and pressure losses.
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5. Conclusions

Multi-objective optimization is a very important research

area in engineering studies, because of real-world design

problems that require the optimization of a group of

objectives. Multiple, often conflicting, objectives arise

naturally in most real-world optimization scenarios. Adding

more than one objective to an optimization problem adds

complexity. In this paper, three different objective func-

tions are considered for optimization of the design of the

Stirling heat engine. The three different objective functions

considered are maximum power, maximum thermal effi-

ciency and minimum pressure loss. The experimental

results and the mathematical models for the design of

Stirling engine which were earlier attempted by other

researchers are considered in the present work. For opti-

mization of design of Stirling heat engine, a recently

developed advanced optimization algorithm namely,

teaching–learning-based optimization (TLBO) algorithm, is

considered. As the TLBO is an algorithm-specific param-

eter-less algorithm, the performance of this technique is not

affected by the algorithm parameters. It makes this algo-

rithm applicable to real life optimization problems, easily

and effectively.

The TLBO algorithm has shown its ability in solving the

individual objective functions as well as multi-objective

optimization problem by using a combined objective

function. The convergence behaviour of the TLBO algo-

rithm to a near global solution is observed in less number of

iterations and the algorithm more effective than the deci-

sion making methods of TOPSIS, LINMAP and fuzzy

Bellman–Zadeh that have used the results of NSGA-II

algorithm to select the best optimum values of the design

variables and the objective functions. The optimum results

suggested by the TLBO algorithm are also better than those

given by the experimental results. The TLBO algorithm can

be quite promising and a reliable choice for the optimiza-

tion of design of the Stirling heat engine. The output of this

work may help the designer to make effective use TLBO
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Figure 6. Convergence graph of the TLBO algorithm for the

combined objective function.
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algorithm for the design optimization of other heat engines.

The application of the TLBO algorithm may be extended to

solve multi-objective optimization problems of different

thermal engineering systems and devices.

Nomenclature

b coefficient (0,2)

Cv constant volume specific heat

D diameter (m)

d wire diameter (m)

f coefficient related to the friction contribution (0,1)

h heat transfer coefficient (W m-2 K-1)

m mass of the gas

N number of gauzes of the matrix, number of

regenerators per cylinder

nr rotation speed

p pressure

Dp pressure loss

P output power

Q
:

heat transfer rate

R gas constant

s stroke

T temperature

DT temperature difference

i ith objective

j jth solution

X vector of decision variables, regenerative losses

coefficient

nr engine’s rotation speed

Pm mean effective pressure

TH temperature of heat source

TL temperature of heat sink

DTL temperature difference between heat source and

working fluid

DTH temperature difference between heat sink and

working fluid

L regenerator’s length

DC piston diameter

DR regenerator diameter

AR regenerator area

Greek letters

k ratio of volume during the regenerative processes

(volumetric ratio)

eR effectiveness of the regenerator

g efficiency

gc Carnot efficiency

c specific heat ratio

l fuzzy membership function

e emissivity factor

d the Stefan’s constant

t viscosity of the working gas (m2 s-1)

Subscripts

c cylinder, related to the Carnot cycle

f friction

H heat source

L heat sink

R regenerator

SE Stirling engine

II related to the second law

1–4 the processes states

g gas

aver average

m mean, the system

app collector aperture

throat throttling
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