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Abstract. Fretting is essentially a surface phenomenon, but bulk stresses
and material properties contribute to subsequent failure. This feature of fretting
demands a thorough understanding of near surface stresses under the joint action
of normal, shear and thermal loading. Axisymmetric fretting is of great concern
in piping and coupling design. In this paper, we develop design tools for Near
Surface Analysis (NSA) for understanding axisymmetric fretting. Axisymmetric
Fretting Analysis (AFA) becomes formidable owing to localised tractions that call
for Fourier transform techniques. We develop two different NSA strategies based
on two-dimensional plane strain models: 2D strip model (2DS) and half-plane Fla-
mant model (2DF). We compare the results of 2DS and 2DF with the exact results
for AFA obtained using Love’s stress function in conjunction with Fourier trans-
form. There is a good correspondence between stress components obtained from
2D-models.

Keywords. Solid cylinder; axisymmetric analysis; Fourier transform;
2D-models.

1. Introduction

Fretting is essentially a surface phenomenon although bulk stresses and materials properties
contribute to subsequent failure. Stress analysis of relevance to fretting is mainly focused
on crack initiation and propagation leading to gross failure of engineering components. In
particular, initiation of microcracks in the vicinity of fretting depends on local stress and
material properties such as yield stress, fracture toughness, etc. A recent overview on fretting
fatigue highlights the key problems in aerospace applications (Farris et al 2003).

A common example of axisymmetric fretting is piping and shrink fit joints subjected to
vibration (e.g. pressure vessels, piping, hub/shaft interface in turbine, etc.). Stress analysis of
such joints need axisymmetric formulation. The axisymmetric analysis of cylinders subjected
to localised loading on the lateral surface has been of interest for about past 75 years (Williams
& Ranson 2003). The problem of determining the state of stress in shrink fit components is
widely reported in the literature (Yau & Cakmak 1966; Conway & Farnham 1967; Steven
∗For correspondence
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1975; Spillers 1964; Lee 1995). Owing to the mathematical complexity of mixed boundary
problems prescribing traction directly offers a valuable alternative. This alternative approach
is not well explored and exploited in the literature.

An infinite cylinder subjected to constant pressure over a semi-infinite range was analysed
by Tranter & Craggs (1945). The problems of finite cylinder subjected to a pressure and
shear tractions are solved in Timoshenko & Goodier (1970) using Fourier series. Rankin &
Schenectady (1944) discussed the problem of infinitely long cylinder subjected to a band
of pressure using Fourier transforms. Williams (1996) and Singh (1994) have given a brief
history of allied problems reported in the literature. These analyses address the entire stress
field in the cylinder without any emphasis on the near surface state of stress.

Dobromirsky & Smith (1986) solved the problem of cylinder subjected to both pressure
and shear bands, making the problem relevant to fretting. They included some results for
state of stress at the surface and the near surface region of the cylinder. Axisymmetric anal-
ysis of fretting is generally found to be limited. However, the two-dimensional plane strain
geometries of both strip and semi-infinite half-plane (Dini & Nowell 2004; Hills et al 1993;
Mugadu et al 2003; Szolwinski & Farris 1996; Lee & Mall 2004) are widely explored to
understand fretting. Fellows et al (1995) studied the comparison of stresses in the strip
and half-plane geometries in the context of fretting. Since fretting mainly depends on near
surface stresses the effect of actual geometry of the component becomes less important.
Thus, it is possible to take advantage of this feature to develop two-dimensional methods
to understand the state of stress in axisymmetric fretting, provided such simplification is
validated.

Considering the stresses in the near surface region only, the corresponding stresses obtained
for the case of a two-dimensional strip could provide an approximate solution for an analogous
axisymmetric problem. The axisymmetric analysis being the exact one, the two-dimensional
strip analysis can be considered to be an approximate method as far as the stress in the near
surface region is concerned. The objective of this paper is to develop design tools for Near
Surface Analysis (NSA) for understanding axisymmetric fretting.

Following geometries are investigated for subsequent comparison of results:

(i) AFA infinitely long cylinder of radius R (figure 1).
(ii) 2DS infinitely long strip of half-width Y (2D plane strain case figure 2).

(iii) 2DF semi infinite half space (2D plane strain case figure 3).

