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Abstract. In this paper, an integrated mathematical model of multi-period cell formation and part operation

tradeoff in a dynamic cellular manufacturing system is proposed in consideration with multiple part process

route. This paper puts emphasize on the production flexibility (production/subcontracting part operation) to

satisfy the product demand requirement in different period segments of planning horizon considering production

capacity shortage and/or sudden machine breakdown. The proposed model simultaneously generates machine

cells and part families and selects the optimum process route instead of the user specifying predetermined routes.

Conventional optimization method for the optimal cell formation problem requires substantial amount of time

and memory space. Hence a simulated annealing based genetic algorithm is proposed to explore the solution

regions efficiently and to expedite the solution search space. To evaluate the computability of the proposed

algorithm, different problem scenarios are adopted from literature. The results approve the effectiveness of the

proposed approach in designing the manufacturing cell and minimization of the overall cost, considering various

manufacturing aspects such as production volume, multiple process route, production capacity, machine

duplication, system reconfiguration, material handling and subcontracting part operation.

Keywords. Dynamic cellular manufacturing systems; multiple process route; system reconfiguration;

subcontracting part operation; simulated annealing; genetic algorithm.

1. Introduction

The group technology (GT) is one of the innovative

methodologies which is defined as the manufacturing

strategy, sorts out similar parts and group them together

into families to take advantage of their similarities in design

and manufacturing. The GT builds on the concept that

single solution can be found to solve a set of problems

sharing common principle and tasks, so that time and effort

can be saved [1].

The cellular manufacturing (CM) is based upon the

principles of group technology. It makes useful advantage

of the similarity among parts, through standardization and

common processing. The CM groups machines into

machine cells and parts into part families [2]. The CM

suppresses the demerits of job shops and flow lines by

increasing the flexibility and variety in production. The

major advantage in terms of material flow is significantly

improved, which reduces inventory, distance travelled by

the material, and cumulative lead times.

The principle of cellular manufacturing is to break up a

complex manufacturing facility into several groups of

machines (cells), each being dedicated to the processing of

a part family. Each part type is ideally produced in a single

cell. During any alteration, the changes at any section of

process of the part type, only a particular cell would be

affected, keeping rest of the manufacturing system intact.

Thus, material flow is simplified and the scheduling task is

made much easier [3].

The use of general-purpose machines and equipment in

the cellular manufacturing allows machines to handle new

product designs and product demand with little efforts in

terms of cost and time. Hence, it brings flexibility to pro-

duce a variety of products while maintaining the higher

production rate. The cellular manufacturing aims at mini-

mizing the manufacturing cost which depends upon the cell

configuration. The biggest challenge while implementing
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cellular manufacturing system in a company is division of

the entire manufacturing system into cells.

Even though the entire production system becomes more

accommodating, each individual cell is still optimized for a

relatively narrow range of tasks in order to take advantage

of the mass-production efficiencies of specialization and

scale. To the extent that a large variety of products can be

designed to be assembled from a small number of stan-

dardized parts, both high product variety and high pro-

ductivity can be achieved.

The conventional cellular manufacturing systems

(CMS) do not respond to the changes in part operation

sequence while redesigning a part, the variation in pro-

duct mix and the demand size over time span. In the

conventional CMS the product mix and part demand is

considered to be stable for the entire planning span.

Thus, the designed CMS configuration in one period may

not be efficient for the successive periods. In the

dynamic production conditions, a planning horizon

breaks into multiple periods with different product mix

and part demand requirements [4]. Hence the manufac-

turing cells need to be reconfigured during successive

periods to obtain optimal result. Reconfiguration involves

machine relocation in the cells and modification in part

process route in successive periods. The flexibility in the

CMS is of paramount importance. The manufacturing

industries have acknowledged the benefits of flexibility

in part process routing [5, 6].

This paper suggests an integrated mathematical model

for dynamic production in a cellular manufacturing envi-

ronment. The dynamic part demand can be satisfied from

internal production or through subcontracting part opera-

tion in successive period segments of the planning horizon.

Multiple process plans for each part and alternatives pro-

cess routes for each of them are considered. The proposed

model for the design of CMS incorporates several pro-

duction aspects simultaneously such as system reconfigu-

ration, multiple part process route, production capacity,

machine duplication, material handling, in-house produc-

tion, and subcontracting part operation. A simulated

annealing based genetic algorithm (SAGA) is applied to

optimize the number of machines in different manufactur-

ing cells in a manufacturing system producing multiple

product mix. The main constraints are the production

capacity and the maximum cell size.

2. Literature review

Over the last three decades, a large number of clustering

methods have been developed for identifying potential

manufacturing cells [1, 7, 8]. Kusiak and Cheng [9] have

reviewed some applications of models and algorithms for

cell formation problem (CFP). Majority of cell formation

methods reported in the literature consider the machine

requirements of parts. The problem is formulated using

binary machine-part incidence matrix [10]. The binary

representation assumes that each part is processed follow-

ing a unique route with a certain set of machines. It is

important to recognize that in an actual manufacturing

environment, each part type may have more than one pro-

cess plan, if one or more operations can be processed on

alternative machine [11].

Arbib et al [12] suggested that an optimal machine work

load balancing can be obtained by routing the parts to a

limited number of distinct paths considering resource

capacity. The best routing is obtained by minimizing the

global part transfer among all the machines existing in

different cells. However, this approach does not take into

consideration the impact of various cell configurations on

transportation cost.

Gupta and Seifoddini [13] presented a similarity coeffi-

cient based approach for solving the machine component

grouping problem, considering production data such as

production volume, alternative routes and operation time.

Alternative solutions are identified based on exceptional

parts, and the best solution is obtained by grouping solu-

tions among alternatives generated by the algorithm. A

software package has been developed to verify the

implementation.

Nagi et al [14] proposed heuristics to iteratively solve

two independent problems (a) route selection for parts and

(b) decomposition of machines in manufacturing cells.

They assumed that part operation can be performed on

more than one machine. They decomposed manufacturing

system in manufacturing cells so as to minimize the inter-

cell part traffic, along with the part demand and the work

center capacity constraints. The problem is formulated as a

linear programming problem and further it is approached by

an existing bottom-up aggregation procedure, known as

inter-cell traffic minimization method.

Sankaran and Kasilingam [15] presented mathematical

models to handle problems in cell formation and part

routing. They developed 0–1 integer programming formu-

lation for selection of part routings and cell formation based

upon the total machine operating costs. The formulation is

further modified for cell formation in order to maximize the

routing flexibility of the system. The optimal solution to the

part routing would yield the cell configuration and the

maximum number of alternative feasible routing for the

production of all parts.

Logendran et al [11] proposed the cell formation activity

to be divided into two phases. The first phase is to deter-

mine the number of machines of each type, and a unique

process plan for each part type. In the second phase, the

assignment of part types and machine types to cells is

determined. They assumed that a part can have more than

one process plan and each operation can be performed by

more than one machine. A mathematical model is devel-

oped with the objective to minimize the total annual cost

evaluated as the sum of the amortized cost of machines and

the operating cost of producing all the parts. A tabu search
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based meta-heuristic has been employed to solve the

problem.

