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Ensemble of randomized soft decision trees for robust classification
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Abstract. For classification, decision trees have become very popular because of its simplicity, interpret-ability
and good performance. To induce a decision tree classifier for data having continuous valued attributes, the most
common approach is, split the continuous attribute range into a hard (crisp) partition having two or more blocks,
using one or several crisp (sharp) cut points. But, this can make the resulting decision tree, very sensitive to noise.
An existing solution to this problem is to split the continuous attribute into a fuzzy partition (soft partition) using
soft or fuzzy cut points which is based on fuzzy set theory and to use fuzzy decisions at nodes of the tree. These
are called soft decision trees in the literature which are shown to perform better than conventional decision trees,
especially in the presence of noise. Current paper, first proposes to use an ensemble of soft decision trees for
robust classification where the attribute, fuzzy cut point, etc. parameters are chosen randomly from a probability
distribution of fuzzy information gain for various attributes and for their various cut points. Further, the paper
proposes to use probability based information gain to achieve better results. The effectiveness of the proposed
method is shown by experimental studies carried out using three standard data sets. It is found that an ensemble
of randomized soft decision trees has outperformed the related existing soft decision tree. Robustness against the
presence of noise is shown by injecting various levels of noise into the training set and a comparison is drawn
with other related methods which favors the proposed method.

Keywords. Decision tree; soft decision tree; bootstrapping; ensemble technique; fuzzy set.

1. Introduction

Data Mining is a process which discovers knowledge from
large volumes of data by applying data analysis and discov-
ery algorithms [1, 2]. Classification, a major data mining
functionality, is a supervised learning method where the
example set called the training set is used to classify the
given query data item into one of the predefined classes,
where a classifier derived from the training set like a deci-
sion tree or a neural network or a support vector machine or
any other classifier may be used [3].

No Free Lunch [3] theorem states that there is no the best
classifier suitable for all problems. In rare cases where the pro-
bability structure of the problem is fully known, the Bayes
classifier gives the minimum error and hence is the best one.
However, one has to, often work with a limited training set,
even to derive probabilities like class conditional densities.

∗For correspondence

So, the Bayes classifier which uses estimated probabili-
ties (from a limited training set) is not the best one. Some
recent classifiers like support vector machines [4, 5] are
shown to have good generalization ability especially with
limited training set problems. But these methods and many
other methods like artificial neural networks have an impor-
tant limitation called lack of interpret-ability along with its
inability to work with categorical or non-numeric attributes.
That is, they cannot give reasons (in human understandable
terms) for the decision it made. Instance based classifiers
like nearest neighbor classifier [6] or case based methods [7]
show good performance and also has good interpret-ability
and can deal with non-numeric attributes provided a proper
distance measure or rules are available. However the classi-
fication time these classifiers take is often proportionate to
the training set (or rule set) size, hence are slow. Decision
tree classifiers, where the classification rules are arranged in
the form of a tree show good performance, are applicable
to work with non-numeric attributes and also give good
interpretations. Because of the tree structure, they are faster
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than other rule-based methods [8, 9]. Hence, decision tree
classifiers are popular in data mining applications.

In the decision tree induction process, for a node that cor-
responds to a continuous valued attribute, the testing is done
in two standard ways, viz., by splitting the attribute range
into two intervals using a cut point [10], or into many inter-
vals using several cut points [11]. That is, a partition of the
range can be found, which can be called hard discretization
of the range of values. Conventional decision trees which
are built by using continuous valued attributes, with a crisp
threshold based testing at a node, do not perform well, espe-
cially in the presence of noise [12, 13]. Two objects which
are very near in the feature space can be classified into dif-
ferent classes. Hence, the crisp threshold (cut point) is not
always desirable [14], and it may produce high misclassifi-
cation rates since it has poor generalization ability. This is
one of the reasons why decision trees are unstable, i.e., a
small perturbation in the training set can result in a drasti-
cally different decision tree. This is the reason why decision
trees have high variance in their error component [15]. To
overcome this problem, some techniques use probability
based approaches [16–18], some use possibility based meth-
ods [19–21]. One of the approaches to solve this problem is
to use fuzzy1 decision trees where standard decision trees
are combined with fuzzy rules.

