GENERAL ARTICLE

Julia Robinson and Hilbert’s Tenth Problem*

Jaikumar Radhakrishnan and S P Suresh

Hilbert’s Tenth Problem asks whether there is an algorithmic
procedure to solve Diophantine equations (polynomial equa-
tions with integer coefficients) for integer solutions. This
famous problem was shown to be wunsolvable by Yuri
Matiyasevi¢ in 1970. In other words, there is no algorithm
that can decide in general whether a given Diophantine equa-
tions has integer solutions or not. This negative solution builds
on a long line of work by Martin Davis, Hilary Putnam, and
importantly, Julia Robinson. In this article, we briefly de-
scribe the problem, its unsolvability, and Julia Robinson’s
contribution.

1. Julia Robinson — A Brief Biography

When Julia Robinson passed away at the age of 65 on 30 July
1985, the American Mathematical Society lost a former presi-
dent (1981-82), the US National Academy of Sciences lost the
first woman mathematician it elected as a member, and the world,
a most remarkable figure of 20th century mathematics. Indeed,
Julia Robinson’s mathematics reflected the ideas that sprouted in
the 20th century — what could a computer not do? When she
reached the University of California, Berkeley, she learnt num-
ber theory from Raphael M Robinson (whom she later married
in 1941). He suggested to her a problem on recursive functions
which she solved and published. She audited a seminar on Gédel’s
results given by Alfred Tarski, under whose supervision she ob-
tained a PhD in 1948 for her thesis “Definability and decision
problems in arithmetic”. Soon after her PhD, she began work-
ing on Hilbert’s tenth problem: is there an effective method for
determining if a given Diophantine equation has a solution in
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For the next almost two
decades, working along
with Martin Davis,
Hilary Putnam, and
others, she made several
contributions to this
subject, including an
influential hypothesis on
the growth of
Diophantine relations,
which came to be called
Robinson’s Hypothesis.

That the Tenth Problem
should be solved in her
lifetime was for her a
longstanding wish: “I
felt that I couldn’t bear
to die without knowing
the answer”.

integers. For the next almost two decades, working along with
Martin Davis, Hilary Putnam, and others, she made several
contributions to this subject, including an influential hypothe-
sis on the growth of Diophantine relations, which came to be
called Robinson’s Hypothesis. She was delighted when in 1970 a
young Russian mathematician Yuri Matiyasevi¢ showed that the
Fibonacci numbers satsify the hypothesis, and, therefore, that the
answer to Hilbert’s tenth problem is negative. A week after
learning about this breakthrough, she wrote to Matiyasevi¢ [1]:

...now I know it is true, it is beautiful, it is wonder-
ful.

If you really are 22, I am especially pleased to think
that when I first made the conjecture you were a baby
and I just had to wait for you to grow up!

That the Tenth Problem should be solved in her lifetime was for
her a longstanding wish: “I felt that I couldn’t bear to die without
knowing the answer” [1]. As a child, Julia had wished for a bicy-
cle, which she eventually got. Her life and her lifetime were not
simple, and even these straightforward wishes at different times
seemed likely to remain unfulfilled.

When Julia Bowman was born on 8 December 1919, her par-
ents with her elder sister, Constance, lived in St. Louis, Missouri.
Julia’s mother passed away when Julia was two. Her father sent
the sisters along with a nurse to live with their grandmother in
Arizona. Their father remarried and moved to Arizona himself.
For the girls’ education, the family moved to a place near San
Diego, where a third sister, Billie, joined them in 1928. Scar-
let fever and rheumatic fever struck Julia in succession, and she
spent a year in bed. She feared that she would never get the bi-
cycle that her father promised to buy her once she recovered. To
make up for the lost time in her education, the family employed a
retired teacher as a tutor, and in just one year Julia mastered four
years’ worth of school material. When she returned to school,
she found herself isolated, and till the end had but one friend. She
was taught mathematics by women teachers (her tutor was also
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a woman), and towards the end of school she was the only girl in
a room full of boys taking mathematics. She excelled in math-
ematics and physics. The Great Depression had set in when she
had returned to school again; her father’s savings were fast dwin-
dling. Supported partly by relatives she went on to study mathe-
matics at college in San Diego, but switched to UC Berkeley,
whose mathematics department was then being revamped. Af-
ter she married Raphael Robinson, she was not able to take up a
job as a teacher in the same department, because the university
did not allow both husband and wife to work in the same de-
partment. This did not bother her much, because the Robinsons
were planning to have children and start a family. Unfortunately,
Julia lost a baby a couple of months into her pregnancy. When
she contracted pneumonia a little later, the doctor who examined
her noticed that she had a serious heart problem (probably caused
by childhood rheumatic fever), which nobody had noticed earlier.
She was told that she could not safely have children any longer;
the doctor told her mother that she would not live beyond 40. This
disappointed her greatly, and she resumed to work on mathemat-
ics to take her mind off her emotional problems. She persevered
and worked relentlessly on the Tenth Problem. When she was 41,
her heart gave up; she had a successful open heart surgery, and a
month later, she bought her first bicycle! A decade later, when
she learnt about MatiyaseviC’s result, the other wish too was
fulfilled. Her own contributions to the solution of the Hilbert’s
Tenth Problem were soon recognized, and she was formally
invited to join the faculty of the mathematics department of
the UC Berkeley.