Adil et al [16] developed a nonlinear integer program-

ming model and efficient solution procedure for grouping

of machine-part matrix considering alternative routings to

improve the cell formation such as (i) simultaneous

grouping of parts and machines; (ii) consideration of

alternative process plans; (iii) consideration of additional

machines as available; and (iv) minimization of a weighted

sum of the voids and the exceptional parts. The large cells

make production planning and scheduling control more

difficult. Also smaller size cells may lead to increase in

inter-cell movement of parts. The non-linear integer pro-

gramming model was attempted using HYPERLINDO on

PC 486/33 Hz by converting it into a linear integer pro-

gramming model for small sized problems. The large sized

problems were attempted using simulated annealing to

obtain the solution in short duration. The approach has been

to obtain the best sequence of operation and simultaneous

grouping of parts and machines.

Gupta et al [17] proposed a genetic algorithm based

solution approach to the machine cell-part grouping prob-

lem. The objective has been to (i) minimize the cell load

variation, (ii) minimize inter-cell movement of parts and

(iii) minimization of both the objectives simultaneously.

The part movement is determined as the weighted sum of

both inter-cell and intra-cell moves. The cell load variation

is computed as the difference between the workload on the

machine and the average load on the cell. The cell load

variation is minimized to aid the smooth flow of materials

inside each cell.

Lee et al [18] proposed method for cell formation to

minimize the total manufacturing cost considering key

parameters such as production volume, process sequence,

and alternative routing. They developed a machine chain

similarity coefficient to recognize best alternative routes for

part operation in terms of cell formation before attempting

to cluster the machines and parts. They further attempted

the problem so as to yield the highest number of indepen-

dent machine cell, minimize the inter-cell movements of

parts, thereby maximizing the machine chain similarity

coefficient using genetic algorithm.

Askin et al [19] considered different flexibility criteria –

process flexibility (alternate routing), part volume flexibil-

ity (change in production volume) and part mix flexibility

(ability of cell to handle different product mixes). They

considered that an operation can be processed on more than

one machine type. The cell formation method consists of

following four phases—

Phase I Assignment of parts to machines based on

factors—capacity, capability and machine cost

Phase II Assignment of individual part-operations to

individual machines for minimum material

handling cost in the final system design

Phase III Assignment of individual machines to cells

Phase IV Evaluation and improvement of the cell

configuration considering routing flexibility

and volume flexibility. An improvement in

routing flexibility is obtained by reassignment

of parts to individual machines, whereas

improvement in volume flexibility is obtained

by identifying the inter-cell move of the parts

and re-arranging load in the same cell or by

rerouting to another cell.

Sofianopoulou [20] proposed a comprehensive model for

the design of medium-sized CMS with duplicate machines

and/or alternative process plans for some or all of the parts

to be produced. He assumed that an operation on a part can

be performed on more than one machine. The objective is

to assign machines and parts to cells as well as to determine

part routings (process plans for parts) in order to minimize

inter-cell traffic. First, a mathematical model for allocating

machines to cells as well as selecting the most advanta-

geous process plan to each part is developed. Given a

machine-to-cell assignment, a mathematical model to

assign parts to cells and to form part families is developed.

A heuristic based on simulated annealing algorithm is

employed to solve the above model.

Mungwattana [21] addressed the dynamic and stochastic

production requirements with routing flexibility. The

problem covers multi-period planning with system recon-

figuration. Alternative part process routings exist for each

part type since each machine type has multiple operational

capabilities and multiple copies. The model considers var-

ious cost factors such as machine allocation cost, machine

operating and machine amortized cost together with

machine having multifunctional capabilities. However the

model ignores the intracellular material handling cost and

the outsourcing. A simulated annealing based solution

procedure is developed to solve the problem.

Zhao and Wu [22] presented the cell formation problem

considering multiple process routes and multiple objec-

tives—minimizing part tradeoff in different cell, minimizing

exceptional element, and workload balancing. They pre-

sented a genetic algorithm based solution for cell formation.

Chan et al [23] developed a heuristic procedure for

machine assignment in the single period cellular layout

problems by considering practical constraints, such as the

part handling factor and the number of parts per trans-

portation. An objective function is formulated to determine

the total travelling score taking into account the travelling

distance.

Chen and Cao [24] proposed the regulation of production

planning in cellular manufacturing systems. They presented

the production planning problem over a certain planning

span in the cellular manufacturing system with fixed cost.

The objective is to minimize the total cost including

intercellular material handling cost, fixed cell set-up cost,

production set-up cost and product inventory cost in the

system. Assumptions include single process plan, limited
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machine capacities and multiple machines of the same type.

The model considers general CMS features such as inter-

cell material handling and manufacturing cell formation.

The mathematical model is transformed to equivalent

simpler models and is attempted using Tabu search based

algorithm.

Tavakkoli-Moghaddam et al [25] presented solution of a

dynamic cell formation problem with multiple routing

considering multiple cost objectives (machine cost, oper-

ating cost, inter-cell material handling cost and machine

relocation cost) by using meta heuristic techniques such as

genetic algorithm, simulated annealing and tabu search.

The simulated annealing algorithm seems to have reported

better and near optimal solutions in short average compu-

tational time than the other two.

Tavakkoli-Moghaddam et al [26] proposed a new multi-

objective cell formation model for dynamic production,

alternative process plan, machine duplication, operation

sequence and machine relocation. The model is designed

with the objective to determine the optimal number of cells

while minimizing inter-cell cost and machine relocation

cost in each period. A memetic algorithm (MA) with a

simulated annealing based local search engine is proposed

to solve the model. The model is solved optimally by Lingo

software then the optimal solution is compared with MA

implementation.

Tavakkoli-Moghaddam et al [27] present a new mathe-

matical model to solve a facility layout problem with

stochastic demands. The objective is to minimize the total

cost of inter and intra cell movements in both machine and

cell layout problems simultaneously. A non-linear mathe-

matical formulation for the facility layout problem with

stochastic demand is presented. For the optimal solution of

the problem in a reasonable time, an approximate approach

is used to linearize the nonlinear model, which is solved for

different confidence level using the Lingo software.

Nsakanda et al [28] considered single and multi-period

planning for part demands, machine capacity limits, mul-

tiple process plans, alternative routings for each part type,

the processing sequence of parts, the tradeoff between

intercellular and intracellular costs and the option of out-

sourcing. The availability of multiple machines of the same

type and production planning are important aspects of the

model. The proposed solution methodology is based on a

combination of a genetic algorithm and large-scale opti-

mization techniques.