An improvement over the above one is to derive a soft
partition of the range called soft discretization [21, 22]
using fuzzy-set theory. Fuzzy decision trees have been used
for many applications like diagnosis systems [23], video
mining [24], landslide susceptibility detection [25] and to
many other classification problems. Moreover, fuzzy deci-
sion trees have good interpretability than standard decision
trees. Decision trees, in classifying a test pattern, use a sin-
gle rule that corresponds to the path from the root to a
leaf. All other rules are not satisfied. However, several rules
might be satisfied with varying degrees of precision, which
can be combined at a later stage to get the class label. This
approach can reduce the variance component of the error
[15]. A fuzzy decision tree induction method to solve regres-
sion problems was introduced in [15] where growing and
pruning are combined to determine the structure of the soft
decision tree with the techniques called refitting and back-
fitting. The effect of using various information measures in
building fuzzy decision trees is studied in [19].

An ensemble of classifiers, rather than using a single
one is also known to reduce variance component of the
error [26–28]. The most popular techniques for constructing
ensembles are, (i) bootstrap aggregation or bagging [29, 30],
(ii) the Adaboost family of algorithms [31] (called boost-
ing) and (iii) random forests [32, 33]. Randomness was used
in the induction process of decision trees, which are shown
to result in a better classifier [34]. Random forests based
decision trees perform significantly better than bagging and

1Fuzzy and soft, these two words are interchangeably used in this paper.

boosting [35]. These decision trees have smaller error rate
and are also more robust to noise than the other methods
[35]. In [36] a completely random decision tree algorithm is
proposed, where at each node the splitting attribute is ran-
domly chosen without using any heuristic measures such
as information gain, gain ratio and gini index. It means the
choice of selection of attributes at each node is completely
stochastic. Finally, the authors have concluded using experi-
mental results that their model achieves significantly higher
accuracy than the single hypothesis. In [37] the authors have
clearly justified about the reason for higher accuracy of
randomized decision tree approaches using posterior prob-
ability estimations. The authors also show that the mean
squared error (MSE) criteria by randomized decision trees is
reduced in both bias and variance. The other method is [38]
where a subset of features is randomly generated from the
original feature set and on each subset a conventional deci-
sion tree is induced and shown that their computations are
better. Dietterich’s method [39], where the splitting attribute
is randomly chosen among the top k attributes which have
highest information gain. In recent works, ensemble meth-
ods are combined with fuzzy-set based learning algorithms
[40–43]. Another recent work based on ensemble method
is a fuzzy random forest, where randomization is used to
select a splitting attribute from a set of candidate attributes at
every node [44]. A comparative study of combination meth-
ods of fuzzy Vs non-fuzzy based classifiers was done and
concluded that better results are obtained with fuzzy based
classifiers [45]. A good theoretical analysis was shown in
[46] about how linear combiners of classifiers perform well,
which depends on the performance of individual classifiers.

This paper, basically extends the ideas presented in [10]
and [21] where a soft partition of the predefined width
(informally, this will measure the degree of overlap between
blocks of the soft partition) is obtained for continuous valued
attributes. Since there is an inherent vagueness in choosing
the attribute, its cut point, its width, etc., the paper pro-
poses to build an ensemble of soft decision trees where the
parameters (like the attribute, cut point, etc.) are chosen
from probability distributions (which are obtained from the
training set). Because of the randomness injected at various
levels, the component classifiers are supposed to be suffi-
ciently independent of each other, so that their consensus
decision is going to be a better one.