Love’s axisymmetric stress function and Airy’s stress function are used in conjunction with
the Fourier transform for the analysis of cylinder (AFA) and strip (2DS), respectively. For the

Figure 1. Homogeneous cylinder
with cylindrical coordinate system.
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Figure 2. Strip with Cartesian coordinate system.

half-plane case, the Flamant solution is used as the Green’s function for obtaining the stress,
through integration.

In order to compare the near surface stresses from cylinder, strip and half-plane models,
the applied traction profile is assumed to be known. Different profiles of relevance to fretting
are considered including the classical Hertz solution for elastic contact. In the context of
axisymmetric problems (AFA), bands of normal and shear tractions applied on the boundary of
an infinitely long cylinder is a convenient starting point. Assuming the cylinder to be infinitely
long permits the application of Fourier transform instead of Fourier series approximations
valid for cylinder of finite length. Other than the Hertzian profile uniform and triangular bands
of pressure and shear tractions (figure 4) are also analysed to provide better understanding of
the problem. Further, they can be used to obtain approximate solution for mixed boundary
problems (Bentall & Johnson 1967; Nowell & Hills 1988). The pressure profiles are centered
around zero and the shear profiles are centered around ±c1, as shown in figure 4. Thus 2c1

is the separation between the two zones of loading of opposing shears each of width 2c.
The material is assumed to be linear elastic, homogeneous and isotropic with Poisson’s ratio
ν = 0·25. The loading is considered to be static.

2. Formulation

2.1 AFA infinitely long cylinder using Fourier transform

Axisymmetric formulation is based on Love’s stress function � which satisfies the bihar-
monic equation (Timoshenko & Goodier 1970). The stresses and displacements in cylindrical

Figure 3. Semi infinite half-plane with Cartesian coor-
dinate system.
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Figure 4. Three different pressure and shear traction profiles.

coordinates are
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The strain displacement relations and the equilibrium equations are:
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∂r
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εθ = u

r
(9)
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εz = ∂uz
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Whenever the stresses and displacements decay exponentially with increasing axial distance
the method of Fourier sine or cosine integral transform can be employed. Since σr, σθ , σz

and ur are symmetric and τrz, uz are anti symmetric about z = 0, � is anti symmetric.
Fourier sine transform is taken for anti-symmetric and Fourier cosine transform is taken for
symmetric components. Fourier sine transform appropriate for � is
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In the Fourier space the biharmonic equation (∇2∇2� = 0) becomes
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whose general solution is

� = 1

ξ 3
[A1I0(ξr) + A2K0(ξr) + A3ξrI1(ξr) + A4ξrK1(ξr)] , (18)

where Aj (j = 1, 2, 3 and 4) are functions of ξ to be determined from applied boundary
conditions. For the case of a solid cylinder as considered in this paper A2 = A4 = 0. The
functions I0, I1, K0 and K1 are the modified Bessel functions.

Using equation 18 for �, general solution for stress in the cylinder are (Rankin & Schenec-
tady 1944):
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∫ ∞
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∫ ∞
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∫ ∞

0

(ρ + 2ν − 2)I1(ξr) − ξrI0(ξr)

γ

2P

π
sin(ξz)dξ, (19)

where

ρ(ξ) = −A1(ξ)

A3(ξ)
(20)

γ (ξ) = − P

A3(ξ)
(21)

P =
⎧⎨
⎩

σ r(R, ξ) for pressure boundary problem

τ rz(R, ξ) for shear boundary problem.
(22)

The expressions for ρ and γ (given in § 2·1a and 2·1b) depend on whether the problem is
pressure prescribed or shear prescribed.

Owing to axisymmetric nature, the tangential stress σθ becomes a principal stress. The
other two principal stresses are obtained from the following two expressions.

σr + σz

2
±
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σr − σz

2

)2

+ τ 2
rz

] 1
2

. (23)
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Sorting these three values in descending order will give the maximum, intermediate and
minimum principal stresses (σ1, σ2, σ3). The octahedral shear stress is then obtained from

τoct = 1

3

[
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2
] 1

2 . (24)

2.1a Pressure prescribed boundary σr(R, η) = P(η): The coordinate η is common to all
the three geometries considered, which is equivalent to z coordinate in cylinder problem and
x coordinate in strip and semi-infinite half-plane problems. The expressions for ρ and γ are:

ρp(ξ) = −A1

A3
= 2(1 − ν) + ξR

I0(ξR)

I1(ξR)
(25)

