Sadhana Vol. 41, No. 5, May 2016, pp. 531-539

© Indian Academy of Sciences

DOI 10.1007/512046-016-0491-x

@ CrossMark

Uncertain multi-objective multi-product solid transportation problems
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Abstract. The solid transportation problem is an important generalization of the classical transportation
problem as it also considers the conveyance constraints along with the source and destination constraints. The
problem can be made more effective by incorporating some other factors, which make it useful in real life
situations. In this paper, we consider a fully fuzzy multi-objective multi-item solid transportation problem and
present a method to find its fuzzy optimal-compromise solution using the fuzzy programming technique. To take
into account the imprecision in finding the exact values of parameters, all the parameters are taken as trapezoidal

fuzzy numbers. A numerical example is solved to illustrate the methodology.
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1. Introduction

The need of generalization of traditional transportation prob-
lem to solid transportation problem arises when different kinds
of conveyances are available for the transportation of goods to
save time as well as money. It was first stated by Schell [1] and
later on Haley [2] described its solution procedure. The
multi-objective multi-item solid transportation problem
(MOMISTP) is further generalization of the solid transporta-
tion problem. It deals with optimizing multiple objectives and
using different types of conveyances to transport heteroge-
neous products from the warehouses to the consumer points.
This type of transportation problem is very beneficial in many
industries, where more than one kind of products are shipped.
In multiple objective problems, the objectives are generally
conflicting in nature, so the concept of optimal solution is
replaced by optimal compromise solution also called efficient
solution or pareto optimal solution or non-dominated solution.

In the conventional solid transportation problem, it is
assumed that all the parameters are known exactly and
many algorithms have been developed to solve these
problems. But in real world situations, it is not always so.
Due to uncontrollable factors like lack of information and
uncertainty in judgement, the values of the transportation
parameters, i.e., unit cost of transportation, availability and
demand are not exact always. This impreciseness in the
values of the parameters can be represented by using the
fuzzy set theory given by Zadeh [3]. A systematic study of
fuzzy mathematical programming has also been given by
Bector and Chandra [4]. Many authors have used the fuzzy

*For correspondence

Solid transportation problem; fuzzy optimal-compromise solution; fuzzy programming technique;

numbers to represent the uncertainty in transportation
parameters and proposed methods to solve them. The
MOMISTPs in which all the parameters are represented by
fuzzy numbers are called fully fuzzy multi-objective multi-
item solid transportation problems (FFMOMISTPs).

Fuzzy programming technique for the multi-objective
transportation problems was given by Zimmermann [5]. Bit
et al [6] applied the fuzzy programming technique to solve
MOSTP. Li et al [7] solved the multi-objective solid
transportation problem (MOSTP) using the genetic algo-
rithm in which only objective function coefficients are taken
as fuzzy numbers. Liu and Liu [8] presented the expected
value model in fuzzy programming. Islam and Roy [9]
studied the geometric programming approach for the multi-
objective transportation problems. Ojha et al [10] proposed
methods to solve fuzzy MOSTP, where all the parameters
except decision variables are taken as fuzzy numbers. Gupta
et al [11] proposed a method, called Mehar’s method, to find
the exact fuzzy optimal solution of unbalanced fully fuzzy
multi-objective transportation problems.

Uncertainty theory based expected constrained pro-
gramming for the solid transportation problems in uncertain
environment is studied by Cui and Sheng [12]. Recently,
Kundu et al [13] have proposed a method to find the crisp
optimal compromise solution of the fuzzy MOMISTP,
using the fuzzy programming technique and global criterion
method. Solid transportation problems are also studied by
Baidya et al [14] and Kundu et al [15]. Ebrahimnejad [16]
studied the transportation problem with generalized trape-
zoidal fuzzy numbers. To the best of our knowledge, no
method has been proposed in the literature to find the fuzzy
optimal compromise solution of the FFMOMISTP.
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In this paper, a method is proposed to find the fuzzy
optimal compromise solution of FFMOMISTP. The appli-
cation of the proposed method is shown by obtaining the
fuzzy optimal compromise solution of the numerical
example for which Kundu et al [13] found the crisp optimal
compromise solution. Since the proposed problem is the
generalization of the traditional solid transportation prob-
lem, it is also applicable to solve both single and multi-
objective solid transportation problems, single or multi-
objective transportation problems (both for single and
multi-item).

