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Abstract. The reliability and limits of solutions for static structural analysis depend on the accuracy of the

curvature and deflection calculations. Even if the material model is close to the actual material behavior,

physically unrealistic deflections or divergence problems are unavoidable in the analysis if an appropriate

fundamental kinematic theory is not chosen. Moreover, accurate deflection calculation plays an important role in

ultimate strength analysis where in-plane stresses are considered. Therefore, a more powerful method is needed

to achieve reliable deflection calculation and modeling. For this purpose, a new advanced step was developed by

coupling the elasto-plastic material behavior with precise general planar kinematic analysis. The deflection is

generated precisely without making geometric assumptions or using differential equations of the deflection

curve. An analytical finite strain solution was derived for an elasto-plastic prismatic/non-prismatic rectangular

cross-sectioned beam under a uniform moment distribution. A comparison of the analytical results with those

from the Abaqus FEM software package reveals a coherent correlation.

Keywords. Curvature; deflection curve; cantilever beam; elasto-plastic analysis; tapered beam subjected to tip

moment; kinematic deflection theory.

1. Introduction

The objective in second-order static structural analysis is

to determine the balance of internal and external forces

throughout the deformed configuration of a structure until

plastic hinge formation occurs. Such analysis is a tran-

scendental problem that requires an iterative solution.

Second-order static structural analysis has three main

parts: static equilibrium, kinetic analysis, and kinematic

analysis (figure 1). The static equilibrium part evaluates

internal force using the external forces throughout the

deflected geometry (the deflection curve and cross

section).

The kinetic part is curvature calculation from internal

forces using the material constitutive law and section

integration. The kinematic part determines the deflection by

satisfying the compatibility requirements between the strain

(curvatures) and displacements [1]. Kinematic analysis can

be classified into two main areas. The first type of analysis

depends on solutions using differential equations under

geometric assumptions. The second type of analysis

depends on geometric considerations as in elastica or as in

curvature-based deflection methods, where geometrically

precise deflection calculations are obtained in terms of the

curvature without geometric assumptions [2].

Accurate deflection calculations in finite strain play an

important role in ultimate or in post-collapse analysis,

where in-plane stresses are considered. The solution time,

convergence, and accuracy will be problems if the funda-

mental kinematic theories are not well selected according to

the expected deflection. When a solution is obtained ana-

lytically, the reliability and limits of the solution and the

deflection depend on geometric assumptions in kinematic

theory. Otherwise, physically unrealistic deflections are

unavoidable, particularly for large strain, large deflection,

and large rotations. For the second type of analysis, the

most well-known analytical solution is based on elliptical

integrations, which are not capable of analyzing distributed

loads, variable stiffness members, or material nonlinearity

[3]. Moreover, solutions with elliptic integrals are very

sensitive to even small errors in the calculation [4].

The finite element method (FEM) is the most widely used

numerical structural analysis method [1]. FEM is based on

conventional kinematic theories with geometric assump-

tions. Failure or convergence problems are unavoidable

when considering high deflections beyond a certain limit,

even with a large number of mesh elements and high CPU

time. Therefore, there is a need for more powerful methods

for more reliable deflection calculations and modeling to

satisfy the increasing requirements of structural analysis.
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The analytical solutions for beams that consider material

and geometric nonlinearities are limited [5]. Solutions are

available for nonlinear elastic material models, such as

Ludwick type [6] and Ramberg–Osgood type materials [7].

Some forms of moment–curvature models attempted to

simulate elasto-plastic behavior with hyperbolic-tangent [8]

or logarithmic type nonlinearities [9]. Gao [10] reported an

analytical solution for elasto-plastic finite strain in wide

plates.

This study examined a new advanced step by adapting

elasto-plastic behavior to curvature-based kinematic dis-

placement theory (KDT) [11]. In KDT, deflection is gen-

erated precisely without making any geometric assumptions

or using differential equations of the deflection curve. A

new analytical solution is proposed for elasto-plastic pris-

matic/non-prismatic rectangular cross-sectioned beams

subjected to a tip moment. The curvature values are used

geometrically to form the deflection curve. The aim is to

have a plain and comprehensible presentation. Therefore,

the compatibility conditions and lateral torsional buckling

are restrained by assuming planar deflection. In addition,

internal forces are selected as a uniform moment distribu-

tion to avoid the need for an iterative procedure for second-

order theory and governing equations for the shear effect.