The rest of the paper is organized as follows. Section 2
discusses conventional decision trees along with their short-
comings. Section 3 initially gives few definitions needed to
describe fuzzy systems, then, presents an induction method
of the basic soft decision tree. Section 4 describes the core
of the paper, i.e., a randomized soft decision tree induction
method, followed by the discussion of an ensemble of ran-
domized soft decision trees. Experimental studies are given
in Section 6. Section 7 concludes the paper.
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2. Standard decision tree induction

Let the data set be X = {(Xi, yi) | i = 1, 2, . . . n}, where
Xi represents a d-dimensional feature vector and yi repre-
sents the corresponding class label. Let the set of attributes
(features) be A = {A1, A2, . . . , Aj , . . . , Ad}, which are all
assumed to be of continuous valued.2

To insert a node in the decision tree building process, the
goodness of the attribute to be tested at the node is nor-
mally found based on drop in certain impurity measure,
like entropy, gini-index, and gain-ratio [1]. Usually entropy
based impurity measure called Information Gain is used for
continuous valued attributes which is described below. Let
the data set be X , its entropy is given by

Entropy(X ) =
c∑

i=1

−pi log2(pi), (1)

where c represents number of class labels, for our experi-
ments c is 2, pi represents the probability of data instances
that belong to class i.

Let ai1 , ai2 , . . . , aim be an ordered sequence of distinct
values of an attribute Ai , iε{1, 2, . . . , d}, as given in the
training set. Then for every pair of values (aik , aik+1) a pos-
sible threshold τk = (aik + aik+1)/2, for k = 1 to im−1, is

examined for a cut point to partition X into two blocks X (i)
1

and X (i)
2 . Weighted average of the entropy of the resulting

class distributions after the testing would be

Info(Ai, τk) = n1

n
Entropy(X (i)

1 ) + n2

n
Entropy(X (i)

2 ),

(2)
where n1 and n2 are the number of tuples in blocks X (i)

1 and

X (i)
2 . Information Gain G of this testing is

G(Ai, τk) = Entropy(X ) − Info(Ai, τk). (3)

The attribute and its cut point, which gives maximum Infor-
mation Gain are chosen for the testing in the node. The
process is recursively repeated to build the child nodes [1].

2.1 Problems with standard decision trees

Some Limitations of the standard decision trees are
described below.

To induce a decision tree for a continuous valued data,
using the above discussed method, each attribute needs n−1
evaluations (where n is the number of instances, assuming
that an attribute is having n distinct values.), to determine
the optimal cut point at which information gain is maxi-
mum. Therefore it is relatively expensive to work with large
data sets. Here, we followed Fayyad [10] idea, which has
shown only the class boundary points are to be examined to

2This paper limits its scope to continuous valued attributes only.

Table 1. A toy dataset.

Height (cm) Weight (kg) Class-label

52 125 tiger
62 155 tiger
73 170 tiger
18.4 17.9 cat
42 108.2 tiger
25.2 30.5 tiger
18 15 cat
22 24 cat
19.2 23.5 cat
24.9 28.3 tiger
24.7 28.2 tiger

determine the optimal cut point which gives the maximum
information gain for the attribute. A cut point is called a
boundary cut point, if it falls between a pair of successive
instances that belong to two different classes. Here onwards
cut point means that which lies at a class boundary. Even
though, in practice, this significantly reduces the number of
evaluations, its worst case time complexity still is O(n).

Another limitation is discussed with an illustrative exam-
ple. Table 1 shows a toy data belonging to a two class
problem which has two attributes height and weight and
two class labels t iger and cat . Let the crisp rule induced (by
applying the method described in Section 2) to the toy data
is as follows,

IF height > 23.35 THEN class-label = t iger.

This rule works well in classification for the instances that
have no noise.3 Noisy instances are more likely to present in
the training data while reading feature values such as height,
which might decrease performance of the hard decision tree.
Hence, crisp boundary based (cut point) decision rules do
not resolve uncertainties in the data. In order to overcome
this, soft decision tree based on the fuzzy set theory is used
and is explained in the next section.

3. Soft decision tree

This section explains basic concepts of fuzzy set theory
followed by its application to standard decision tree called
design of soft decision tree.

3.1 Fuzzy set theory

The definitions of crisp set, fuzzy set, crisp partition and
fuzzy partition are defined below. Details can be found in
[47]. Let O be the collection of objects in the Universe of
discourse.