γp(ξ) = − P
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(
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)
I1(ξR). (26)

2.1b Shear prescribed boundary τrz(R, η) = P(η): The expressions for ρ and γ are:
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2.2 2DS Infinitely long strip analysis using Fourier transform

Plane strain formulation for two-dimensional strip is based on Airy’s stress function � which
satisfies the biharmonic equation (Timoshenko & Goodier 1970). In Cartesian coordinates
the components of stresses and displacements are:
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The strain displacement relations and the equilibrium equations are:
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Since σy, σx, σw and uy are symmetric and τxy, ux are anti-symmetric about x = 0, � is
symmetric. Fourier cosine transform pair appropriate for � is:
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∫ ∞
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In the Fourier space the biharmonic equation (∇2∇2� = 0) becomes

(
d2

dy2
− ξ 2

)(
d2�

dy2
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)
= 0, (45)

whose general solution is

� = 1

ξ 2
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A1 cosh(ξy) + A2 sinh(ξy) + A3ξy sinh(ξy) + A4ξy cosh(ξy)

]
, (46)

where Aj (j = 1, 2, 3 and 4) are functions of ξ to be determined from applied boundary
conditions. Problem symmetry stipulates A2 = A4 = 0.

Using equation 46 for � a general solution for the stresses and displacements in the real
space are (Sneddon 1951):

2Guy =
∫ ∞

0

(−1 + 2ν − ρ) sinh(ξy) + ξy cosh(ξy)

ξγ
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π
cos(ξx)dξ
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∫ ∞
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π
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∫ ∞

0
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γ
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π
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∫ ∞

0
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γ
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π
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∫ ∞

0

2ν cosh(ξy)

γ
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π
cos(ξx)dξ

τxy =
∫ ∞
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π
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where

ρ(ξ) = −A1(ξ)

A3(ξ)
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γ (ξ) = − P
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. (49)

The expressions for ρ and γ (given in § 2·2a and 2·2b) depend on whether the problem is
pressure prescribed or shear prescribed one and P depend on the traction profile at the surface.

P =
⎧⎨
⎩

σy(Y, ξ) for pressure boundary problem

τ xy(Y, ξ) for shear boundary problem.
(50)
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Owing to plane strain nature, the out of plane stress σw is a principal stress. The other two
principal stress are obtained from the following two expressions.

σy + σx

2
±
[(

σy − σx

2

)2

+ τ 2
xy

] 1
2

. (51)

Sorting these three values in descending order will give the maximum, intermediate and
minimum principal stresses (σ1, σ2, σ3). The octahedral stress is given by equation 24.

2.2a Pressure prescribed boundary σy(Y, η) = P(η): Surface is shear free with a prescribed
pressure profile i.e. τxy(Y, η) = 0 and σy(Y, η) = P(η). The coordinate η is common to all
the three geometries considered, which is equivalent to z coordinate in cylinder problem and
x coordinate in strip and semi-infinite half-plane problems. The expressions for ρ and γ are:

ρp(ξ) = −A1

A3
= 1 + ξY

cosh(ξY )

sinh(ξY )
(52)

γp(ξ) = − P

A3
= −ρ cosh(ξY ) + ξY sinh(ξY ). (53)

2.2b Shear prescribed boundary τxy(R, η) = P(η): Expressions for ρ and γ are:

ρs(ξ) = −A1

A3
= ξY

sinh(ξY )

cosh(ξY )
(54)

γs(ξ) = − P

A3
= (ρ − 1) sinh(ξY ) − ξY cosh(ξY ). (55)

2.3 2DF Semi infinite half-plane analysis using Flamant solution

Through integration the stresses in the half-plane are obtained using Flamant solution as
Green’s function (Johnson 1985; Hills et al 1993).

For pressure boundary problem: σy(0, η) = P(η)

σy = 2y3

π

∫ c

−c

P (η)dη

[(x − η)2 + y2]2

σx = 2y

π

∫ c

−c

P (η)(x − η)2dη

[(x − η)2 + y2]2

τxy = 2y2

π

∫ c

−c

P (η)(x − η)dη

[(x − η)2 + y2]2

σw = ν(σx + σy). (56)

For shear boundary problem: τxy(0, η) = Q(η)

σy = 2y2

π

∫ c

−c

Q(η)(x − η)dη

[(x − η)2 + y2]2

σx = 2

π

∫ c

−c

Q(η)(x − η)3dη

[(x − η)2 + y2]2
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τxy = 2y

π

∫ c

−c

Q(η)(x − η)2dη

[(x − η)2 + y2]2

σw = ν(σx + σy). (57)

Results available in Hills et al (1993) and Johnson (1985) are reproduced here for complete-
ness. Expressions for stress for the cases of uniform and triangular profiles are given here.
For the case of Hertzian profile numerical integration is employed.