2. Preliminaries

In this section, some basic definitions and ranking approach
for trapezoidal fuzzy numbers are presented.

2.1 Basic definitions [17, 18]

Definition 1 A fuzzy number A defined on the universal
set of real numbers R, denoted as A = (a,b,c,d), is said to
be a trapezoidal fuzzy number if its membership function
,u;(x) is given by

<x<b
b—a) a<x
—(x) = 1 b<x<c
YT a-a)
c<x<d
(c—d)
0 otherwise.

Definition 2 A trapezoidal fuzzy number A = (a, b, c,d)
is said to be zero trapezoidal fuzzy number if and only if
a=0,b=0,c=0and d=0.

Definition 3 A trapezoidal fuzzy number A= (a,b,c,d)
is said to be non-negative trapezoidal fuzzy number if and
only if a > 0.

Definition 4 Two trapezoidal fuzzy numbers A=
(ay,by,c1,dy) and Ay = (a2, by, c2,d,) are said to be equal
if and only if a; = a», by = by,¢c; = ¢, and d| = d,, and is

denoted by Zl = Xz.

Remark 1 If for a
A = (a,b,c,d),b =c, then it is called a triangular fuzzy
number and is denoted by (a, b, b, d) or (a, b, d) or
(a, c, d).

2.2 Arithmetic operations [17]

trapezoidal fuzzy number

Let Zl = (Cll,bl,cl,dl) and Xz = (az,b2,6‘2,d2) be two
trapezoidal fuzzy numbers. Then
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() A\ @Ay = (a1 +ay, by +by,c) + ca,dy + da)
(i) A1 © Ay = (a1 —dy,by —c2,¢c1 — by, di — ap)
O (kal,kbl,kcl,kdl), kZO
(i) kA, _{(kdl,kcl,kbl,kal), k<0
(IV) Zl ®ZZ = (avbvc7d)7
where
a = min(alaz,aldz,dlaz,dldz),
b = min(b, by, bica, c1ba, c102),
¢ = max(biby, bicy, c1by, c1¢2),
d= max(alag,aldg,dlaz,dldg).

3. Mathematical model

A FFMOMISTP with parameters as trapezoidal fuzzy
numbers can be stated as a transportation problem with R
objectives in which [ different items are to be transported
from m sources (S;,1<i<m) to n destinations
(Dj, 1 <j<n) via K different conveyances. Let Hf denote
the fuzzy availability of item p at source S;, E; denote the
fuzzy demand of item p at destination D;, ¢, be the total
fuzzy capacity of kth conveyance, Egi be the fuzzy penalty
for transporting one unit of item p from S; to D; via kth
conveyance for rth objective Z, and FE‘Z.k be the fuzzy
quantity of item p to be transported from S; to D; using kth
conveyance in order to minimize R objective functions. The
problem is mathematically modeled as follows:

(P) Minimize (Z,Zs,...,Zg)

subject to

X <en1<k<K,

where EE‘;,( is a non-negative trapezoidal fuzzy number,
. 5 I K /~
for all l7.l7k?p Z = Zp:l EZH:I 27:1 ZkZI(C;‘;@
}z.k), 1<r<R.
For the above problem to be balanced it should satisfy:

and

i Yr,a = Z;'Zl Zf, 1<p<l, ie., for an item, its
total availability at all sources should be equal to its
demand at all the destinations.

(i) 3oy S @ = T Xl By = T 2
overall availability/demand of all the items at all
the sources/destinations and total conveyance capac-
ity should be equal.

ie.,
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Definition 5 A fuzzy feasible solution ¥ = {X}; } of (P) is
said to be a fuzzy optimal compromise (efficient) solution if
there exists no other feasible solution y = {J7; } such that,
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4. Proposed method

In this section a method has been proposed to find the fuzzy
optimal compromise solution of Problem (P).
The proposed method consists of the following steps:

Step 1: Verify whether the problem under consideration is
balanced.
For all p,1<p<l, find Y7 @ and Y0, b;. Let

~ 7P
Z;n:l alP = (xpvypazpva) and Z?:l bj = (x;,,y‘,,,zp,w[,)

Casel: > 1" a) => 7, Ejfor allp,1<p <I.Goto Step 2.
Case2: Y " a] #> 7, E}n for all or any p, 1 <p<I. To

l

make > ", af =370, Ej},
following subcases. One or all may apply.