3One example is, the height measuring device has erroneously recorded the
height value to be 23.4, when in fact it is 23.34.
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Crisp Set: A Crisp set C is a subset of the Universe of dis-
course O and it is expressed with a sharp characteristic
(membership) function μC : O → {0, 1}. For each object
o ∈ O,

μC(o) =
{

1 if o ∈ C,

0 otherwise.

Fuzzy Set: A Fuzzy set F is a subset of the Universe of
discourse O, whose characteristic (membership) function is
μF : O → [0, 1]. For each object o ∈ O,

μF (o)=
⎧
⎨

⎩

1 if o ∈ F,

x 0< x < 1, o is in F with a degree or membership value x,

0 otherwise, i.e., o �∈ F.

Partition: A hard or crisp partition of the set O is the non-
empty set of blocks {B1, B2, . . . , Bp}, where each block is a
non-empty crisp set,

Bi ⊆ O for 1 ≤ i ≤ p,

Bi ∩ Bj = φ and⋃p

i=1 Bi = O.

In other words, it is a mutually disjoint and collectively
exhaustive collection of blocks.

Fuzzy Partition: A fuzzy or soft partition of O is the non-
empty set of fuzzy sets {F1, F2, . . . , Fp}, where each fuzzy
set, also known as fuzzy block, is non-empty (i.e., there is an
element whose membership value is other than 0), and for
each o ∈ O,

p∑

i=1

μFi
(o) = 1.

Fuzzy blocks of a fuzzy partition can be given human
understandable names called linguistic variables. For exam-
ple the height may be divided into two fuzzy blocks called
“short” and “tall”. Then a rule can be stated as

IF height is “tall” THEN class-label = tiger.

The degree by which the height is in the fuzzy block “tall”
determines the strength of this rule.

This rule is better understandable, hence has good
interpret-ability than the rule:

IF height > 23.35 THEN class-label = tiger.

Figure 1 illustrates the above mentioned example. In
case of the soft partition, suppose that the height given is
23.4 there is a scope for the final class-label to be either
cat or tiger. Whereas in the hard partition, one of this is
ruled out.

3.2 Design of soft decision tree

The building process of a soft decision tree is similar to
that of the standard decision tree (as discussed in Section 2)
except, the way in which the goodness measure is calculated
that uses the fuzzy membership values.

Let B be the continuous valued attribute and let τ be the
optimal threshold or cut point choosen among all possible
thresholds (as discussed in Section 2.1). In case of crisp par-
tition, if attribute B value is less than or equal to a cut point
or threshold τ then it belongs to block B1 else it belongs
to block B2 as shown in figure 1(a). In case of soft parti-
tion, if attribute B value is less than or equals to τ − w/2
then it belongs to fuzzy block B1 called with a linguistic
variable “short” else if its value is greater than or equal to
τ + w/2 then it belongs to fuzzy block B2 called with a
linguistic variable “tall”, otherwise it belongs to both fuzzy
blocks “short” and “tall” with some fuzzy membership val-
ues as shown in figure 1(b) where w is overlapping width of
two fuzzy blocks “short” and “tall”.

The fuzzy membership value can be calculated as follows.
Let μBj

(xi) represents the fuzzy membership of instance xi

to fuzzy block Bj . If an instance xi belongs to fuzzy block
“short” (shown in figure 1(b)) then the fuzzy membership
value μshort (xi) is calculated as given below.

μshort (xi) =
⎧
⎨

⎩

1 if xi ≤ τ − w/2,
(τ+ w

2 )−xi

w
if τ − w

2 < xi < τ + w
2 ,

0 if xi ≥ τ + w/2.

Similarly, the membership value μtall(xi) of an instance
xi belongs to fuzzy block “tall” (shown in figure 1(b)) is
calculated as given below.

μtall(xi) =
⎧
⎨

⎩

0 if xi ≤ τ − w/2,
xi−(τ− w

2 )

w
if τ − w

2 < xi < τ + w
2 ,

1 if xi ≥ τ + w/2.