The analytical results of the applications were compared

with results from the Abaqus FEM software package, and

there was a coherent correlation within the limits of the

software for large strain.

2. Fundamentals of curvature-based kinematic
planar deflection calculation

Let the axes in curvilinear coordinates be the directions of

the normal vectors of the principal planes of a structure.

This makes it possible to describe the planar displacement

of the structure with the deflection of its major reference

axis a with a general regular skew curve [12]. Briefly, the

structure is generated by cross sections in which the cen-

troids C move along reference axis a. The plane of the cross

section is normal to a, as shown in figure 2, where s is the

curve length [12].

All cross sections of the structure are in equilibrium with

the external and internal forces until fracture occurs.

Resultant forces have to be in equilibrium with the stress

distribution over the cross section. Constitutive laws are

used to express the strain distribution. Strain distribution

over a cross section is always linear and proportional to its

curvature value, even for a nonlinear stress distribution.

Therefore, this equilibrium can be represented by the cur-

vature value of the cross section, regardless of elastic or

inelastic behavior (figure 3).

The physical meaning of the curvature is the rate of

change in the slope of the major axis, as expressed in (1).

The curvature values of the cross sections of the beam-

column are uniform for the segment length ds. The resultant

forces on the segment are constant, or the segment is

infinitesimal [11]. The shape of the segment for uniform

curvature distribution is indicated by the arc of a circle with

radius r (figure 4). The radius is equal to the absolute

inverse ratio of the curvature, as expressed in (2). h and

h?dh respectively denote the initial and terminal points of

the slope angle of the segment of the deflection curve with

the x-axis (figure 4).

Figure 1. Iterative flow chart of second-order static structural

analysis.

Figure 2. Planar deflection curve of a structure.

Figure 3. Strain and stress distribution over the cross section.
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j ¼ dh=ds ð1Þ

r ¼ 1=jj j: ð2Þ

The solution to (1) is very simple when curvilinear

coordinates are used. If the curvature value over a segment

is given, the only unknown dh can be obtained from (1).

Using dh, the deflection curve calculation turns into a basic

geometry problem. If the location and slope of the initial

point, the length, and the radius of the arc in (2) are known,

the terminal point of the segment can be determined easily

using geometric considerations [11]. Briefly, the segment is

expressed with an arc with center angle, curve length, chord

length, and radius of dh, ds, dc, and r, respectively.

However, the curvature on the structure is not always

constant. Therefore, the main question is how the different

arcs can be connected to compose a deflection curve, or

how the deflection curve can be represented for a non-

uniform curvature distribution. The deflection curve is a

regular skew curve that is differentiable and needs to meet

the continuity conditions [13, 14]. If the deflection curve is

differentiable, the slope angle of the deflection curve in

curvilinear coordinates can be evaluated from (1) just by

integration. If the integration begins from a specific refer-

ence point where the slope angle is known, the slope angle

of the terminal point can be derived from (1) by integrating

as follows [15]:

h sð Þ ¼ h 0ð Þ þ
Zs

0

j �sð Þd�s: ð3Þ

This integration only requires curvature values of the ds

segments. Therefore, if the curvature distribution is known,

the slope angles of the deflection curve can be obtained

without any geometric assumptions. The relation between

curvature (or strain) and displacement in curvilinear coor-

dinates is considered as the exact solution:

dx

ds
¼ cos h sð Þ ð4Þ

dz

ds
¼ sin h sð Þ: ð5Þ

Finally, the analytical expression for a deflection vector

between the s curvilinear lengths away from the reference

point on a deflection curve can be obtained by substituting

(3) into (4) and (5) and integrating. The following expres-

sion is obtained (figure 1) [15]:

a sð Þ ¼ x sð Þiþ z sð Þk ¼
Zs

0

cos h �sð Þd�siþ
Zs

0

sin h �sð Þd�sk;

ð6Þ

where i and k are the unit vectors of the rectangular

Cartesian coordinate system.