Subcase 2a: If x, le’,,yp —Xx, Sy; — x;, 2= < ;, — y;,
and w, — z, < wl’] - Zir (for one or more values of p), then

proceed according to the

introduce a dummy source with fuzzy availability of the
pth item(s) equal to (x;, - xp,y;, - yp, zp, p — Wp).

Subcase 2b: If x,, zx;,,yp —x,> y; - p —yp> zp — yp
and w, —z, > w’p - z; (for one or more Values of p), then
introduce a dummy destination having fuzzy demand of
the pth item(s) equal to (X, — X, ¥, — ¥, Zp— 2, Wp — W},).
Subcase 2c: None of the Subcases 2a or 2b is satisfied. In
such a situation add a dummy source with availability of
the pth item(s) equal to (max{0, (x, — x,)}, max{0, (x, —
xp)}b +max{0, (y, —x,) — (vp — xp)} max{0, (x, — x,)}
£ max{0, (4~ ) - (3 —x,)} + max{0, (&, - 3)) -

(59 = )} max{0, (¥, —x,)} +max{0, (v, —x,) — (3

xp)} 4+ max{0, (z, —v,) — (3, —¥p)} + max{0, (w, —
z,)— (Wp —2,)}) and also a dummy destination having
demand of these item(s) as (max{0, (x, —x))}, max{0,
(xp— x;)} + max{0, (y, —x,) — (Y;y - x;)},max{O, (xp —
) +max{0, (3 —x,) — (v, —x,)} + max{0, (3, —
Yp)— (Z; - y;,)},max{O, (xp — x;)} + max{0, (y, — x) —
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Op—  x)}+max{0, (zp —yp) — (3, —¥,)} + max{0,
(wp— 2p) —(w), — z,)}). Now go to Step 2.

Step 2: After Step 1, we get Y. ,dl=
Z;:] foor all p,1<p<I, where s=morm+ 1 and
P

ZplZzl Zplzjl =

s

t=norn+1,

(u7 v? W7 “) (Say)'
Now, check whether Z[ljzl o al = 22:1 Zj.:l b; =

S ek Let Y8 e =

Case 1. If ZplZzlap_Zplzj Zklek’
, the total availability of all the items, their demand
and the total conveyance capacity are equal, then go to

Step 3.
p ~
Case 2: If Zplzlla —ZPIZJI -#Zszlek’

then proceed according to the following subcases:

ie.,

W' V,w' o).

Subcase2a: If u<u',v—u<v —u',w—v<w —v and
o —w <o —w, then check whether in Step 1 a dummy
source and/or a dummy destination have been added and
proceed as below:

Case (i): If both a dummy source and a dummy
destination have been introduced, then increase their
total availability and demand by the fuzzy quantity (1’ —
u,vV = v,w' —w,a' —a) (The demand of only those
items is to be increased whose availability has been
increased at the dummy source).

Case (ii): If only a dummy source (destination) has been
introduced, then increase its total availability (demand)
by the fuzzy number (u' —u,v —v,w' —w, o — o) and
also introduce a dummy destination (source) having the
demand (availability) of these added items as
W —u,vV —v,w —w, o —a).

Case (iii): If neither a dummy source nor a dummy
destination has been added, then introduce a dummy
source with the total availability equal to the fuzzy
number (4 —u,v' —v,w —w,¢' —a) and a dummy
destination with demand of these added items equal to
W —u, vV —v,w —w, o —a).