21

τ = 23.35
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1
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Figure 1. Hard partition Vs soft partition.
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In the process of designing a soft decision tree, the fuzzy
entropy of a training set X is calculated as follows:

EntropyF (X ) =
c∑

k=1

−(μpk
,X ) log2(μpk

,X ), (4)

where (μpk
,X ) = ∑

xi∈ck
(μB1(xi) + μB2(xi)) is the fuzzy

proportion of instances in fuzzy set X that belongs to class
ck . After that, the weighted average of fuzzy entropy or
fuzzy info for fuzzy partition of tuples in X over the val-
ues of an attribute B using the optimal threshold τk is given
below.

Inf oF (B, τk,X ) = N
X1
F

NX
F

EntropyF (X1) + N
X2
F

NX
F

EntropyF (X2),

(5)

where EntropyF (X1) and EntropyF (X2) are the fuzzy
entropy of subsets X1 and X2 respectively, NX

F =
∑|X |

i=1(μB1(bi) + μB2(bi)), N
X1
F = ∑|X |

i=1μB1(bi), N
X2
F =

∑|X |
i=1μB2(bi). Similar to the standard decision tree, the

fuzzy information gain of an attribute B using a threshold τk

can be calculated as given below.

GF (B, τk) = EntropyF (X ) − InfoF (B, τk,X ). (6)

Similarly we find fuzzy information gain for all attributes
in X , then we choose the attribute which has high informa-
tion gain as the good splitting attribute at the root node. The
above process is recursively repeated on the obtained child
nodes from the root node, to enhance the soft decision tree.

Figure 2 shows a soft decision tree model, it has two test
nodes with attributes A and B and three terminal nodes. The
inference of a soft decision tree can be discussed as fol-
lows. To classify an unseen instance in this soft decision
tree model the matching fuzzy membership values of the
instance to each node from root to leaf are calculated. Let xi

be the instance to be classified to one of the class labels C1

and C2, then the fuzzy membership value of xi belonging to
each class can be calculated as given below.

• The fuzzy membership value π1 of the instance xi to
classify to class C1 is μA1(xi) ⊗ μB1(xi). (where ⊗ is
the fuzzy product operation.)

• The fuzzy membership value π2 of the instance xi to
classify to class C2 is either μA1(xi) ⊗ μB2(xi) or
μA2(xi).

The fuzzy product operation of μA1(xi) and μB1(xi)

denoted μA1(xi) ⊗ μB1(xi), is min(μA1(xi), μB1(xi)).
If the instance xi is belonging to two classes C1 and C2

with fuzzy membership values π1 and π2 respectively then
class C1 is assigned to xi if π1 > π2, otherwise class C2 is
assigned.

21

<=τ−w/2 >=τ+w/2
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μ μ )ix(2A

Bμ μB (xi )2
)ix(

1
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Figure 2. Soft decision tree.

4. A randomized soft decision tree

In this section, the proposed method, a randomized soft
decision tree classification model is described and also an
ensemble of randomized soft decision trees is presented.

In this method, several cut points are considered for each
attribute in the induction process of a decision tree, whereas
in the existing method a single cut point is used [21]. In the
induction process, at a node, the attribute and its cut point
are randomly chosen from distributions as described below.

Let Gmax
F (Ai) be the maximum information gain for the

attribute Ai among its various cut points. The probability
distribution over the set of attributes is defined as follows,
from which randomly an attribute is chosen.

P(Ai) = Gmax
F (Ai)

∑d
k=1 Gmax

F (Ak)
. (7)

Among various cut points of the attribute Ai , the cut
point that is chosen is randomly selected from the distri-
bution where the probability of choosing a cut point that
corresponds to threshold τk is

P(τk) = GF (Ai, τk)∑
∀l GF (Ai, τl)

. (8)

To avoid over-fitting, pruning is done, which could
be either prepruning or postpruning [1]. The paper uses
prepruning, where the building process is terminated as soon
as the resulting error falls below a prespecified threshold.
The error threshold used is chosen by using a three-fold
cross validation from {0.1, 0.2, 0.3, 0.4, 0.5}.