The deflection curve of the entire structure can be con-

structed with these circular arc segments according to

curvature-based kinematic theory [11]. The deflection cal-

culation becomes just a kinematic geometric problem if the

curvatures can be discrete and expressed by a function or a

distribution. If the curvature distribution can be formulated

for any complicated structure, the deflection curve can be

evaluated using the displacement vectors (figure 5).

Fundamentally, deflection calculation is based on the

differential equation of the deflection curve, as given in (1)

and figure 3. The main goal is to determine the values of dz

and dx. Small deflection theory assumes that lateral

deflection is so small that the difference between dx and ds

is zero. Additionally, the tangent angle at any point is

assumed to be constant for an infinitesimal element length,

which is so small that it yields its tangent value. The main

assumptions in small deflection theory are summarized as

follows (figure 4):

Figure 4. Segment of a deflection curve.

Figure 5. Relative locations according to the reference point of

the deflection curve.
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ds ¼ dx and h ¼ dz

dx
:

Therefore, the displacement based on small deflection

theory can be determined as follows:

j ¼ dh=ds � d2z

dx2
:

The following is also assumed:

ds 6¼ dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dz2

p
and h 6¼ arctan dz=dx ¼ u:

If we consider large deflection theory, the main

assumptions are that the curvilinear length of the

infinitesimal element is equal to the length of the dis-

placement vector, and that the tangent angle is constant for

an infinitesimal element length. Therefore, displacement

under large deflection theory can be determined as follows:

j ¼ dh=ds � d2z=dx2

1 þ dz=dxð Þ2
� �3=2

:

From a geometric perspective, it is impossible to say that

curvilinear length is equal to the magnitude of the incre-

mental displacement vector dc between adjacent nodes.

Therefore, there will always be numerical error if the seg-

ment length is not infinitesimal. Additionally, the slope

angle at the initial point of the segment is not constant

during the displacement of the segment. This means the

deflection is linear between two adjacent points. However,

the change in the slope angle is already defined with the

curvature value in (1). With this simple KDT, it is possible

to extend the analytical or numerical solutions of elastica or

exact geometric solution of beams to distributed loads,

variable stiffness members, or material nonlinearity under

full geometric nonlinearity.

Even though Green or Jaumann strain components are

powerful with Lagrangian formulation in nonlinear FEA,

they fundamentally still include geometric assumptions.

Therefore, a large number of mesh elements are necessary

in the case of large rotation and large displacement.

Another advantage of KDT is that the segment length is not

important when the curvature value is constant over the

segment, even if rotation and displacement are large

(figure 5).

Particular solutions with the geometric use of the cur-

vature in deflection studies have been reported. The well-

known applications in the bending of beams are those with

uniform curvature distributions, where the deflection curve

forms with parts of a circle [16]. Tayyar and Bayraktarkatal

[17] reported a numerical iterative method for the non-

uniform curvature distributions of stiffened plates consid-

ering second-order theory and local plate buckling while

neglecting the shear effect. This method provides an

opportunity to form the most complex deflection curves

easily via curvatures of the individual segments. Exact

planar kinematic displacement theory for a non-uniform

curvature distribution was first reported with the application

of a tapered rectangular elastic cantilever beam subjected to

a tip moment [11]. An analytical method for the deflection

calculations using curvature values was originally reported

with the application of an elastic rectangular tapered beam

subjected to a tip moment [15]. Numerical analysis of an

elastic perfectly plastic stiffened panel with KDT was

presented by Bayraktarkatal and Tayyar [18] and Tayyar

et al [19].

3. Analytical method for elastic perfectly plastic
material behavior

The analysis is composed of two parts. In the kinetic part,

the moment–curvature relationship of the cross section is

determined by section integration from the resultant forces

and material model. In the kinematic part, the deflection

calculation is evaluated from the curvature functions

obtained in the kinetic part. Kinetic analysis is considered

for tapered and prismatic conditions. A uniform moment

distribution is preferred for comprehensibility, and it is

possible to derive any function for moment distribution

over the deflection curve for use in the curvature equation

to achieve a more sophisticated calculation.

3.1 Moment curvature relationship of elasto-

plastic rectangular cross section

Under the assumptions of the Bernoulli–Navier hypothesis,

the strain distribution over the cross section is linear, even

when material and geometric nonlinearities take effect. All

equilibrium equations are evaluated over the cross sec-

tion. The strain distribution can be expressed as follows:

e zð Þ ¼ j zN � zð Þ; ð7Þ

where zN represents the shift between the neutral axis and

curve axis (figure 3).