2.3a Uniform pressure profile P(η) = p0 for −c ≤ η ≤ c:

σy = p0

π

[
tan−1 c + x

y
+ tan−1 c − x

y
+ y(c + x)

(c + x)2 + y2
+ y(c − x)

(c − x)2 + y2

]

σx = p0

π

[
tan−1 c + x

y
+ tan−1 c − x

y
− y(c + x)

(c + x)2 + y2
− y(c − x)

(c − x)2 + y2

]

τxy = p0

π

[
(c + x)2

(c + x)2 + y2
− (c − x)2

(c − x)2 + y2

]
. (58)

2.3b Triangular pressure profile P(η) = p0
(
1 − |η|

c

)
for −c ≤ η ≤ c:

σy = p0

πc

[
(c + x) tan−1 c + x

y
+ (c − x) tan−1 c − x

y
− 2x tan−1 x

y

]

σx = p0y

πc
ln

(x2 + y2)2

[(c + x)2 + y2][(c − x)2 + y2]

+ p0

πc

[
(c + x) tan−1 c + x

y
+ (c − x) tan−1 c − x

y
− 2x tan−1 x

y

]

τxy = −p0y

πc

[
tan−1 c + x

y
− tan−1 c − x

y
− 2 tan−1 x

y

]
. (59)

2.3c Uniform shear profile Q(η) = q0 for −c ≤ η ≤ c:

σy = −q0

π

[
y2

(c + x)2 + y2
− y2

(c − x)2 + y2

]

σx = q0

π

[
ln

(c + x)2 + y2

(c − x)2 + y2
+ y2

(c + x)2 + y2
− y2

(c − x)2 + y2

]

τxy = q0

π

[
tan−1 c + x

y
+ tan−1 c − x

y
− y(c + x)

(c + x)2 + y2
− y(c − x)

(c − x)2 + y2

]
.

(60)

2.3d Triangular shear profile Q(η) = q0
(
1 − |η|

c

)
for −c ≤ η ≤ c:

σy = q0y

πc

[
tan−1 c − x

y
− tan−1 c + x

y
+ 2 tan−1 x

y

]
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σx = q0

πc

[
(c + x) ln

(c + x)2 + y2

x2 + y2
− (c − x) ln

(c − x)2 + y2

x2 + y2

]

+ q0

πc
3y

[
tan−1 c + x

y
− tan−1 c − x

y
− 2 tan−1 x

y

]

τxy = q0y

πc
ln

(x2 + y2)2

[(c + x)2 + y2][(c − x)2 + y2]

+ q0

πc

[
(c + x) tan−1 c + x

y
+ (c − x) tan−1 c − x

y
− 2x tan−1 x

y

]
. (61)

Various loading cases shown in figure 4 yield different near surface stress fields. The Fourier
transformed boundary conditions are:

Uniform pressure profile: p(η) = p0 for −c ≤ η ≤ c

P (ξ) =
∫ ∞

0
P(η) cos(ξη)dη = p0

sin(ξc)

ξ
. (62)

Triangular pressure profile: p(η) = p0
[
1 − |η|

c

]
for −c ≤ η ≤ c

P (ξ) =
∫ ∞

0
P(η) cos(ξη)dη = 2p0

sin2(ξc/2)

ξ 2c
. (63)

Hertzian pressure profile: p(η) = p0

√
1 − η2

c2 for −c ≤ η ≤ c

P (ξ) =
∫ ∞

0
P(η) cos(ξη)dη = p0

π

2

J1(ξc)

ξ
, (64)

where J1 is the Bessel function of first order.
Similar expressions are obtainable for uniform shear, triangular shear and Hertzian shear

profiles.