4.1 An ensemble of randomized soft decision trees

There are two frameworks to build an ensemble of clas-
sifiers which are, based on a dependent framework or an
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Table 2. Experimental results before injecting noise.

1999 KDDCUP SPAM MAIL PIMA

Standard decision tree 94.67% ± 2.59 93.72% ± 0.53 72.44% ± 2.51
Soft decision tree 95.94% ± 2.1 94.98% ± 0.46 73.66% ± 2.1
Randomized soft decision tree 96.98% ± 1.21 96.26% ± 0.27 74.89% ± 1.62
Ensemble of randomized soft DTs 98.23% ± 0.91 98.14% ± 0.26 76.96% ± 1.21

independent framework. In the dependent one, the classi-
fiers are dependent so that the output of one classifier is
used in the design process of the next one (the good exam-
ple is Adaboost). Alternatively, parameters used to build the
classifier are different from the other components, so that
each classifier is independent from the other one(the good
example is Bagging) [48].

Let X be the given training set having n tuples. The boot-
strap method is applied to derive the sub-training set Xi

(drawn using sampling with replacement). Let T1, T2,. . . , Tl

be the learned soft decision trees in the ensemble method
as discussed in Section 4. Each node is built based on a
bootstrapped training set. The parameter l is chosen from
a three-fold cross validation from {1, 3, 5, 7, 9, 11, 13, 15}.
For the given query pattern Q, the proposed ensemble model
takes output of each randomized soft decision tree Ti , for
i = 1, 2, . . . , l and outputs the class label based on majority
voting (either 1 or 0) which is assigned to the query pattern
Q.

5. Data sets

Three data sets are used in the experimental study.

1. 1999 KDD Cup data set, which is originated by MIT Lin-
con labs [49]. Since 1999, KDD Cup data set has been
widely for the evaluation of intrusion detection systems.
And it was prepared based on the data captured from 1998
DARPA IDS [50] evaluation program. The 1999 KDD
Cup training data set was derived from around 4,900,000
connections, each connection is represented as a vector
having 41 features, and class information is labeled as
either normal or an anomalous one. Among 41 features
we used continuous attributes only for our experiments.
And the detailed explanation of each continuous feature
is given in [51].

2. Spam mail data set collected at Hewlett-Packard Labs.
Totally it has 4601 instances with 57 continuous attributes
and a nominal class label which categorizes the email as

either a spam one or not. Its documentation and data sets
are available at the UCI Machine Learning Repository
[52].

3. Pima Indians Diabetes Database originated by National
Institute of Diabetes, Digestive and Kidney Diseases. This
data set is having 768 instances, each with eight attributes.
All eight attributes are continuous valued attributes and
details can be found at UCI Machine Learning Repository
[52].

6. Experimental results and discussion

In this section, we discussed the results of the proposed
model called ensemble of randomized soft decision trees
for robust classification. The performance of the proposed
model is compared against various existing models in terms
of accuracy and standard deviation. we used C4.5 pack-
age for standard decision tree invented by Quinlan [53]. To
evaluate various methods used in this paper, we injected
noise at various levels ranging from 1% to 6% in three
specified data sets. Table 2 and table 3 have shown the
comparison of experimental results over the specified data
sets before injecting noise and after injecting noise respec-
tively. Figure 3, figure 4 and figure 5 shows the results of
PIMA, SPAMMAIL and 1999KDDCUP data sets respec-
tively. It is clear from the results when the percentage of
noise is increased the performance of standard decision tree
is decreased abruptly for PIMA and SPAMMAIL data sets,
whereas the performance is increased up to some extent and
decreased later for 1999KDDCUP data set. For the existing
soft decision tree model, proposed randomized soft decision
tree model and an ensemble of randomized soft decision tree
model, the performance is increased first and later decreased
slowly.

Experimental results show that our proposed randomized
soft decision tree model and an ensemble of randomized soft
decision trees perform better for the standard data sets and
also more robust to noise than the remaining methods.