Defersha and Chen [29] described the structural and

operational issues of cellular manufacturing. They pre-

sented a mathematical model for dynamic cellular manu-

facturing system incorporating dynamic cell

reconfiguration, alternative routing, lot splitting, sequence

of operations, machine duplication, production capacity,

workload balancing among cells, operation cost, and out-

sourcing cost. They demonstrated the importance of several

design issue in an integrated manner. Commercially avail-

able optimization software is used to solve the problems.

Ahkioon et al [30] developed a CM model that integrates

several manufacturing attributes such as multi-period pro-

duction planning, dynamic system reconfiguration, flexible

part routing, production planning: internal manufacturing,

outsourcing, and inventory held from period to period. The

model is solved by comprehensive mixed integer pro-

gramming formulation using CPLEX 10.

Defersha and Chen [31] suggested mathematical model

for multiple period problems is more complex than their

single period counterparts due to combinatorial nature of

integer programming. They developed six parallel genetic

algorithms (PGA) for solving dynamic cell formation

problem addressed in their previous work [32]. They

evaluated the performance of PGA against a sequential GA

and found substantial reduction in computing time and

improve search performance.

Safaei et al [33] developed a mixed integer programming

model to design the cellular manufacturing system under

dynamic environment. The proposed model reflects several

manufacturing aspects: operation sequence, alternative part

process plans, inter/intra cell material handling and

machine relocation in different planning segments. The

objective is to minimize the total cost [machine procure-

ment cost, variable cost (machine running cost), material

handling cost and machine relocation cost]. A hybrid meta-

heuristic based on mean field annealing (MFA) and simu-

lated annealing (SA) so-called MFA-SA is used to solve the

proposed model.

Ahkioon et al [34] introduced part routing flexibility in the

machine cell formation system in dynamic conditions. They

suggested that multiple routings are possible for each part

type because of availability ofmulti-functionalmachines and

multiple copies of each machine type. They created alternate

contingency part process route in addition to the alternate

main part process route for all part types. The design implies

that the part processing can be addressed to contingency route

during the failure of main part process route. The obtained

results verify the insignificant additional cost by imple-

menting the additional contingency part process route. The

problem solved through a comprehensive mixed integer

programming formulation.

Kioon et al [35] proposed an integrated approach to CMS

design where part production and system reconfiguration

decision are incorporated in presence alternate process

routing, operation sequence, multiple machine of same type,

machine capacity and lot splitting, etc. They formulated the

problem asmixed integer non-linear program and verified the

model using some random small/medium-scale problems.

Safaei and Tavakkoli-Moghaddam [36] presented an

integrated mathematical model of multi-period cell forma-

tion and production planning in dynamic cellular manufac-

turing system. The aim is tominimize the inter- and intra-cell

material handling cost, machine relocation costs, part pro-

duction cost including inventory, backorder and partial

subcontracting costs. The major constraints are cell size and

machine time capacity. The performance shows that part
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subcontracting significantly affects the cell configuration in

convulsive manner as a large portion of the total demand is

satisfied in few periods and no production is required in other

periods. The performance of the proposed model is verified

by branch and bound method under the Lingo 8.0 software.

Tunnukij and Hicks [37] attempted optimization of the

cell formation problem (CFP). The CFP has been shown to

be a nondeterministic polynomial (NP) hence the amount of

computation time increases exponentially with problem

size. They presented the enhanced grouping genetic algo-

rithm (EnGGA) to solve the CFP without predetermining

the number of manufacturing cells or the number of

machines and parts within each cell. The EnGGA employs

a rank-based roulette–elitist strategy, for creating succes-

sive generations. The EnGGA is effective and outperforms

all the other methods considered such as bond energy

algorithm, direct clustering algorithm, rank order clustering

and graph theoretical approach. The program required less

than 1 min computational time in all situations, even with

the large population size.

Ozcelik and Sarac [38] proposed hybrid genetic algorithm

to solve the cell formation problem considering alternative

part route. They considered some of the natural constraints

encountered in real life production systems, such as cell size,

co-location (grouping certain machines in the same cell for

technical reasons) and separation (prevent placing certain

machines in close vicinity) constraints. Their objective is to

minimize the weighted sum of the voids and the exceptional

elements. The results show that the hybrid genetic algorithm

generates feasible solutions for all of the test problems.

Solimanpur and Foroughi [39] developed a new

approach to cell formation problem (CFP) including factors

such as alternative part process routes, operation sequence,

part process time, budget, production volume and machines

cost. Two linear mathematical programming models are

proposed to solve the CFP. The first stage determines the

part route to be selected for each part and forms the part

families simultaneously. The objective function of this

model is to minimize the total dissimilarity between the

processing routes of parts located in the same cell. The

second stage determines the machines to be allocated to

each cell considering processing time, production volume,

budget and cost of machines. The result obtained by genetic

algorithm provides very promising results in terms of the

quality and computation time as compared to Branch &

Bound method implemented in Lingo Software.

Saidi-Mehrabad et al [40] presented a new mathematical

model for production planning based on dynamic cellular

manufacturing system considering worker assignment. The

model is proposed with an extensive coverage of important

manufacturing features considering multi-period production

planning, sequence of operations, system reconfiguration,

duplicate machines, machine capacity and training of

workers. The model formulation is based on three principles:

(1) production planning, (2) worker assignment and worker

training, and (3) machine reconfiguration. The objective is to

minimize the sum of penalty cost in terms of inventory

holding and back orders cost, training and salary costs of

workers, maintenance and overhead cost and reconfiguration

cost. The main constraints are demand satisfaction, machine

availability, machine time-capacity, available time ofworker

and training. The performance and applicability of the pro-

posed model is verified by solving a comprehensive example

with randomly generated data using a branch-and-bound

(B&B) method by Lingo 9.0 software.

The review of the research literature cited above reveals

various techniques proposed for the design of CMS under

dynamic conditions. These methods generally assume that

the production size is equal to demand requirements in each

period segment of planning horizon. In reality, however,

the production size may not be equal to the demand

requirements due to production capacity shortage and/or

sudden machine breakdown. Thus demand requirements in

each period segment of planning horizon can be satisfied by

in-house production and/or subcontracting.

A few authors [28, 29, 32, 34] addressed subcontracting/

outsourcing as a subset of the part demand size. Hence a

complete part processing (sequence of operations) is

accommodated by subcontractor which is unrealistic and

gives an impractical manufacturing view. It may lead to a

vacillation or convulsive behavior in the cells reconfiguration

by increasing work load unbalancing, machine duplication,

and reduction in the effectiveness of manufacturing system.

This paper presents an integrated mathematical model for

DCMS design retorts dynamic and deterministic production

requirement. The model formulation is based on the real-

istic industrial manufacturing vision considering multiple

part process routes for each part type since each machine

type with multiple copies has multiple operational capa-

bilities. In the proposed model, a part operation processing

can be tradeoff between different production modes (in-

house production and subcontracting) based on the pro-

duction capacity of manufacturing cells. An optimization

method for such problems usually requires substantial

amount of time and memory space, therefore a simulated

annealing based genetic algorithm has been developed to

cope with the complexity of a problem and to expedite the

solution search space.