3. Results and discussion

In order to generate numerical results, the radius R of the cylinder and half-width Y of the
strip are taken as unity. Pressure or shear is applied along the lateral surface over a length
of c = 0·15R = 0·15Y with the peak pressure po = −100 MPa for all three profiles. For
the case of shear boundary problem two similar profiles of opposite sign are applied for
equilibrium. However, the interaction of stress due to each profile is avoided by taking a large
center to center distance of 10 times the profile width (i.e. c1 = 10c). Stresses are obtained
for all the cases for subsequent comparison. For numerical calculation the integrals are split
into two parts since the direct calculation of the integrals becomes difficult for some cases.
For example consider the tangential stress σθ(R, z).

σθ(R, z) = 2

π

∫ ∞

0

(1 − 2ν)I0(ξR) − ρ

ξR
I1(ξR)

γ
P cos(ξz)dξ (65)
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σθ(R, z) = 2

π

∫ ∞

0

[
(1 − 2ν)I0(ξR) − ρ

ξR
I1(ξR)

γ
− s

]
P cos(ξz)dξ

+ s
2

π

∫ ∞

0
P cos(ξz)dξ (66)

= 2

π

∫ ∞

0

[
(1 − 2ν)I0(ξR) − ρ

ξR
I1(ξR)

γ
− s

]
P cos(ξz)dξ

+ sP (z), (67)

where

s = lim
ξ→∞

(1 − 2ν)I0(ξR) − ρ

ξR
I1(ξR)

γ
(68)

and P(z) is the applied traction at the surface.
The limiting values of s are found to be 1, 0·5 and 1 for σr, σθ and σz, respectively, for

the case of pressure prescribed problem. The remaining integral can be easily calculated
numerically. For numerical integration the range of ξ is taken to be ξ = 10−5 to 700 with the
interval being 0·1, using actual values of Bessel functions in MATLAB.

Since fretting is mainly controlled by the near surface stresses, results are given for r =
0·9R, 0·95R and 0·99R. Similarly, results up to an axial distance of 3c from the middle are
shown.

Exact stresses obtained from axisymmetric analysis of the cylinder are compared with the
corresponding stresses in the strip and half-plane geometries. For comparison the follow-
ing stresses are considered to be equivalent in all three geometries. (i) radial stress σr and
transverse normal stress σy , (ii) shear stress τrz and shear stress τxy , (iii) axial stress σz and
longitudinal normal stress σx , (iv) tangential stress σθ and out of plane normal stress σw.

Though strictly speaking σθ in the cylinder is not equivalent to σw in the strip problem,
they are compared to examine if they have any corresponding results.

3.1 Pressure prescribed boundary

Figures 5, 6 and 7 show the stresses plotted with respect to the axial distance for the pres-
sure boundary problem with three different pressure profiles. The applied pressure is well
shown by σr at r = 0·99R. In each plot the cylinder results are compared with strip and
semi-infinite half-plane geometries. In all the figures solid line represents the stress in cylin-
der while dashed line and dash-dot line represent the stresses in the strip and half-plane,
respectively.

Figure 5 corresponds to the case of uniform pressure band. The transverse normal stress σy

obtained from both the strip and half-plane models match well with σr in the cylinder for the
three radii considered. Also there is a good match between the results of shear stress τxy from
strip and half-plane models to τrz in the cylinder. σx in the strip has a good correspondence
with σz whereas σx in the half-plane differs significantly. The out of plane stress σw obtained
from both the strip and half-plane has a close correspondence with each other but they do
not match with the results of σθ obtained from the cylinder. It can be shown that the out of
plane stress σw from half-plane model match with σθ only in the case of radius tending to
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Figure 5. Stresses in the cylin-
der, strip and half-plane subjected
to uniform band pressure.

infinity. The expressions for σθ and ν(σr + σz) obtained from equations 3, 5 and 4 reveal this
fact.

σθ = ∂

∂z

[
ν∇2� − 1

r

∂�

∂r

]
(69)

ν(σr + σz) = ∂

∂z

[
ν∇2� + ν

r

∂�

∂r

]
. (70)

Figure 6. Stresses in the cylinder, strip and half-plane subjected to triangular band pressure.
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Figure 7. Stresses in the cylinder, strip and half-plane subjected to Hertzian band pressure.

