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Analog Raychaudhuri Equation in Mechanics®

Rajendra Prasad Bhatt, Anushree Roy and Sayan Kar

Usually, in mechanics, we obtain the trajectory of a parti-
cle in a given force field by solving Newton’s second law with
chosen initial conditions. In contrast, through our work here,
we first demonstrate how one may analyze the behaviour of a
suitably defined family of trajectories of a given mechanical
system. Such an approach leads us to develop a mechanics
analogue following the well-known Raychaudhuri equation
largely studied in Riemannian geometry and general relativ-
ity. The idea of geodesic focusing, which is more familiar to
a relativist, appears to be analogous to the meeting of tra-
jectories of a mechanical system within a finite time. Ap-
plying our general results to the case of simple pendula, we
obtain relevant quantitative consequences. Thereafter, we
set up and perform a straightforward experiment based on
a system with two pendula. The experimental results of this
system are found to tally well with our proposed theoretical
model. In summary, the simple theory and the related exper-
iment provide us with a way to understand the essence of a
fairly involved concept in advanced physics from an elemen-
tary standpoint.

1. Introduction

Imagine two pendula of the same length hung from a common
support. Let us give different initial displacements to the bobs
and set them in motion (in a single vertical plane) with differ-
ent initial velocities (see Figure 1). It is obvious that they will
strike each other after a finite time. What does this time of strik-
ing/meeting depend upon? How does one develop a general the-
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oretical model for such scenarios (with several simple pendula or
for other systems) and also set up a simple experiment? Our aim
in this article revolves around such issues and questions which, to
the best of our knowledge, have not been addressed in standard
texts on mechanics [1,2]. In particular, we concentrate on the col-
lective behaviour of families of trajectories of a given mechanical
system.

It turns out that such studies are directly related to the well-known
Raychaudhuri equation [3] (also see [4]) which arises in Rieman-
nian geometry and is used in General Relativity [5-9]. There
too, the central aim is to analyse the behaviour of a bunch of tra-
jectories (geodesics). In general relativity or any metric theory of
gravity, a curved spacetime represents a gravitational field. Freely
falling (no other non-gravitational forces) trajectories of test parti-
cles (massive or massless) are the extremal curves or geodesics in
a curved spacetime. A family of such non-intersecting geodesics
defines a geodesic congruence. It is, therefore, natural to ask—
what happens to an initially converging geodesic congruence?
The answer leads us to the focusing theorem which states the fol-
lowing: under specific conditions (known in technical jargon as
the convergence condition and the absence of vorticity/frotation),
the family of geodesics must end up meeting (focusing) within a
finite value of a parameter A (similar to ‘time’ in mechanics, A
labels points on the geodesics). Thus, focusing leads to a break-
down of the definition of congruence.

The term focusing is quite commonly known and used in geo-
metrical optics. Its usage here is in the sense that trajectories
of mechanical systems may meet within a finite value of time.
The meeting point is the focus or a focal point/curve. In optics,
trajectories are light rays and focusing may be related to the oc-
currence of caustic curves where light intensities are enhanced
drastically [10, 11].

What does the focusing theorem signify in the context of general
relativity? Since the Einstein field equations relate geometry to
matter, the geometric condition for focusing may be translated
to that for matter [5, 6]. Such a condition, simply stated, is just
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the physical requirement of positive energy density. Therefore,
the attractive nature of gravity leads to focusing—an almost ob-
vious conclusion! Further, it is possible that the focal point of a
family/congruence is a spacetime singularity (e.g., the big-bang
or a black hole singularity, where one encounter extreme space-
time curvature or infinite matter density). Hence the role of the
Raychaudhuri equation and the focusing theorem arise as crucial
ingredients in the proofs of the celebrated singularity theorems of
Penrose [12] and Hawking [13], [14].

However, it is important to realise that focusing as such, can be
completely benign. The focal point need not be a spacetime sin-
gularity, but only a point/curve where the converging family of
trajectories meet. This brings us back to the question asked in the
first paragraph above—when does meeting happen, what are the
conditions? It is this point of view (i.e. benign focusing) which
we take forward while developing our analog Raychaudhuri equa-
tion in mechanics [15].