2. Hilbert’s Tenth Problem

In his address at the International Congress of Mathematicians in
1900, Hilbert outlined 23 mathematical problems to be studied in
the coming century. The Tenth Problem is cited here in full.

Given a Diophantine equation with any number
of unknown quantities and with rational integral

After she married
Raphael Robinson, she
was not able to take up a
job as a teacher in the
same department,
because the university
did not allow both
husband and wife to
work in the same
department.

She persevered and
worked relentlessly on
the Tenth Problem.
‘When she was 41, her
heart gave up; she had a
successful open heart
surgery, and a month
later, she bought her first
bicycle! A decade later,
when she learnt about
Matiyasevic’s result, the
other wish too was
fulfilled.
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What Hilbert refers to as
a process according to

which an answer is
obtained in a finite
number of steps is

nothing but an

algorithm, a notion we

are all familiar with.

numerical coefficients: To devise a process accord-
ing to which it can be determined by a finite num-
ber of operations whether the equation is solvable in
rational integers.

What Hilbert refers to as a process according to which an answer
is obtained in a finite number of steps is nothing but an algorithm,
a notion we are all familiar with. Matiyasevi€ proved in [2] that
the algorithm sought by Hilbert does not exist, thereby provid-
ing a negative solution to Hilbert’s Tenth Problem. Matiyasevi¢
actually proved that there is no algorithm that, for any given Dio-
phantine equation, determines whether the equation has solutions
in the non-negative integers. By some simple reductions, one can
show that this implies the nonexistence of an algorithm to solve
Hilbert’s original formulation as well. We will only consider
non-negative solutions in this article.

2.1 Diophantine equations, sets, relations, and functions

A Diophantine equation is an equation of the form
P(‘X:l?xz""sxn) = 07

where P is a polynomial with variables from xi, ..., x, and with
integer coefficients. For example,

x=@+2)(z+2)=0 (1)

is a Diophantine equation. This equation has many solutions, e.g.,
including (x = 16,y = 0,z = 6), (x = 35,y = 3,z = 5). The
reader will notice that in every solution (x, y, z) of (1), x is a com-
posite number; furthermore, if x is a composite number, then we
can find y and z so that (x,y,z) is a solution of (1). In a sense,
(1) can be used to define the set of composite numbers. More
generally, we say that a set S C N is a Diophantine set if it can be
written in the form

S ={x|@yr...y)Px,y1,y2,...,¥2) = 0]},
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where P(x,y1,¥2,...,Ys) 1s a polynomial in n + 1 variables (recall
that all variables take values in N). Thus, the following sets are
Diophantine (we invite the reader to justify the names of these
sets):

Composites = {x | Ay, z[x = (y + 2)(z + 2)1};
NonPowersOfTwo = {x | y, z[x = y(2z + 1)]}.

(Note that the equations on the right-hand side above have the
form P(x,y,z) = Q(x,y,z), which can equivalently be written as
P(x,y,z) — O(x,y,2) = 0.) We say that a relation R € N" is a
Diophantine relation if it can be written in the form

R={(x1,....,x0) | @y1...y)[P(X1, ..., Xps Y15 - .., yn) = O]},

where P(x1,..., X, Y1,--.,Yn) 1S a polynomial in m + n variables.
Here are some examples of Diophantine relations:

LessThan = {(x,y) | Az[x+z+ 1 =y}
CongruentModFive = {(x,y) | Az[(x —y — 52)(y — x — 5z) = 0]}.