The next section presents mathematical formulation of

the CMS design problem. The proposed algorithm is pre-

sented in section 4. A case study for demonstration of the

proposed approach has been presented in section 5. Con-

clusion of the research and future scope has been presented

in the last section.

3. Problem formulation

The proposed integrated CMS model comprises traditional

cell formation problem linked to multi-period production

planning and system reconfiguration. The system recon-

figuration involves machines relocation in cells or it may
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also involve change in part process route from period to

period. The traditional cell formation problem follows

formation of part families, machines grouping in the form

of cells and assignment of part families to cells. In multi-

period production planning variation in product mix and the

part demand size are met through internal production, or

subcontracting.

There are different machine types in the cells with

multiple operational capabilities and limited capacity to

process part families. Also, there are different part types

with specific operations requirement and processing time.

The proposed model assumes that a candidate part opera-

tion is processed internally considering production capacity

or through subcontracting to satisfy the part demand. In the

past a few authors [28, 29, 32, 34] addressed subcontract-

ing/outsourcing, but only as a subset of the part demand

size.

The proposed approach emphasizes on the flexibility in

part operation processing by permitting it to be switched to

different production modes (in-house production or sub-

contracting) considering production capacity shortage and/

or sudden machine breakdown.

The overall objective of the model is to minimize the

machine constant cost, the machine operating cost, the

system reconfiguration cost, the production cost, the sub-

contracting part operation cost, and the inter and intra-

cellular material handling cost. A mixed-integer mathe-

matical formulation for the CMS design is presented below.

3.1 Notations

(a) Index sets

P {p = 1, 2, 3,…, P.} Part types

Op {k = 1, 2, 3,…, Op.} Operation k of part type p

M {m = 1, 2, 3,…, M.} Machine types

C {c = 1, 2, 3,…, C.} Manufacturing cells

T {t = 1, 2, 3,…, T.} Time periods

(b) Model parameters

Amc(t) Number of machine type m available in cell c at

time period t

BU Upper cell size limit

BL Lower cell size limit

Dp(t) Demand for part type p at time period t

IEp Intercellular material handling cost per part type p

IAp Intracellular material handling cost per part type p

tkpm Time required to perform operation

k(k = 1,…,Op) of part type p (p = 1,…,P) on

machine type m (m = 1,…,M)

am Amortized cost of machine type m per period

bm Operating cost per hour of machine type m

dm Relocation cost of machine type m including

installing, shifting, and uninstalling

Tm Capacity of each machine type m in hours

okp Subcontracting cost of operations k of part type p

lkp Internal manufacturing cost of operation k of part

type p

(c) Decision variables

Nmc
? (t) Number of machines of type m added in cell

c in period t

Nmc
- (t) Number of machines of type m removed from

cell c in period t

OPkp(t) Number of parts of type p processed for

operation k through subcontracting in period t

XPkpmc(t) Number of parts of type p processed for

operation k on machine type m in cell c in

period t

akpm 1 if operation k of part type

p carried out on machine type m:
0 otherwise:

8
<

:

Xkpmc(t) 1 if operation k of part type

p carriedout on machine

m in cell c in period t:
0 otherwise:

8
>><

>>:

3.2 Mathematical model

MinimizingZ ¼ C1 þ C2 þ C3 þ C4 þ C5 þ C6 þ C7 ð1Þ

C1 ¼
XT

t¼1

XM

m¼1

XC

c¼1

AmcðtÞam

C2 ¼
XT

t¼1

XP

p¼1

Xop

k¼1

XM

m¼1

XC

c¼1

XPkpmcðtÞtkpm bm

C3 ¼
XT

t¼1

XP

p¼1

Xop

k¼1

XM

m¼1

XC

c¼1

XPkpmcðtÞ:lkp

C4 ¼
XT

t¼1

XP

p¼1

Xop

k¼1

OpkpðtÞokp

C5 ¼
XT

t¼1

XP

p¼1

XM

m¼1

XC

c¼1

IEp:XPkpmcðtÞ
Xop�1

k¼1

1� Xkþ1;pmcðtÞ:XkpmcðtÞ
� �

C6 ¼
XT

t¼1

XP

p¼1

XM

m¼1

XC

c¼1

IAp:XPkpmcðtÞ:
Xop�1

k¼1

Xkþ1;pmcðtÞ:XkpmcðtÞ

C7 ¼
1

2

XT

t¼1

XM

m¼1

XC

c¼1

ðNþ
mcðtÞ þ N�

mcðtÞÞdm

Subjected to
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XT

t¼1

XP

p¼1

Xop

k¼1

XM

m¼1

XC

c¼1

akpmXkpmcðtÞ ¼ 1 ð2Þ

XT

t¼1

XP

p¼1

Xop

k¼1

XM

m¼1

XC

c¼1

XPkpmc ðtÞ þ OPkpðtÞ�DpðtÞ ð3Þ

XT

t¼1

XP

p¼1

Xop

k¼1

XM

m¼1

XC

c¼1

tkpm:XPkpmcðtÞ� TmAmcðtÞ ð4Þ

XT

t¼1

XP

p¼1

Xop

k¼1

XM

m¼1

XC

c¼1

ðXPkþ1;pmcðtÞ

þOPkþ1pðtÞ ¼ XPkpmcðtÞ þ OPkpðtÞÞ
ð5Þ

XT

t¼1

XM

m¼1

XC

c¼1

AmcðtÞ�Bu ð6Þ

XT

t¼1

XM

m¼1

XC

c¼1

AmcðtÞ�BL ð7Þ

akpm 2 f0; 1g ð8Þ

XkpmcðtÞ 2 f0; 1g ð9Þ

XPkpmcðtÞ� 0 and integer ð10Þ

OPkpðtÞ� 0 and integer ð11Þ

Nþ
mcðtÞ� 0;N�

mcðtÞ� 0 and integer ð12Þ

Objective

function.