Further, consider σθ(R, z) in the cylinder as given in equation 67. Substituting for P from
equation 62 and multiplying the numerator and denominator by R we get

σθ(R, z) = 2

π

∫ ∞

0

[
(1 − 2ν)I0(ξR) − ρ

ξR
I1(ξR)

γ
− s

]
sin(ξc)

ξR
cos(ξz)d(ξR)

+ sP (z). (71)

Substituting ξR = ξ ′ the equation becomes

σθ(R, z) = 2

π

∫ ∞

0

[
(1 − 2ν)I0(ξ

′) − ρ

ξ ′ I1(ξ
′)

γ
− s

]
sin(ξ ′c/R)

ξ ′ cos(ξ ′z/R)d(ξ ′)

+ sP (z). (72)

The expression for s now becomes

s = lim
ξ ′→∞

(1 − 2ν)I0(ξ
′) − ρ

ξ ′ I1(ξ
′)

γ
= 1

2
.

In the limit R tending to infinity, sin(ξ ′c/R) becomes zero for a given value of c and the
integral vanishes. Thus

lim
R→∞

σθ(R, z) = 1

2
P(z) = p0

2
H(c − z), (73)

where H is the Heaviside step function. Similarly for the half-plane case from equations 56
and 58

σw(y, x) = ν(σx + σy) = 2ν
p0

π

[
tan−1 c + x

y
+ tan−1 c − x

y

]
(74)
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which at y = 0 gives

σw(0, x) = 2ν
p0

π
πH(c − x) = 2νp0H(c − x) = p0

2
H(c − x). (75)

From equations 73 and 75 it is shown that σθ in the cylinder approaches the out of plane
stress σw of half-plane model. Also it can be understood from above equations that increasing
the radius for a given width of the pressure band is equivalent to decreasing the width of the
pressure band for a given radius.

Similarly, for triangular and Hertzian pressure profiles, there is a good match between the
three different geometries for σr and τrz. σx in the strip predicts approximately the axial stress
σz in the cylinder whereas σx in the half-plane differs from σz by almost a constant value.

In general, for the case of pressure prescribed problem the strip model predicts σr , σz and
τrz in a cylinder approximately. The half-plane Flamant model predicts only σr and τrz but
not σz. However, both models fail to predict σθ .

3.2 Shear prescribed boundary

For the case of shear boundary problem, figures 8, 9 and 10 show the stresses plotted with
respect to axial distance from the middle of the profile to an axial distance of three times the
half profile width (i.e. z = 1·5 to z = 1·5 + 3c = 1·95). Similar to the pressure prescribed
problem there is a close match between the stress in all the three geometries with regard to σr

and τrz. σx in the strip and half-plane differs from σz by a uniform difference. The difference
is smaller for the case of strip and is larger for the case of half-plane. In contrast to the pressure
prescribed problem σw in the strip tends to match with σz as the surface is approached.

As far as fretting is considered, the axial stress σz is an important component in propagating
the crack initiated. In the pressure boundary problem, the axial stress σz becomes tensile

Figure 8. Stresses in the cylinder, strip and half-plane subjected to uniform shear band.
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Figure 9. Stresses in the cylinder, strip and half-plane subjected to triangular shear band.

Figure 10. Stresses in the cylinder, strip and half-plane subjected to Hertzian shear band.
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Figure 11. Near surface displacements at r = 0·99R in the cylinder and strip (u-uniform; t-triangular;
H-Hertzian; P-pressure; Q-shear).

at the edge of the profile width, however the magnitude is less compared to that of applied
radial compressive pressure (figures 5, 6 and 7). For the case of shear boundary problem the
magnitude of axial stress σz is quite higher than the magnitude of shear stress τrz (figures 8,
9 and 10). Even though the axial stress is shown to be compressive in the plot it is tensile in
the left portion of profile (z = 1·5 − 3c = 1·05 to z = 1·5) which is not shown in the plot.
Also the compressive stress becomes tensile when the direction of applied shear traction is
reversed.

3.3 Near surface displacements

Figure 11 shows the near surface displacements (r = 0·99R) for the cases of cylinder and
strip. The displacement magnitudes are higher for the cases of uniform pressure and shear
profiles due to the fact that the total load is higher than the triangular and Hertzian profiles.
The strip model is able to predict approximately the radial displacement but not the axial
displacement.