Figure 6 shows the typical stress–strain diagram of an

elastic perfect plastic material, where r0 represents the

tension yield stress, and e0 represents the tension yield

strain. The strain–stress relationship for the elasto-plastic,

homogenous, isotropic material assumes that the absolute

values for the stress and strain in the tension and com-

pression sides are the same.

The stress distribution can be derived using the following

expression, where E represents the Young’s modulus, and

zcr represents the absolute critical distance from the neutral

axis, where an inelastic behavior is started:

r ¼ Ej zN � zð Þ jj j\e0= zN � zj j
r0Sign j zN � zð Þð Þ jj j � e0= zN � zj j

�
: ð8Þ
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Figure 7 shows the elastic, primary plastic, and sec-

ondary plastic stages of the strain and stress distribution

over a rectangular cross section before plastic hinge (fully

plastic) occurs. h represents the height of the cross section,

and b represents the width.

The equilibrium of the internal and external forces at any

cross section is obtained from equilibrium equations over

the cross-section area A. The first equation shows the

relationship between the resultant normal forces, and the

second equation shows the relationship between the

moments at the cross section:

N ¼
ZZ

A

rdydz ð9Þ

M ¼
ZZ

A

rzdydz: ð10Þ

The maximum moment capacity can be expressed as

follows when the cross section is fully plastic:

M0 ¼ bh2r0=4: ð11Þ

Equation (9) can be satisfied only if zN equals zero when

the action of normal forces and local buckling does not

exist. Therefore, the neutral axis and curve axis is fixed at

the centroid of the cross sections when a homogeneous

material is considered. The moment equation can be

expressed by substituting (8) into (10) as follows:

M ¼
�EIj jj j\2e0=h

M0 �
r3

0b

3E2j2
jj j � 2e0=h

8<
: ð12Þ

where I represents second moment area. The curvature

function can be evaluated from (12) and expressed as fol-

lows, where j\ 0, M[ 0, and M\M0:

j ¼
je ¼ � M

EI
Mj j\2r0I=h

jp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

br3
0

3E2 M0 � Mð Þ

s
Mj j � 2r0I=h

8>><
>>:

: ð13Þ

3.2 Displacement equations of elasto-plastic

cantilever prismatic beams

A cantilever beam subjected to a tip moment M with total

beam length L is considered (figure 8). The width of the

rectangular-beam cross section is b, and the height of the

cross section is h. The reference point is selected as the

clamped edge, where the slope angle is zero.

Equation (3) can be expressed as follows by substituting

(13) under a uniform bending moment, where the curvature

will be constant throughout the curve.

h sð Þ ¼ jes jj j\2e0=h

jps jj j � 2e0=h

�
: ð14Þ

The displacement vectors can be expressed as follows by

substituting (14) into (6):

a sð Þ ¼

Rs
0

cos je�sð Þd�s i þ
Rs
0

sin je�sð Þd�s j jj j\2e0=h

Rs
0

cos jp�s
� �

d�s i þ
Rs
0

sin jp�s
� �

d�s j jj j � 2e0=h

8>><
>>:

:

ð15Þ

3.2a Application for cantilever prismatic beams: The

dimensions and main properties are selected as

L = 1000 mm, E = 206,000 N/mm2, r0 = 1300 N/mm2,

b = 20 mm, and h = 50 mm. No strain hardening effect

after yield stress is taken into account. The analytical

solutions could be obtained easily using (15). Figure 9

shows the deflection curve of the axis from the analytical

solution of the elasto-plastic material properties.

The in-plane deformation results were compared with

results from Abaqus FEM software. The FEM results were

obtained using the four-node quadrilateral membrane ele-

ment M3D4R, as shown in figure 10. The highest deviation

is approximately 4.2% when the tip displacement dz/L is

0.6155 and M/Mp is 0.989. Unfortunately, the nonlinear

FEM solution failed beyond this range, and convergence

Figure 6. Stress/strain diagram of the elasto-plastic material.

Figure 7. Strain/stress distribution of an elasto-plastic rectangular cross section.
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could not be achieved. In contrast, the KDT-based nonlin-

ear solution generates results for ratios of up to M/Mp = 1.