The model objective function consists of

seven cost components, explained below

C1: The constant cost of all machines required

in manufacturing cells over the planning

horizon. This cost is obtained by the

product of the number of machine type

m allocated to cell c in period t and their

associated costs

C2: The operating cost of all machines

required in manufacturing cells over the

planning horizon. It is the sum of the

product of the time-workload (i.e.,

number of hours) allocated to each

machine type in each cell and their

associated operating costs

C3: Production cost for part operation

C4: Subcontracting cost for part operation;

The cost is incurred whenever part

operation is subcontracted due to

production capacity shortage or sudden

machine breakdown. The model considers

unit subcontracting cost for part type

being handled

C5: Intercellular material handling cost; The

cost is sustained whenever the successive

operations of the same part type are

carried out in different cell. The cost is

directly proportional to number of parts

moved between two cells. In this model

unit intercellular movement is expressed

only as a function of part type being

handled

C6: Intracellular material handling cost; The

cost upholds the consecutive operations of

candidate part processing on different

machines in the same cell. It is assumed

that unit intracellular cost depends upon

the type of part being handled

C7: Manufacturing cells reconfiguration cost;

The cost upholds the number of machine

type relocated/added and/or removed in

successive period segments of planning

horizon

Constraints. The constraints of the problem are shown

in equation set (2–11) as discussed below

Equation (2): Each part operation is assigned to one

machine, and one cell in period t

Equation (3): Each part demand can be satisfied in time

period t objectively through internal

production or subcontracting part

operation. More specifically the term

‘‘XPkpmc’’ represents internal processing

of part operations, based a sub-set of

operation sequence of part type p are

assigned to machines in the cells. Since

limiting machine capacity or sudden

machine break down results

subcontracting of part operation

Equation (4): Internal part operation processing to be

limited to available machine capacity

Equation (5): The material flow conservation—all the

consecutive operations of part type

consist of equal production quantities,

thus a part operation can be internally

processed or subcontracted to satisfy the

part demand

Equations (6

and 7):

The cell size lies within the upper and

lower limits.

In addition to these constraints, restrictions represented

by Eqs. (8–12) denote the logical binary and non-negative

integer requirement on decision variables.

3.3 Distinguishing properties of the proposed

CMS model

3.3a Production flexibility: The model is designed such that

it can be set to different levels of manufacturing mode
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(internal production or subcontracting part operation) con-

sidering internal production capacity to satisfy demand

requirements in the dynamic condition. The proposed

model offers more flexibility in production planning that

can be achieved by producing parts within the machine

capacity limit of the manufacturing system. It is seldom

noticed, the internal resource does not satisfy the part

demand within the available machine capacity limits;

however if it happens so/or during machine breakdown,

parts operation can be subcontracted to satisfy the demand

requirements.

3.3b Dynamic system reconfiguration and machine pro-

curement: The CMS model might not be optimal for

dynamic deterministic demand in terms of overall cost for

future planning, therefore system needs to be reconfigured

in each period owing to variation in part type and their lot

size. The Proposed model allows the formation of the best

configuration within each planning period in terms of the

type and number of machines assigned to cells and part

routings. The system eliminates procurement of extra

machines when inter-cell move cost is less than machine

procurement cost. This is achieved when machines are

relocated and new process routings are chosen based on

tradeoff in cells and minimum machine operating time. The

strength of this CMS model to deal with variation in part

mix demand is improved by the fact that new machine can

be brought in through machine procurement to increase the

internal production capacity.

3.3c Cell formation with flexible resource routing: Multiple

part routings are an important characteristic of the model.

The part routing is a set of possible machines that can be

used to perform the required operation on a part. With

multifunctional machines and multiple copies of each

machine type allowed in the system, the presence of mul-

tiple routing is important since this gives more flexibility in

deciding upon the CMS configurations. In this research, the

model permits the system to select the best route instead of

the user specifying predetermined routes. The model per-

mits all the possible routes to coexist; and more than one

route can be chosen to make a part considering resources

availability (internal and subcontracting part operation

process).

4. The simulated annealing based genetic
algorithm

The traditional genetic algorithm suffers from premature

convergence and affects the quality of solution. The tra-

ditional mechanism of genetic algorithm set off the pattern

of effective solutions higher than the average in next

generation. It strict the hunting zone and rapidly converge

the population, does not necessarily achieve global opti-

mum solution. In order to explore the solution region

efficiently and to expedite the solution search space, the

simulated annealing strategy is combined in the genetic

algorithm.

The simulated annealing based genetic algorithm

(SAGA) incorporates the best features of genetic algorithm

(searching larger regions of solution spaces) and simulated

annealing (refining exhaustive solution of local region).

The basic idea is to use the genetic operators of genetic

algorithm to quickly converge the search to near-global

minima/maxima, which will further be refined to a near-

optimum solution by using simulated annealing process.

Recent work on genetic algorithm-oriented hybrids is the

simulated annealing genetic algorithm (SAGA) proposed

by Brown et al [41].

The proposed algorithm imparts synergy effect between

the SA and GA by presenting a hybrid algorithm employing

the SA. In this algorithm, the initial solution of SA comes

from the evolution of GA. The solution obtained by sam-

pling of SA serves as the initial individual of GA so that a

hybrid search is made possible. The proposed hybrid SAGA

algorithm is applied for the considered DCMS problem

with a matrix schema and the novel operators are presented

in following sections.

4.1 Solution representation schema

In the solution representation schema, two matrices [PMpk]

and [PCpk] are employed in each period segment of the

planning horizon. The matrix [PMpk] denotes the allocation

of part-operation to machine and the matrix [PCpk] denotes

the allocation of part-operation to cell. PMpk is the machine

performs operation k of part type p, where PMpk 2
/kpand /kp ¼ m akpm ¼ 1

�
�

� �
. Also, PCpk is the cell allo-

cated with operation k of part type p, where

1 B PCpk B C. By combining the two matrices described

above, the solution representation schema is shown in

figure 1.

4.2 Initial solution generation

The initial solution of preferred volume is generated ran-

domly in steps. In first step, the matrices [PMpk] of the

solution schema are generated randomly considering fea-

sibility of performing part operation on machines. In sec-

ond step, the segment [PCpk] is filled randomly.
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Figure 1. Solution representation schema.
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A strategy is applied with objective to minimize the

number of inter-cell move of parts. The part operations

associated with each part type are assigned to machines

existing in the cells. This process is repeated until all the

parts are assigned to machines. Given a candidate part-

machine assignment solution, the heuristic computes the

number of inter-cell part transfer that would result minimum

number of inter-cell transfer (if a part operation is assigned

to cell C1, each operation of part is assigned to cell C1).

Occasionally cells may not have minimum and maxi-

mum number of specified parts that contravene lower or

upper limit condition as per Eqs. (6) and (7). To ensure the

cell size within the specified lower and upper limits, parts

family is to be adjusted by moving parts from cell having

maximum number of parts to cell having less than mini-

mum number of parts specified.

4.3 Fitness assessment

The fitness value is a decisive factor to measure the quality

of a candidate solution with reference to the designed

objective function (equation set 1) subjected to constraints

(equation set 2–7) and restrictions (8–12). The fitness val-

ues are used to select the parent solutions to obtain the next

generation of solutions. The descendants or new solutions

are selected with higher fitness value obtained by playing

binary tournament between parent solutions.

4.4 Genetic operators

4.4a Parent selection: After evaluating the fitness value of

the parent solutions in the population, better performing

solutions are selected to produce the descendants. Parent

solutions with higher fitness value have a higher chance of

being selected more often, which is achieved by playing

binary tournament between solution sets according to their

fitness value. Different selection schemes have been pre-

sented by Goldberg [42].

4.4b Crossover or recombination: Crossover is performed

between two selected parent solutions which create two

new descendant solutions by exchanging segments of the

parent solutions, thus descendant solutions retain partial

properties of the parent solutions. Figure 2 depicts the

solution sets of parent 1 and parent 2 selected for crossover.