Subcase 2b: If u>u',v—u>vV —u,w—v>w —v
and o —w>o —w', then introduce a dummy con-
veyance having capacity (u —u',v — v ,w —w o —d).
Subcase 2c¢: If neither Subcase 2a nor Subcase 2b
applies, then check whether in Step 1 a dummy source or
a dummy destination or both have been added and
proceed according to the following cases. Let (i, v,
w,d) = (max{0,u’ — u}, max{0,u’ —u} + max{0, (v —
) — (v—u)},max{0,u —u} + max{0,(v/ — ') — (v —
w)}t 4 max{0,(w —V) — (w—v)}, max{0,u —u} +
max{0, v/ —u') — (v—u)} +max{0,(w —V)—(w—
v)} + max{0, (¢/ = w') — (« —w)}) and (&,V, W, &) =
(max{0,u — '}, max{0,u — u'} +max{0, (v —u) —
(v —u')}, max{0,u — '} + max{0, (v —u) — (v — u')}
+ max{0, (w —v) — (W — V) }, max{0,u — v’} + max{0,
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v—u)—(—-u)} +max{0,(w—v)—
max{0, (. —w) — (¢/ —w)}).

Case (i): If both a dummy source and a dummy
destination have been introduced, then increase their
total availability and demand by the fuzzy quantity
(t,v,w,a) (The demand of only those items is to be
increased whose availability has been increased at the
dummy source). Also, introduce a dummy conveyance
with capacity (&' ,v,w',d').

Case (ii): If only a dummy source (destination) has been
introduced, then increase its total availability (demand)
by the fuzzy number (&, v, w, ) and introduce a dummy
destination (source) having the demand (availability) of
these added items as (&, V,w,a). Also, introduce a
dummy conveyance with capacity (&',v,w', &).

Case (iii): If neither a dummy source nor a dummy
destination has been added, then introduce both a dummy
source as well as a dummy destination with the
availability and demand of added items as (i, v, w,&).
Also, introduce a dummy conveyance with capacity
(@, v, W, &).

(W = V)

Assume the unit transportation costs required due to the
dummy source/destination/conveyance to be zero trape-
zoidal fuzzy number.

Now, the problem is balanced and takes the form:

t K
) v 35053 g,
=1 i=1 j=1 k=1
subject to
(K
S o =d1<i<s, 1<p<l
=1 k=1
s K
S o =dl1<j<t1<p<i
i=1 k=1
] m. n
1
DD a1 <k<K
p=1i=1 j=1
Xij 2 0
1 s t K
(P}) Minimize Z Zc;’i ik
=1 =1 j=1 k=1
subject to

(P)

D Rani and T R Gulati

(P) Minimize (Zi,2,...,7Zz)
subject to
ZZ ljkvyg'kvzz'kv ;k) (ap7bpaclzj7dzp) I<i<s
k=
1<p<l
K K
/; U p /)
Z( ijkvyzkvzi}ka%}k) (]p»b,p, ,'ad,p);
i=1 k=1
1<j<t,1<p<l
! s t
Z (xz‘kayg‘kazgkvwgk) = ((IZ, Z’CZ’ ],c,)v
p=1 i=l j=
1<k<K,
where Z, Z D s i (@ G )

(X Vi T W) )s 1 <r <R

negative trapezmdal fuzzy number and ¢

P d). @ = (W), B = (B

(. b, ).

( ljk’ka’ZJl/MWZk) is a non-

=P _
ijk — ( z]k’byk?

U1/ AN
7]7d)ek—

Step 3: Corresponding to each objective, convert the
problem (P’) into following four crisp problems

(Py) — (PY):

1

K
p
Minimize E E bt/kka

i=1 j=1 k=1
subject to

(P3)

Wil1<i<s,1<p<l

ZZY&

s K

Z ny/k =
i=1 k=1

] n

DD Vp=bil<k<K

p=1 i=1 j=1
*p
Yf,-k 2 Xk

Minimize Z Z Z Z dlrf,'c i

p=1 i=1 j=1 k=

bli1<j<t,1<p<l

subject to

4 P 1<i<s,1<p<lI

=dl1<j<t,1<p<l

I m
2:}: Yoo =d;1<k<K
p=1 i=1 j=1
*p
WZk ljk
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Solve the four problems sequentially using the optimal
solution x;; of (Py) in (P,); optimal solution y; of (P3) in
(P3) and optimal solution z;j; of (P3) in (P4). Let w;; be the
optimal solution of (P4) This leads to the fuzzy optimal

fon 3P P 22w /
solution X = (x l]k,yl]k7 ik l]k) of (P).