3.4 Octahedral shear stress

Figure 12 shows the plots of octahedral shear stress τoct on the plane z = 0 with radius
r = 0·5 to 0·99, for the case of pressure prescribed boundary. The plots show that 2D models
poorly predict τoct in the cylinder especially in the near surface region for all the three pressure
profiles. The inherent inability of the 2D models to predict σθ for the pressure prescribed
problem is reflected in predicting τoct . A better prediction of τoct is expected for the shear
prescribed problem because the prediction of all the stress components is better for the shear
prescribed problem when compared to the pressure prescribed problem.
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Figure 12. Octahedral shear stress in the cylinder, strip and half-plane
along z = 0. (solid line = cylinder; dash line = strip; dash-dot line =
half-plane).

The location of maximum octahedral shear stress is an important issue in contact phe-
nomenon to predict failure by yielding. Deeper this location of maximum shear, higher the
margin of safety is likely to be. Also, it can be observed that the position of the maximum
octahedral shear stress τoct in the cylinder lies deeper than that of strip and half-plane models.
The contours of τoct in the near surface region very close to the end of the pressure band is
shown in figure 13 for the case of uniform pressure.

The line of steepest descent is indicated for the cylinder and strip models. This line of
steepest descent is absent in the 2D Flamant model. There is some previous work on this

Figure 13. Contours of τoct at the end of pressure band due to
uniform pressure.
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Figure 14. Contours of τoct due to uniform pressure.

path of steepest descent in the context of predicting the crack path in mixed mode fracture
(Boniface & Simha 1991). The contours of τoct over a region of r = 0 to R and z = 0 to R

are given in figures 14, 15 and 16.

Figure 15. Contours of τoct due to triangular pressure.
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Figure 16. Contours of τoct due to Hertzian pressure.

3.5 Fretting loading

The general fretting contact problem such as the shrink fit generates both pressure and shear
tractions at the surface. Hence a full solution requires a superposition of results of both the
pressure boundary and shear boundary problems (Dobromirsky & Smith 1986).

Figure 17. Stresses due to uniform pressure and shear.
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Figure 18. Fretting fatigue loading profiles.

Figure 17 (Ramesh et al 2007) shows the results for the case where a band of uniform
pressure applied over z/R, x/Y = −a to a with a = 0·15R and a shear band (q0 = 0·3p0)

of width 0·1R acts at a distance of 0·1R from the origin (i.e. c1 = 0·1R and c = 0·05R) as
shown in figure 18. This particular combination simulates partial stick-slip interface which
is commonly encountered in fretting (Dobromirsky & Smith 1986). The stresses are shown
normalised with applied pressure |p0| as mentioned in the figure labels. The stress values are
matching well except for σθ . Any difference in predicting σθ is probable to be reflected on τoct

which is important in determining the shear failure. τoct at r = 0·99R in the three different
geometries are shown separately for pressure, shear and the combined fretting loading in
figure 19. The figure shows that the prediction of τoct at the near surface region in the cylinder
by the 2D models is poor for the case of uniform pressure, good for the case of uniform shear
and is moderate for the case of combined fretting loading. Similar results are shown for the
cases of triangular and Hertzian profiles in figures 20 to 23 (Ramesh et al 2007).

The plots show that the models poorly predict τoct only for uniform pressure. For the case
of uniform shear and fretting loading the models predict τoct well. The results shown here
correspond to the case of a/R = 0·15. This ratio is expected to have considerable influence

Figure 19. τoct due to uniform pressure and shear.
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Figure 20. Stresses due to triangular pressure and shear.

on the stresses in near surface region and hence effect of a/R needs to be studied in detail
which is accomplished in the next paper (in this issue).

4. Conclusion

The results from the above study highlight the utility of evolving simplified strategies to
understand the near surface states of stress. 2D Flamant analysis is obviously the simplest

Figure 21. τoct due to triangular pressure and shear.
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Figure 22. Stresses due to Hertzian pressure and shear.

strategy albeit inaccurate when it comes to predicting the axial stress σz. There is also a general
disagreement between the out of plane stress predictions from 2DS and 2DF for assessing
σθ in AFA. These discrepancies, however, disappear as the cylinder radius increases, and
eventually coincide with AFA results for a cylinder of infinite radius. These simplified models
are understandably not ideal, but could help designers in assessing fretting severity. After
all, models never provide a complete and accurate picture of a complex process like fretting,

Figure 23. τoct due to Hertzian pressure and shear.



Near surface stress analysis strategies for axisymmetric fretting 297

but highlight critical aspects underlying mechanics and physics. Further work is necessary to
extend the ideas presented here for thermal loading arising from fretting.
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