We say that a function f : N — N is a Diophantine function
if its graph, namely G, = {(¥,y) | f(¥) = y}, is a Diophantine
relation. Consider the Cantor-bijection cb : N X N — N defined

by
x+y)(x+y+1)+2y
5 .
This function maps (0, 0) to 0, (1,0) to 1, (0,1) to 2, (2,0) to 3,

and so on. The graph of this function is

cb(x,y) =

Gep = {((x,y),2) [ 2z=(x +y)(x +y + 1) + 2y},

clearly a Diophantine set. The inverse of this function is provided
by the following functions left and right, which given a number z,
help us to determine the left and right components of the unique
pair (x,y) € N x N such that cb(x, y) = z, that is, for all z € N, we
have cb(left(z), right(z)) = z. The graphs of these functions are
the Diophantine relations

Gt ={(z,0) | Iy[2z= (x + y)(x +y + 1) + 2y]};
Grignt ={(z,y) | Ix[2z = (x + (x + y + 1) + 2y]}.
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The answer is that a set

is Diophantine if and

only if it is recursively

enumerable!

2.2 Closure properties of Diophantine sets

In the definition of the relation CongruentModFive, it might have
been more natural to ensure that x = y (mod 5) by checking if
at least one of the following two conditions holds: (i) Jz[5z =
x —y], (ii) z[5z = y — x]; that is, we need a disjunction of two
equations. That is, the relation defined CongruentModFive is the
union of the relations defined by the individual equations. Such a
combination of two equations can be translated to one equation.
In general, if P and Q are two polynomials, then (3y)[P(Z,y) =
0] or GF)[Q(Z,7) = 0] if and only if (I)[P(X.7) - Q(Z.7) = 0].
Similarly, (AY)[P(X,¥) = 0] and (AY)[Q(X,¥) = 0] if and only
if @)[P(X,7)> + Q(X,¥)* = 0]. Thus, Diophantine relations are
closed under the operations of union and intersection. They are
also closed under projections. Say S = {(x,y) | A7 P(x,y,2) = 0}
is a Diophantine relation, and 7 = {x | dy | (x,y) € S}. Then,
T = {x|3y,7P(x,y,2) = 0]}. We conclude that Diophantine re-
lations are closed under intersection, union, and projection; and if
Diophantine relations are combined using an arbitrary sequence
of these operations, then the relation that results is also Diophan-
tine. We will see that Diophantine sets are not closed under
complementation.

2.3 Recursive functions

We have seen some examples of Diophantine sets and
examined some closure properties that hold for the collection
of Diophantine sets. What is the true extent of this collection?
The answer is that a set is Diophantine if and only if it is re-
cursively enumerable! A set S is recursively enumerable (r.e.) if
there is a program (written in our favorite programming language)
which, when presented with an input » € N has two possible be-
haviors. It performs a finite number of operations and stops with
output 1 in case n € S, and it runs forever without stopping if
negs.

That every Diophantine set is recursively enumerable is not hard
to see. For example, consider Diophantine set S € N of the form
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{x | Ay1,y2 P(x,y1,y2) = 0}. Here is a method that shows that
S isre.

function CHEcK(n) > Checkisn € S
i<—0
while P(n, left(i), right(i)) # 0 do
i—i+1
end while
output 1

end function

Incasen € S, P(n,y1,y2) = 0 for some choices of values for
y1 and y, (say m and p). Then, the loop will terminate when
i =cb(m, p). If n ¢ S, there are no values of y; and y, for which
the polynomial equation is satisfied, so the loop will run forever
and the program will not terminate. If the set was defined using a
polynomial of the form P(x, yi, y2, y3), then we would replace the
condition in the while loop with

P(n, left(left(i)), right(left(i)), right(i)) # 0;

the reader can easily imagine what the program would look like
if § is defined by a polynomial of the form P(x, yi,y2,. .., Vk).

It is much harder to show that every r.e. set is Diophantine. We
need to start with a rigorous definition of r.e. This could be done
in a variety of ways — either by precisely defining idealized
computers (Turing machines) and how they run programs, or by
defining the class of functions computable by those machines (re-
cursive functions). Recursive functions are defined inductively by
starting with some basic functions (constant functions, succes-
sor, the pairing function and its inverses, and some other simple
ones), and building new functions from old by means of function
composition, iteration, and minimization. Function composition
is used to model the execution of statements one after the other
in a program (the effects of the individual statements are com-
posed with one another). Iteration, which allows for definitions
like f(n,x) = g"(x), models the execution of a for loop, which
repeats its body a predetermined number of times. Minimization

Recursive functions are
defined inductively by
starting with some basic
functions (constant
functions, successor, the
pairing function and its
inverses, and some other
simple ones), and
building new functions
from old by means of
function composition,
iteration, and
minimization.
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allows for definitions of the following form:
f(x) = the smallest i such that g(i, x) = 0.

This can be used to compute the number of iterations needed to
exit a while loop.

One can easily check that the basic functions are all Diophantine,
and show that Diophantine functions are closed under composi-
tion. Now consider a function f defined by f(n, x) = g"(x). We
can expand this definition as follows:

f,x)=y e Fyo...yalyo =xAyp =y AVi<n:yir =g0l.