Step 4: Apply the fuzzy programming technique to obtain
the optimal-compromise solution and calculate the value of
each objective function.

5. Numerical example

Consider the multi-objective multi-item solid transportation
problem solved by Kundu ez al [13]. In this problem, the
number of destinations is three, while that of sources, items,
conveyances and objectives is two each. The authors have
proposed a method to find the crisp optimal compromise
solution. Since the fuzzy solution has more information than
the crisp one, we solve the same problem using the method
proposed by us to find the fuzzy optimal compromise solu-
tion. The data of the problem is as follows (tables 1-4):
From table 5 we find that for the first item, total avail-

ability S22 @' = (21,24,26,28) & (28,32,35,37) = (49,
56,61,65) and total demand Y7 b; = (14,16,19,22) &
(17,20,22,25) & (12, 15,18,21) = (43,51, 59,68). Sim-
ilarly for the second item, total availability 212 ]52

(57,62,67,72) and total demand Z =(51,58,63,71).

Table 1. Unit transportation penalties for item 1 in the first
objective.

Destinations —
Sources | D, D, Ds

Conveyance k = 1

S (5,8,9,11) (4,6,9,11) (10,12,14,16)
) (8,10,13,15)  (6,7,8,9) (11,13,15,17)
Conveyance k = 2

S (9,11,13,15) (6,8,10,12)  (7,9,12,14)
A (10,11,13,15) (6,8,10,12) (14,16,18,20)

Table 2. Unit transportation penalties for item 2 in the first
objective.

Destinations —
Sources | D, D, D;

Conveyance k = 1

S 9,10,12,13)  (5,8,10,12) (10,11,12,13)
S> (11,13,14,16)  (7,9,12,14) (12,14,16,18)
Conveyance k = 2

S (11,13,14,15)  (6,7,9,11)  (8,10,11,13)
Sy (14,16,18,20) (9,11,13,14) (13,14,15,16)
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Table 3. Unit transportation penalties for item 1 in the second
objective.

Destinations —

Sources | D, D, Ds
Conveyance k = 1

Si (45,78) (3568  (7,910,12)
Sy (6,8,9,11)  (5,6,7,8) (6,7,9,10)
Conveyance k = 2

M (6,789  (4,6,7,9) (5,7,9,11)
Sy (4,6,8,10) (7.9,11,13) (9,10,11,12)

Table 4. Unit transportation penalties for item 2 in the second
objective.

Destinations —

Sources | D, D, D3
Conveyance k =1

S (5,7,9,10) (4,6,7,9) (9,11,12,13)
S, (10,11,13,14)  (6,7,8,9) (7.9,11,12)
Conveyance k = 2

S (7,8,9,10) (4,5,7,8) (8,10,11,12)
) (6,8,10,12)  (5,79,11) (9,10,12,14)

Table 5. Availability and demand data.

Conveyance

Fuzzy availability Fuzzy demand capacity

21 = (46,49,51,53)

a; = (21,24,26,28) b: (14,16,19,22)
a,=(28,32,35,37) }, = (17,20,22,25) €2 = (51,53,56,59)
aj = (32,34,37,39) b, = (12,15,18,21)
a5 =(25,28,30,33) p} = (20,23,25,28)
b = (16,18,19,22)
b = (15,17,19,21)
Since Y2, @ #5205 and Y2, @ #30, b., the

problem is unbalanced. Now, first step is to balance the
problem.

We find that neither Subcase 2a nor Subcase 2b of Step 1
holds for any of the items. So, according to Subcase 2c, we
introduce a dummy source (S3) having availabilities of the

first a;=(0,1,4,9)
a; = (0,2,2,5), respectively. Also, we introduce a dummy
destination (D4) with demand of the first and second items
as Ei = Ei = (6,6,6,6) so that the total availability and
total demand of both the items become equal, i.e., Z[%:l

Sl @ =Y S B = (106,121,134, 151).