Table 3. Experimental results after injecting noise.

1999 KDDCUP SPAM MAIL PIMA

Standard Decision Tree 91.61% ±2.77 91.25% ±1.71 71.125% ±2.27
Soft Decision Tree 93.55% ±2.03 92.54%±1.36 72.84% ±1.87
Randomized Soft Decision Tree 94.87%±1.56 93.92%±1.23 74.97%±1.18
Ensemble of Randomized Soft DTs 97.68%±0.89 97.56%±0.73 76.26%±0.67



Ensemble of randomized soft decision trees 279

 65

 68

 71

 74

 77

 80

 1  2  3  4  5  6

A
cc

ur
ac

y

Percentage of noise

SDT
Soft DT

Randomized Soft DT
Ensemble of Randomized Soft DT

Figure 3. Experimental results over PIMA dataset.

6.1 Complexity of randomized soft decision tree

In this section, the complexity of the proposed method, “A
Randomized Soft Decision Tree” is discussed particularly
with a single test node, having d number of attributes and
n number of tuples. The complexity of an exhaustive search
to find optimal cut point requires n − 1 evaluations for each
attribute and it could be expensive especially as n increases.

The heuristic search of the proposed model needs to
examine only class boundary cut points instead of n − 1
cut points of each attribute. For k-class problem, when all
instances are arranged in the sorted sequence, where all

instances of the same class are adjacent to each other, in
the best case k − 1 evaluations are used to find the optimal
cut point of an attribute. In the worst case, where the class
changes from one instance to another, n − 1 evaluations are
needed for each attribute.

6.2 CPU times

Table 4 gives the idea of computational CPU times of
various methods discussed in this paper. These times are
recorded on Fedora platform, Intel Core i3 processor with
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Figure 4. Experimental results over SPAM MAIL dataset.
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Figure 5. Experimental results over 1999KDDCUP dataset.

Table 4. Comparing CPU times.

CPU time

Randomized Ensemble of
Dataset TRSize SDT Soft DT Soft DT Randomized Soft DT

PIMA 100 0.004s 0.002s 0.002s 0.006s
200 0.004s 0.002s 0.002s 0.006s
300 0.008s 0.004s 0.004s 0.011s
400 0.012s 0.007s 0.007s 0.013s

SPAMMAIL 1000 0.092s 0.068s 0.068s 0.386s
1500 0.120s 0.082s 0.086s 0.426s
2000 0.152s 0.098s 0.102s 0.487s
2500 0.182s 0.136s 0.142s 0.513s
3000 0.228s 0.158s 0.167s 0.697s

KDDCUP 20000 2.424s 1.812s 1.853s 2.861s
25000 3.524s 1.941s 1.956s 4.572s
30000 4.648s 2.256s 2.567s 6.262s
40000 7.344s 4.124s 4.269s 8.415s

2.40 GHz, 4GB RAM. The observations from table 4 are,
the CPU time is increased for standard decision tree (SDT)
in all three datasets used in the experiments as the size
of training set (TRSize) increases, whereas for the proposed
randomized soft decision tree and existing soft decision tree
models CPU time is more or less equal as the training set
size is increased. For the proposed ensemble method, where
each component is derived using the proposed approach i.e.,
randomized soft decision tree model and its CPU time is
increased as the size of the training set increases.

Hence the computational costs involved in the proposed
soft decision tree model are better than the existing standard
decision tree and it is more or less equal to the existing soft
decision tree model.

7. Conclusion

In this paper, the fuzzy set theory is combined with standard
decision tree classification to build a randomized soft deci-
sion tree model and also an ensemble of randomized soft
decision trees for robust classification is presented. For an
improvement, instead of information gain as the goodness
measure, the parameters like splitting attribute, cut point are
randomly chosen from the probability distribution of fuzzy
information gain. Experimental results over three standard
data sets have shown that the proposed ensemble method and
a randomized soft decision tree has outperformed and also
more robust classification than the related soft decision tree
and also the standard decision tree especially in the presence
of noise.
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