(2)
The trouble is that the number of quantifiers above is not fixed, so
we use a beautiful tool provided by Godel — the 5-function lemma.
Godel’s B is a Diophantine function of three-variables such that
for every n and every sequence of natural numbers sy, ..., Sy,
there exist two natural numbers a and b such that for all i < n,

Bla,b,i) = s;. Using the S-function, we can render (2) as follows.

f(n,x) =y e Ja,b|[B(a,b,0) = x AB(a,b,n) =y
AVi<n:p(ab,i+1)=gBa,b,i)].

When we consider a function f defined by minimization from
g, we see that f(x) = i if and only if g(i,x) = O and Vj < i :
Ay[g(j,x) = y + 1]. We already know that we can translate
disjunction, conjunction, and existential quantification over Dio-
phantine equations into another Diophantine equation. If we can
somehow also show closure of Diophantine equations under
bounded universal quantification (i.e., if the set S C N? is Dio-
phantine, then so is T = {(x,n) | Vi <n : (x,i) € S}), then we
can conclude that Diophantine sets are closed under iteration and
minimization, and that all recursive functions are Diophantine. It
will follow that all r.e. sets are Diophantine.

3. Exponential Diophantine Equations and Unsolvability

From the discussion so far, we see that the major challenge that
remains is to show closure of Diophantine sets under bounded
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universal quantification. Several partial results were obtained by
Martin Davis and Hilary Putnam, and independently by Julia
Robinson, which culminated in their joint paper [3]. In this, they
showed that if we assume that the exponential function is Dio-
phantine, then Diophantine sets are closed under bounded univer-

sal quantification.!

The proof is not simple by any means, and
involves providing Diophantine equations for a dizzying array of
functions like the n!, (Z) and szo(a + bk), and finally, bounded

universal quantification.

We thus arrive at the conclusion that a set is r.e. iff it is Diophan-
tine. We have reached the endgame now. It is well-known (an
elementary result in computability theory, see [4]) that there is
an r.e. set H whose complement H = N \ H is not r.e. This, in-
cidentally, shows that the class of Diophantine sets is not closed
under complementation. Since H is r.e., it is Diophantine, say it
is described by a polynomial Py:

H = {n| 3Y[Ppu(n,y) = 0]}.

Now, suppose there were a program to solve Hilbert’s Tenth Prob-
lem. Then, there would be an algorithm A that when presented
with a polynomial equation, would after a finite number of steps,
halt and produce a result of 1 or 0: 1 if the polynomial has a solu-
tion and O otherwise. In particular, A can answer correctly for the
polynomials in the list

Py(0,¥), Pu(1,5), Pu3.¥), ..., Pu(n,y),....

Now, using A, build a program B that works as follows. On input
n, B calls A with input Pg(n,¥), and if A returns 1, B would enter
an endless loop, while if A returns 0, B returns 1. But this would
mean that H is r.e. — a contradiction. This proves that program A
with the stated behavior cannot exist, and hence Hilbert’s Tenth
Problem is unsolvable!

!'Sets that are defined by Diophantine equations which involve the exponen-
tial function are called exponential Diophantine.
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Subsequently, it was
shown (with
contributions from Julia
herself) that the set of
solutions of the so-called
Brahmagupta equation
satisfies the properties of
D listed above, thus
providing a solution to
Hilbert’s Tenth Problem
following Julia
Robinson’s template
almost entirely.

4. Defining the Exponential — Julia Robinson and
Matiyasevic

The above results were obtained assuming that the exponential
function is Diophantine. In fact, Julia Robinson gave another as-
sumption which would imply that the exponential is Diophantine.?
She showed that if one assumes the existence of a Diophantine
set D € N with the following properties, then the exponentiation
function is Diophantine:

1. cb(u,v) e D= v < u".

2. Vk3Au,v[cb(u,v) € D Av > uk].

Matiyasevi¢ showed that the Fibonacci numbers satisfy very
similar growth properties to the D above, using which he con-
structed a Diophantine representation for the exponentiation func-
tion. Subsequently, it was shown (with contributions from Julia
herself) that the set of solutions of the so-called Brahmagupta
equation satisfies the properties of D listed above, thus providing
a solution to Hilbert’s Tenth Problem following Julia Robinson’s
template almost entirely.

To learn more about Hilbert’s Tenth Problem and its unsolvabil-
ity, one can consult the excellent article by Martin Davis [5] or
the delightful book by Ram Murthy and Fodden [6], which is a
thorough and self-contained account of the problem and the
solution.
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