Since, the total conveyance capacity Zk:l e = (97,
2 3 2 4
102,107, 112). PRI DD P P

and second items as and

Clearly,
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B # Y1, @. For (106, 121, 134, 151) = (u,v,w, %) and
(97,102,107, 112) = (u’,v',w, &), the condition u > u',v —
u>v —u,w—v>w —v and o — w>o —w' is met and
so according to Subcase 2b of Step 2, we introduce a
dummy conveyance having capacity e; = (9,19,27,39).
Thus the problem becomes balanced.

Since, a dummy source (S3), a dummy destination (D)
and a dummy conveyance are introduced so we assume
i =Cip = ¢y =1(0,0,0,0) for all r = 1,2;p = 1,2;
i=1,2,3;j=1,2,3,4 and k = 1,2,3. The obtained bal-
anced problem can be written as

Minimize Z; = (5,8,9,11) ®%},, @ (9,11,13,15)®
X, ®(4,6,9,11)®%,, @(6,8,10,12) @ %, @ (10, 12,
14,16) @ X}5,@  (7,9,12,14) ® X1, (8,10,13,15)®
X1, @ (10,11,13,15) @ %3, @ (6,7,8,9) ® %3y, @ (6,8,
10,12) @ T30, @ (11,13,15,17) @ Xay,® (14, 16,18,20) ®
X3 @(9,10,12,13) @ 57y, @ (11,13,14,15) @ 57,, @ (5,
8,10, 12) ® X%, @ (6,7,9,11) ®x%,, @ (10,11,12, 13) ®
Ty @ (8,10,11, 13) @37, @ (11,13,14, 16) @3, @
(14,16, 18,20) @ Xa,, @ (7,9,12,14)® X2y, ® (9, 11,3, 14)
@ay, @ (12,14,16,18) @ Xa3, ® (13,14,15,16) ® X3,®
(0,0,0,0) ® (X113 @ Xjp3 B X133 S Xry B Xy © X143B Xy
B3 Tp33 D Xpgy © Tpgy D Xpi3® Ty T3 X330
%%21 @Zézz @~§;23 EEE;“ E’éﬁnﬁj };312@ };4~12@ }ég@
X343 D X713 D Xp3 D X133 D Xy D Xigp D X3 D X513 D X3
By ®Toy B Xop © Xoyy oy D T3 BT B T3y €
T30 © Fags B Xaz) @ X33y © Fagz B X34 D X34y D Fagy)-

Minimize Z» = (4,5,7,8) @ %}, ©(6,7,8,9) @ ¥},,®
(3,5,6,8) @ X1y @ (4,6,7,9) @ ¥ @ (7,9,10,12) @ F 15,
(5,7,9,11) @ %15, © (6,8,9,11) @%@ (4,6,8,10)®
X @ (5,6,7,8) @ %y @ (7,9,11,13) @ Xy, @ (6,7,9, 10)
%y @ (9,10,11,12) @ Ty, @ (5,7,9,10) @ 37,, &(7,8,
9,10) @ %, ® (4,6,7,9) ®X],, ®(4,5,7,8) @X1,,®
(9,11,12,13) @ X5, ® (8,10, 11,12) @ ¥15,® (10,11,13,14)
®%3, @ (6,8,10,12) ® %3, ©(6,7,8,9) ® X3, @ (5,7,9,
11) ®35, @ (7,9,11,12) @35, ©(9,10,12,14) ® %3,
©(0,0,0,0) ® (X3 ® ¥ Xj33 X1y DXy G Xpyy
Ty © Xy Doy B gy Xpyp BTy By BTy @
f%m ® %%21@ ~2 %;232@ };232@ };312@ X33 O §33 ® fézu@
x%zxz@xgzu@xin@xézs e9)5533 @xm% 3‘2142 EB~)62143EB
xzn & x223 @ x2%3 © x241 & x242@ Xoq3 D X3 D X3, D
B3 Tay DXy DX O Xay® Xy D Xgy O X3y D