The shape of the deflection curve turns into a circle, which

becomes increasingly smaller when it is close to a plastic

hinge, as shown in figure 9.

3.3 Displacement equations of tapered beams

A tapered cantilever beam under a uniform moment M and

total beam length L is considered (figure 11). The width of the

rectangular beam cross section is b, and heights of the beam

cross section are H and Hmin at the clamped edge and free end,

respectively (figure 11). The height of the cross section at any

arc length can be expressed by (16), where s is the curve length.

h sð Þ ¼ H � Dh
s

L
: ð16Þ

The effect of tip moment is different in each cross sec-

tion. The applied M moment can form a plastic hinge by the

loss of height of the cross section. Therefore, the critical

variable needs to be the height or its curve length instead of

the moment. The critical curve length for a given tip

moment where plastic hinge formation occurs by a decrease

in cross section height is represented by scr, which can be

obtained by substituting (16) into (13):

scr ¼
L

Dh
H �

ffiffiffiffiffiffiffi
6M

br0

r� 	
: ð17Þ

Equation (10) is represented in parametric form. The

reference point is selected as the clamped edge, where the

slope angle is zero. Equation (3) can be expressed as fol-

lows by substituting (17) into (13) and then into (3) under a

uniform bending moment:

h sð Þ ¼
hE sð Þ ¼ � 6Ms H þ h sð Þð Þ

bEH2h sð Þ2
s\scr

hP sð Þ ¼ � 2Lr0ffiffiffi
3

p
EDh

G 0ð Þ � G sð Þ½ � scr\s

8>><
>>:

;

where G sð Þ ¼ ln bh sð Þr0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4br0 b

h sð Þ2r0

4
� M

 !vuut
0
@

1
A:

ð18Þ

The displacement vector can be expressed by substituting

(18) into (6):

Figure 8. Prismatic cantilever beam.

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0
–0.25 0 0.25 0.5 0.75 1

z/L

x/L

M/Mp=0.9994
M/Mp=0.99875
M/Mp=0.9975
M/Mp=0.99
M/Mp=0.95
M/Mp=0.8
M/Mp=0.2
M/Mp=0

Figure 9. Deflection curves of the elasto-plastic cantilever beam.

a sð Þ ¼

Rs
0

cos hP �sð Þd�si þ
Rs
0

sin hP �sð Þd�sk scr � 0

Rscr

0

cos hE �sð Þd�si þ
Rs
scr

cos hP �sð Þd�si þ
Rscr

0

sin hE �sð Þd�skþ
Rs
scr

sin hP �sð Þd�sk 0\scr\s� L:

Rs
0

cos hE �sð Þd�si þ
Rs
0

sin hE �sð Þd�sk scr [ L or s� scr

8>>>>>>><
>>>>>>>:

ð19Þ
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3.3a Application to cantilever tapered beams: The dimen-

sions are selected as L = 1000 mm, b = 20 mm,

H = 50 mm, and Hmin = 40 mm. The same material

properties are applied to the tapered beam. M is taken as Mp

at the tip of the tapered beam. The analytical solutions of

the elastic and elasto-plastic material property are obtained

using (19). FEM results were obtained using Abaqus soft-

ware, and figure 12 plots the results of the deflected shape.

The highest deviation was found to be 0.1% at the free edge

under the given conditions.

4. Conclusion

The in-plane deformation of a planar curvature calculation

for rectangular cross-sections has been explained, and

kinematic analysis was derived for a prismatic/non-

prismatic elasto-plastic cantilever beam under a uniform

moment distribution. Nonlinear material behavior was

coupled using KDT. The analytical results of the applica-

tions were compared with those from Abaqus FEM soft-

ware, revealing coherent correlation within the limits of the

software.

The advantage of precise modeling of the deflection

curve provided high accuracy in the finite strain. This

preliminary concept can be extended to a range of com-

plicated problems. Uniform moments were selected, but

there was no restriction in using a moment distribution over

the deflection curve. For a non-uniform moment distribu-

tion, the resultant forces of each point on the deflection

curve will depend on the deflected shape being evaluated. If

needed, this second-order calculation can be determined

iteratively.
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