There are two segments in the parent solution one each for

machine and cell. For crossover, the selection of segments

can be row-wise or column-wise following the matrix limits

and the crossover probabilities.

4.4c Mutation: The mutation is performed to maintain the

diversity in the solutions to explore new solution space. The

mutation operator is carried out on parent solutions with a

low probability of occurrence. The operator can be imple-

mented by inverting the segment of a solution schema and

place the mutated content in the reverse order, as shown in

figure 3.

4.5 Emendation operation

The crossover and mutation operation may distort solution

set by violating the cell size constraint, i.e. every cell may

not have minimum number of machine type. The emen-

dation operation is performed on the distorted solution

schema to preserve the cell size as per Eqs. (6) and (7).

Parent 1 
5 6 8 10 1 1 1 1  

Descendant 1 
5 6 8 10 1 1 1 1 

4 7 8 2 2 2 2 2 4 7 8 2 2 2 2 2 
1 4 6 7 3 3 3 3 1 4 6 7 3 3 3 3 
3 1 6 5 1 1 1 1 4 5 10 1 2 2 2 2 

4 5 7 8 1 1 1 1 4 5 7 8 1 1 1 1 
Parent 2 3 2 4 5 3 3 3 3 Descendant 2 3 2 4 5 3 3 3 3 

5 6 7 9 2 2 2 2 5 6 7 9 2 2 2 2 
4 5 10 1 2 2 2 2  3 1 6 5 1 1 1 1 

(a) 
5 6 8 10 1 1 1 1  5 6 7 8 1 1 1 1 

Parent 1 4 7 8 2 2 2 2 2 Descendant 1 4 7 4 5 3 3 3 3 
1 4 6 7 3 3 3 3  1 4 7 9 2 2 2 2 
3 1 6 5 1 1 1 1  3 1 10 1 2 2 2 2 

4 5 7 8 1 1 1 1  4 5 8 10 1 1 1 1 
Parent 2 3 2 4 5 3 3 3 3 Descendant 2 3 2 8 2 2 2 2 2 

5 6 7 9 2 2 2 2  5 6 6 7 3 3 3 3 
4 5 10 1 2 2 2 2  4 5 6 5 1 1 1 1 

(b) 

Figure 2. Crossover or recombination (a) Row wise crossover and (b) Column wise crossover.
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4.6 Heuristic to eliminate the duplicate machine

The obtained solution in terms of part family and machine

cell is based upon the perception that no inter-cell move is

allowed. In other words independent cells are created. It

leads to machine duplication in cells which has to be

minimized to drive down the investment. Whereas, the

reduction in machine duplication results increase in inter-

cell material handling cost. However in certain circum-

stances, it is more economical to have inter-cell moves

instead of having extra machines [43]. In this segment,

tradeoff of having duplicate machines versus having inter-

cell move is considered. If eliminating duplicate machines

in lieu of inter-cell movement results in reduction of total

cost, the machine will be eliminated. In order to eliminate

the extra machine from a cell the following algorithm is

used.

1. Select a machine type to be considered. Calculate the

total number of machines allocated in different cells to

meet the production requirements.

2. To eliminate duplicate machines of the machine type

selected, calculate the work load which the machine type

performs in each cell. The work load is defined as the

amount of the part type to be produced. If the cost of

saving in eliminating a unit of the machine type is

greater than the inter-cell material handling cost, elim-

inate the unit of machine in the cell which has the

minimum work load.

3. If all the machine types have been considered, terminate.

Otherwise go to step 1.

Parent 1 
5 6 8 10 1 1 1 1 

Descendant  1 
5 6 8 10 2 2 2 2 

4 7 8 2 2 2 2 2 4 7 8 2 1 1 1 1 
1 4 6 7 3 3 3 3 1 4 6 7 3 3 3 3 
3 1 6 5 1 1 1 1 3 1 6 5 1 1 1 1 

Figure 3. Mutation.

• Generate solution n in the neighbourhood of z  
• Select n∈N with probability U (0, 1).; 
• if  f(n) f(z) then 
• return n; 

• else , return n; with probability  exp ( )t
zfnf )()(( −−

• else 
• return z; 

Figure 4. Pseudo code for the SA based search.

Yes

No 

Yes 

Initialization 
Generate an initial solution set N; 
Set the maximum number of generation, G; 
g=0; //the index of generation; 

No 

Yes 

No 

Accept the solution with 
probability exp (− E/tz)

g< G

Genetic search procedure 
Selection of parents; 
Crossover; 
Mutation; 
Emendation operation; 
Evaluate the fitness of solutions; 

tz+1= z 

)()( zfnfE −=Δ

Updating of solution set 

g=g+1 

Return solutions 

E > 0 

Set parameters for SA 
tz the initial temperature;   
tmin the final temperature; 

 the cooling schedule;  

Generate a neighbourhood solution n

tz > tmin 

Figure 5. The flow chart of SAGA.
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4.7 Simulated annealing based search

In simulated annealing phase, the algorithm effectively

regulates the search direction by avoiding solution being

trapped in local optima during the evolutionary process.

It attempts to perform a Metropolis random walk that

samples the objective function from close solutions in

current population.

The search starts with an objective function value at a

feasible solution f(z) and moves from solutions to neigh-

boring solution to improve the objective function value. If

the objective function value of the neighbor solution f(n) is

less than the current feasible solution f(z), it is accepted as a

current solution. Otherwise to escape from local optima the

Metropolis algorithm accepts the move with a probability,

exp �ðf ðnÞ�f ðzÞ
t

ð Þ. The pseudo code for the SA based search is

shown in figure 4.

4.8 Termination of algorithm

The algorithm continues to generate the solution sets of

descendants until a criterion for termination is met. A

single criterion or a set of criteria for termination can be

adopted. In this case the termination criterion is the

maximum number of iteration, i.e. the algorithm stops

functioning when a specified number of iteration is

reached (figure 5).

5. Computational results

To evaluate the computational performance of the proposed

algorithm for the design of CMS, data sets of different

bench mark problem have been taken from the research

literature reported by Wicks [44], Wicks and Reasor [45],

Mungwattana [21], and Jayakumar and Raju [46]. Since the

proposed mathematical model developed in this study is

different from those reported in the research literature

(additional features include internal and subcontracting part

operation manufacturing cost etc.), the unknown cost

parameters were extracted by cross referencing between the

data sets containing them. Therefore all of the data sets

used in each numerical example contain value within the

same range in terms of unit costs. Emphasis was put on

number of parts types, machine type, operations and

Table 1. Result comparisons of meta heuristics.