2
X340 D Xy3)
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subject to

4 3
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2 [; 4
S S i o) = (9,19,27,39)
(X5 Vi 2> Why) for all 4, j, k, p is a non-negative trape-
zoidal fuzzy number.
We minimize Z, by solving the following four problems:
Minimize Z| = 5x};, + 9x|,, + 4x},; + 6x},, + 10x};,+
Txizy + 831 + 1035 + 6x3y; + 63y + 113y + 143335+
Ox2,; + 11x3,, + 5x3y, + 6x15, + 10x7,, + 8x%5, + 11x3,,+
14535 + 7x35; + 9x3,, + 12235, + 13135,
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Minimize — Z} =9z}, + 13z}, +9z},, 4+ 10z},, + 14z}, +
122{32 + 13z£“ + 132%12 + 81%21 + 102522 + 1SZ£31 + 1SZ£32+
1223, + 1422 1, + 10225, + 9235, + 12235, + 11235, + 1423, +
1823, + 1223, + 13235, + 16234, + 15233,
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subject to

4 3 4 3 4 3
)I)IENEETED ) SENNEUED 3) SERSES
=1 k=1 =1 k=1 =1 k=1

4 3 4 3

SN2 =30, YD =4

J=1 k=1 J=1 k=1

4 3 . 303 - 3003 .
S>> =2 D> =19 > > 2, =725
=1 k=1 i=1 k=1 i=1 k=1

303 303 303
DDz =22, Y D =19, > ) 2k =18,
i—1 k=1 i—1 k=1 i—1 k=1

33 303 303

Z th’»k =19, 2211‘14/{:6’ Zzzik:@
i=1 k=1 i=1 k=1 i=1 k=1

34 2 3 4

DD D ai =5 > D ) a4 =56,

p=1 i=1 j=1 =1 i=1 j=1

2 3 4

2224}3:27, Zy>yih Vi kp.

p=1 i=l j=
Minimize ZH = 11wl + 15wl + 11wl + 12w],,+

16“’%31 + 14“’%32 + lswéll + 15W;12 + 9Wé21 + 12W§22+
17whsy + 20whs, + 13w3,, + 15w, + 12wh,, + Llw,,+
13w, + 13why, + 16w3,, + 20w3,, + 14wl + 14wly,+
18w§31 + 16w§32

subject to

4 3 4 3 4 3
SN whie=28, D> wi =39, > > wl, =37,
=1 k=1 j=1 k=1 J=1 k=1

4 3 4 3 4 3
Zzngk:ﬁ ZZW%F%ZZw%,k:S,
j=1 k=1 j=1 k=1 j=1 k=1

33 33 33
Zzwillk:ZL ZZW?&:Z& ZZW}Zk_zsv
i=1 k=1 i=1 k=1 i=1 k=1

P P i i i
Xijs Yy and z;; are the optimal solutions of the previous

problems. On solving these problems sequentially, the
obtained values of xJ;, ¥/, 25, and wiy, for p=1,2;i =

ijk?
1,2,3;j=1,2,3,4andk = 1,2,3 are %}, =(9,9,9,9),
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x”3 =(0,0,2,2),x x121 =(0,2,2,2),x x132 = (12,12,12,12),
xm = (0,1,1,3), x21 = (5,5,5,5), x;n = (0,1,2,2),
x221 =(5,5,7,7),% x222 (12,12,12,12),% x223 =(0,1,1,3),
x233 = (0,2,2,2), x242 = (6,6,6,6), X3, = (0,1,1,4),
T3 = (0,0,0,1), F35, = (0,0,3,3), X33, = (0,0,0,1),
= (1L,1L,1,1), x”3—(0224) 31, = (16,16,
16,16), xfzg =(0,0,1,1),%15, = (15,15,15,15), X33 =
(0,0,2,2), lel = (10,10, 10, 10), x213 = (9,9,11,11),
Xy = (0,1,1,4),%5, = (0,2,2 2) Yo = (6,6,6,6),
%3, = (0,1,1,2),%3,, = (0,1,1,1),X335 = (0,0,0,2). The
remaining variables are zero trapezoidal fuzzy numbers and
Z, = (590,791,961,1131).