Problem

no Source

Part 9 machine,

cell, period

Number of

variables,

constraints

GA SA SAGA

Objective Time Objective Time Objective Time

1 Mungwattana

[21]

6 9 9, C = 2,

H = 1

6546, 5117 841290 40.712 804330 47.212 785330 58.324

2 Mungwattana

[21]

6 9 9, C = 3,

H = 1

9813, 7689 856660 57.712 864690 69.856 855560 78.324

3 Mungwattana

[21]

12 9 10, C = 3,

H = 1

29,814, 29,768 2791900 125.665 2833700 152.137 2630800 234.335

4 Mungwattana

[21]

11 9 10, C = 3,

H = 2

42,464, 33,236 971110 162.197 954315 235.197 924335 275.541

5 Wicks and

Reasor [45]

25 9 11, C = 3,

H = 3

162,015, 125,460 898680 418.662 841160 460.307 822860 586.324

6 Jayakumar

and Raju

[46]

12 9 8, C = 3,

H = 3

560,160, 435,744 364930 550.732 377940 647.438 360225 765.670

7 Wicks [44] 30 9 19, C = 3,

H = 2

638,871, 554,378 1261280 728.232 1247660 954.745 1240550 1067.345

Table 2. Comparison of computational results of all the test problems.

Problem no

GA SA SAGA GA, SAGA SA, SAGA

ZBest ZBest ZBest % Improvement % Improvement

1 841290 804330 785330 6.6 2.3

2 856660 864690 855560 0.12 1

3 2791900 2833700 2630800 5.7 7.1

4 971110 954315 924335 4.8 3.1

5 898680 841160 822860 8.4 2.1

6 364930 377940 360225 1.3 4.6

7 1261280 1247660 1240550 1.07 0.56
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Table 3. Data set for example 6.

Machine info P1 P2 P3 P4

Tm am bm dm 1 2 3 1 2 3 1 2 3 1 2 3

600 1900 6 900 M1 0.44 0.67

600 1300 8 700 M2 0.28 0.44 0.19

600 1400 7 750 M3 0.97

600 1800 6 700 M4 0.47 0.49 0.71 0.36

600 1500 6 700 M5 0.94 0.81 0.86 0.76 0.74 0.65

600 1400 7 650 M6 0.45

600 1300 8 550 M7 0.5 0.24 0.59 0.51

600 1500 9 750 M8 0.33 0.45 0.49

Dp Period 1 400 650 0 750

Period 2 650 0 450 500

Period 3 0 400 0 600

IEp 0.6 0.7 1.1 0.6

IAp 0.8 1 1.5 0.8

lkp 3 5 4 2 2 5 2 2 3 4 5 5

okp 6 10 8 4 4 10 4 4 6 8 10 10

Machine info P5 P6 P7 P8

Tm am bm dm 1 2 3 1 2 3 1 2 3 1 2 3

600 1900 6 900 M1 0.89 0.81

600 1300 8 700 M2 0.67 0.61 0.68 0.51

600 1400 7 750 M3 0.48 0.57 0.63 0.88 0.19

600 1800 6 700 M4 0.63 0.24

600 1500 6 700 M5 0.55 0.58 0.13

600 1400 7 650 M6 0.23 0.77 0.34 0.71 0.96 0.89

600 1300 8 550 M7 0.24 0.36

600 1500 9 750 M8

Dp Period 1 550 0 450 650

Period 2 0 500 0 0

Period 3 750 350 300 350

IEp 0.8 0.6 0.7 0.6

IAp 1.1 0.8 1 0.8

lkp 3 5 2 4 5 3 4 3 5 3 5 5

okp 6 10 4 8 10 6 8 6 10 6 10 10

Machine info P9 P10 P11 P12

Tm am bm dm 1 2 3 1 2 3 1 2 3 1 2 3

600 1900 6 900 M1 0.49 0.72 0.33

600 1300 8 700 M2 0.57

600 1400 7 750 M3 0.76 0.78 0.47

600 1800 6 700 M4 0.45 0.35 0.59

600 1500 6 700 M5 0.78

600 1400 7 650 M6 0.61 0.12 0.48 0.39

600 1300 8 550 M7 0.81 0.48 0.36 0.67

600 1500 9 750 M8 0.67 0.44 0.72 0.66 0.48

Dp Period 1 750 900 0 350

Period 2 350 450 0 600

Period 3 0 700 700 0

IEp 0.8 1 0.8 0.7

IAp 1.1 1.3 1.1 1

lkp 4 5 7 3 4 4 4 4 6 3 6 5

okp 8 10 14 6 8 8 8 8 12 6 12 10
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number of cells. Each one of the numerical examples used

is solved as an integrated model. The meta-heuristic algo-

rithms were developed using MATLAB-2009 and run on a

PC Pentium IV, 1.86 GHz speed with 1 GB of RAM.

A set of seven numerical problems have been attempted

to demonstrate the proposed approach. It is evident that the

required computational time increases with the problem

size in terms of number of variables, constraints and peri-

ods as shown in table 1.

To evaluate the computational performance of the pro-

posed algorithm (SAGA), results obtained for all the

benchmark problems using GA, SA and SAGA heuristics

are compared as shown in table 2. The percentage

improvement value is used to compare the results of three

algorithms. The percentage improvement in the obtained

best solutions is computed using equation, % improve-

ment = ((ZA
Best - ZB

Best)/ZA
Best) 9 100. The obtained results

illustrate that percentage improvement in the best objective

function value of SAGA is slightly more than of SA and

GA. The computational time of SAGA is more than GA

and SA for all the test problems.

5.1 Result and discussion

Jayakumar and Raju [46] used extended lingo [47] to solve

the problem. This illustrates various features of the solution

for the proposed CMS model. Using this problem instance,

an optimal solution has been obtained with making use of

the evolutionary process of the proposed simulated

annealing based genetic algorithm (SAGA). The population

size is set to 100, the probability of crossover is 75% and

the probability of mutation is 0.025%. In the SA search

process of SAGA algorithm, the initial temperature ðtmax ¼
� Z1ðPM1PC1Þ � Z2ðPM2PC2Þj j=ln(0:95ÞÞ is set in such a

way that non-improver solution are accepted with the

probability value of 95% in the primary iterations with

temperature decrement by 5%.

The objective function value obtained in the proposed

work cannot be compared meaningfully because of inherent

difference in the objective cost value as obtained by

Jayakumar and Raju [46]. The proposed approach is com-

parably more general for taking up (i) the internal part

operation manufacturing cost considering production capac-

ity and (ii) the subcontracting part operation cost. These data

sets are superimposed on the original data shown in table 3.

Despite a few differences in the mathematical model, a

meaningful comparison can be made in terms of the deci-

sion aspects of the CMS design resulting from two different

solutions. The solution obtained with the proposed model

on Problem 6 (table 3) is detailed out in the rest of this

section and simultaneously compared with that obtained in

the model from Jayakumar and Raju [46].

The cell configuration for three periods corresponding to

the optimal solution of the proposed DCMS model is shown

in table 4, in which three cells are formed for each period.

Part families, machine groups, part-operation allocation,

and machine replication are also depicted in the cell con-

figuration presented in table 5. For instance one unit each

of machine type 3, 5 and 6 is assigned to cell 2 in period 3.

The part operations assignment within the cell is repre-

sented by incidence matrix in rectangular shape. For

instance operation 1 of part 2 in period 1 must be done by

Table 4. Optimal cell configuration obtained by the proposed

DCMS model: (a) Period 1, (b) Period 2, and (c) Period 3.

Cell

no

Machine

type Qty 4 10 12 2 8 1 5 7 9

a

C1 1 1 1 1

4 1 1 1

6 1 1

7 1 1 1 1

C2 2 1 1 1 1

3 1 1

4 1 1

5 1 1

C3 4 1 1 1

6 1 1 1 1

7 1 1 1

8 1 1 1

Cell

no

Machine

type Qty 4 9 10 6 12 1 3

b

C1 1 1 1

3 1 1

4 1 1 1

6 1 1 1

C2 1 1 1

3 1 1

4 1 1 1

5 1 1

C3 2 1 1

6 1 1

7 1 1 1

8 1 1

Cell

no

Machine

type Qty 2 4 5 6 8 10 7 11

c

C1 1 1 1

2 1 1

4 1 1 1 1

7 1 1

C2 3 1 1 1 1

5 1 1 1

6 1 1 1

C3 7 1 1 1

8 1 1

6 1 1
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machine 2 in cell 2, operation 2 by machine 2 in cell 2 and

operation 3 by machine 4 in cell 2. Thus, the processing of

part 2 in period 1 requires two inter-cell movements. One

unit of machine type 3 is added to cell 1 and one unit of

machine type 7 is removed from cell 1 at the beginning of

period 2.

The solution obtained in terms of optimal part operation

process route and part operation tradeoff in different pro-

duction modes considering production capacity shortage for

each part operation in each period are depicted in table 5.

For instance, the operation 1 of part 5 in period 3 is

assigned to machine 6 in cell 2, operation 2 is assigned to

machine 7 in cell 3, whereas operation 3 on machine 6 in

cell 2 cannot be assigned as machine capacity is over limit.

Hence operation 3 of part 5 is subcontracted from cell 2

(figure 6).

Table 6 demonstrates the selected routings for part 6

(machine and cell) in period 2. It undergoes three different

operations in cell 2 to complete the production process. The

first operation is performed on machines 3 and second on

machine 5 whereas the third operation cannot be performed

due to limited production capacity of 600 h of machine

type 4. Since part type 6 and 12 are assigned on machine

type 4 in cell 2 (see table 3b). The part type 12 with

demand size of 600 units and process time of 0.59 h per

unit exploits 354 h of machine type 4. Hence third opera-

tion of part 6 cannot be processed on machine 4 in cell 2 as

it requires 315 h to satisfy demand size of 500 units with

processing time of 0.63 h per unit. Hence part 6 is sub-

contracted for operation 3 from cell 2. The solution

obtained from Jayakumar and Raju [46] does not involve

flexibility in production for each part operation.

In this paper, the possible routing for the part p is defined

in terms of internal production and subcontracting part

operation. Thus, the co-existence of multiple possible

resource routing (in-house production and subcontracting)

for all the part types are allowed and it is a tangible

advantage during unexpected machine breakdown and

production capacity shortage occurring in real world.

Table 5. Optimal alternative process route for each part type in each period.

Period 1 Period 2 Period 3

Part no 1 2 3 Part no 1 2 3 Part no 1 2 3

1 M7 M7 M8* 1 M8 M7 M8 2 M2 M2 M4

2 M2 M2 M4 3 M2 M6 M7 4 M1 M4 M7

4 M1 M4 M7* 4 M1 M4 M1 5 M6 M7 M6*

5 M6 M7 M2* 6 M3 M5 M4* 6 M3 M5 M3

7 M4 M6 M2* 9 M4 M6 M4 7 M4 M6 M6

8 M5 M5 M3 10 M3 M6 M6 8 M5 M5 M3

9 M8 M6* M4 12 M1 M4 M1 10 M3* M6 M6

10 M7* M6 M6 11 M8 M7 M7*

12 M7 M4 M1

*Subcontracted part operations

Figure 6. Progress of algorithm for search of optimal solution corresponding to the objective function value (OFV): (a) Period 1,

(b) Period 2, and (c) Period 3.

Table 6. Comparison routing for part type P6 in period 2.

Part process route 1 2 3

Proposed model 500M3/C2 500M5/C2 500M4/C2*

Jayakumar and Raju [46] 500M2/C3 500M5/C3 500M4/C3

*Subcontracted part operations

1076 Kamal Deep and Pardeep K Singh



Table 7 illustrates that the parts demand are met for part

type P7 and P10 in period 1, part type P4 and P6 in period 2

and part type P10 and P11 in period 3 through internal

production considering internal production capacity and

subcontracting part operations during three period segment

of planning horizon. The option for subcontracting part

operation is not present in the model proposed by Jayaku-

mar and Raju [46]. Hence no comparison can be made in

terms of different resource routings. By simultaneously

considering the internal production and subcontracted part

operation which relies on reality shows production flexi-

bility of the proposed model in meeting product demand

requirement economically.

In this study the tradeoff is made between intracellular,

intercellular part movement and machine duplication by

simultaneously minimizing all the three costs within the

objective function. This is essential since, high intracellular

movement cost for successive part operations implies large

cell size, reducing the effectiveness of manufacturing sys-

tem. On the other side, minimum inter-cell movements lead

to increase in number of duplicate machines in the cells and

adversely affect the benefits of CMS by inappropriate

workload distribution among cells.

6. Conclusion and future research direction

This paper presents a novel integrated mathematical model

for design of cellular manufacturing system considering

dynamic production and multi-period production planning.

The integrated model in this research incorporates the tra-

ditional cell formation problem bridged with the machine

allocation problem, multiple part process routing problem

and system reconfiguration problem. The proposed model

offers flexibility in production planning (production/sub-

contracting) that can be achieved by producing product

mixes at each period of planning horizon considering pro-

duction capacity shortage.

The algorithm aggregates resources into different man-

ufacturing cells based on selected optimal process route

from user specifying multiple routes. The results obtained

show that the co-existence of multiple possible resource

routings (in-house production/subcontracting) builds up

flexibility in production and it is a tangible advantage

during unexpected machine breakdown and production

capacity shortage occurring in real world.

The model is computable with single part routing as well

as multiple part routings. The proposed approach can also

be readily used where limits are imposed on the cell sizes

and/or number of cells. The proposed CMS model has been

attempted using a simulated annealing based genetic algo-

rithm. The algorithm uses simulated annealing strategy and

genetic operators to avoid premature convergence. The

algorithm improves intensification, diversification and

increases possibility of achieving near-optimum solutions.

The research reported in this paper is a part of the major

research project on robust design of CMS. The authors are

working to further improve the mathematical model for

design of CMS incorporating more real world aspects of the

manufacturing system, such as lot splitting and machine

adjacency requirements to widen its area and make the

study more useful.
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