Minimizing Z, in a similar way and then applying the
fuzzy programming technique, the obtained optimal-com-
promise solution is }}11 =(9,9,9,9),%),, = (0,2,2, 2),
}Z{B =(0,1,1,3),% x132 = (12,12,12, 12) }}33 = (0,0,2,
2),% x212 =(5,5,5,5),x x213 =(0,1,1,1),x x221 =(17,17,19,
19), %03 = (0,3,4,6),%,,, = (6,6,6,6), x;l, = (0,1,1,
), xin =(0,0,3,6), 3,5 = (0,0,0,1), %35 = (0,0,
0,1),x x”l = (15 15,15,16),x x113 =(0,0,2,2),x X122 = (11,
1L, 11,11),x xm =(0,2,3,4),x xm2 = (6,6,6,6),x x212
(5.5,5,5), %353 = (0,1,1,2),33, = (5,5,5,5),% x233 =
(9,11,13,15),%5,, = (6,6,6,6),%3,, = (0,0,0,1),%3,,
(0,2,2,2),}?%23 = (0,0,0,2). All other variables are zero
trapezoidal fuzzy numbers.

The values of Z 1 and 22 are found to be
(635,778,955,1100) and (428,566,724,847), respectively.

6. Interpretation of results

In this section, the results of the numerical example
obtained by using the proposed method are interpreted
graphically.

The graph of membership functions of the obtained
optimal values of Z, and Z, are in figures 1 and 2.

From figure 1, the following information about the
minimum value of the objective function Z; can be
interpreted:

(i) 635<Minz, < 1100.

i
635 718 955 1100

Figure 1. Optimal value of Zi.

D Rani and T R Gulati

i
428 566 724 847

Figure 2. Optimal value of Z.

(i1) The chances that the minimum value of Z; will lie in
the range 778-955 units are maximum.

(iii) The overall level of satisfaction for other values of
Z; (say y) is K (y) X %, where

(y — 635)
- <
13 635<y<778
1= () = 1 778 <y <955
Z o (1100 — y)
A 24 <
115 955<y <1100
0 otherwise

The obtained results of the objective function Z, can be
interpreted in a similar manner.

7. Advantages of the proposed method

(i) In the method proposed by Kundu et al [13], the
multi-objective multi-item solid transportation prob-
lem with transportation parameters as trapezoidal
fuzzy numbers is first converted to the equivalent
crisp problem. The obtained results are thus real
numbers, while the method proposed in this paper
provides the fuzzy optimal compromise solution.

(i) Kumar and Kaur [19] pointed out the limitations of

existing methods [10, 20-23, 25] and the shortcom-
ings of the method proposed by Liu [24] to solve the
single and multi-objective solid transportation prob-
lems. To overcome these limitations and resolve the
shortcomings, they have proposed a method to obtain
the fuzzy optimal solution of the fuzzy solid trans-
portation problem. They have also solved two
existing fuzzy solid transportation problems by their
method and showed that the problems which could be
solved by the existing methods can also be solved by
their method.
However, none of the method proposed in the above
cited papers can be applied to a FFMOMISTP, for
which a method has been proposed in the present
paper. This method is also applicable to the problems
considered in Gen et al [25], [10, 20-23]. We have
also solved the examples in Kumar and Kaur [19] by
the method proposed by us. The results obtained are
same as shown in table 6.
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Table 6. Results obtained by using the existing as well as proposed method.

Example Existing method

Proposed method

Example 3.1 ([19])
Example 5.1 ([19])

Numerical example in section 5 Not applicable

(1800,1900,1900,2800)
(226,540,750,879)

(1800,1900,1900,2800)
(226,540,750,879)

7, = (635,778,955,1100)Z, = (428, 566,724, 847)

8. Conclusions

In this work, the fuzzy optimal compromise solution is
obtained for the multi-objective multi-item solid trans-
portation problem, where all the parameters are represented
by trapezoidal fuzzy numbers. As in the real world appli-
cations, the transportation parameters are not always pre-
cise and the fuzzy numbers handle more information than
the crisp ones, the obtained results are more beneficial for
the decision maker.

Since the proposed method is for the FFMOMISTP,
same is also applicable to the single and multi-objective
solid transportation problems as well as to the single and
multi-objective solid transportation problems with fuzzy
parameters.
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