In elementary mechanics, given a force field or a potential, we
can, from Newton’s second law, obtain a precise trajectory once
appropriate initial conditions are provided [1,2]. To develop the
approach highlighted above, we need to properly define a family
of trajectories as well as variables associated with the collection
as a whole. Once such variables are defined, their values at each
instance of time will show the nature of the evolution of the fam-
ily as a single entity. The question of convergence/divergence or
the meeting/avoidance of trajectories in finite time can, therefore,

Figure 1. Simple pendula:
Here xo1, X0, are initial posi-
tions and ug;, 1y, are initial
velocities of the two bobs
(figure on the left). Meeting
of the bobs at t = #; (figure
on the right).

It is important to realise
that focusing as such,
can be completely
benign. The focal point
need not be a spacetime
singularity, but only a
point/curve where the
converging family of
trajectories meet.
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be addressed and linked to the behaviour of such variables [15].
Varying the initial positions and momenta (velocities) around spe-
cific values yield different trajectories in configuration space. One
useful variable for a family is the gradient of the velocity, known
as the ‘expansion’, which, as we will see, appears in the Ray-
chaudhuri equation and is central to our upcoming discussion.

Our article is arranged as follows. In the next section (Section
2), we briefly outline, recalling earlier work [15], the theoreti-
cal model related to the behaviour of a family of trajectories in
mechanics. The definitions of the meeting time as well as the ex-
pansion are both introduced here. Thereafter, in Section 3, we
move on to the experiment, elaborating on various details of ex-
perimentation. We report how the theoretical model tallies with
our experimental findings in Section 4. A briefing on the cor-
respondence between mechanical systems and relativity vis-a-vis
the Raychaudhuri equation and focusing appears in Section 5. Fi-
nally, we conclude with remarks on possible future investigations.

2. Theoretical Model

The equation of motion of a particle of unit mass, in the force
field f (with a potential V), in one dimension, is given as [1,2]:

ov
w=3x= s (1)
where a dot and a double-dot denote, respectively, a first deriva-
tive and a second derivative w.r.t. time. Given the potential or the
force field, as well as initial (+ = 0, say) conditions on position
and velocity (x = xg, u = ugy at t = 0), one can write down the
expression for x(f) (assuming integrability). A different set of ini-
tial conditions (x = xg + Axg, u = ug + Aug at t = 0) will result
in a different trajectory. Thus, fixing the ratio of the difference
in the initial velocity and the difference in the initial position of
the trajectories (% att = 0 or ﬁ—zg), we can generate a family
of trajectories for the mechanical system (see Figure 2). Each
trajectory in the family has a different initial position and initial

Au

velocity, but for the collection, the ratio Ay atr= 0 is fixed.
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One may further ask about the behaviour of % for this family,
at different future time instances. This leads us to analyse the
kinematics of the family of trajectories as a whole. We define a
new variable 6(¢) (essentially, the ratio % at each time, with a
fixed initial value and w.r.t. a single reference trajectory) for the

family. 6(¢) is named the expansion [15] and is defined as:

ou
o(t) = Fr 2)
It is obvious that 6(¢) at each 7 is the gradient of the velocity of
neighbouring trajectories in the family w.r.t. a single reference
trajectory [15]. More rigorously, one should write 6(x(t)), i.e., its
time-dependence is through x(7). We will however continue using
6(t) below with the understanding that it is actually 6(x(7)).

Next, we ask, what is the differential equation obeyed by 6(7)?

) d dx 0 . . . .
Since — = — — (see discussion later on using the convective
o dr drox

derivative) we have,

de 00 0 )

—=u—= —wh -0 3

i ek O ©)
and 0 d ov

u u
9 = — = = Joxt = —7, 4
e T T T T @

where we have used the equation of motion (1). Thus, the final

differential equation obeyed by 6(?) is,
deo ?*vV
—+6 = -

a L ©®)

Figure 2.
tive plot of a family of tra-

The qualita-

jectories (constructed w.r.t.
the reference curve (red)) for
an arbitrary system. Here,
the initial position and initial
velocity of the trajectories
have been written in brack-
ets with the same colour at
the left side of the t = 0
dashed line as (initial posi-
The
initial expansion (expansion
(O() at 1 = 0) is §2. At
a later time (say #;), the ex-

tion, initial velocity).

pansion (6(¢)) is calculated
by the ratio of the difference
in velocity and difference in
position of the trajectories
(%) at that time.

-
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The time-dependence of

0 is through the

time-dependence of x(),

and is not explicit.

In some problems, we may not know a Lagrangian or the po-
tential function though the equation of motion may exist. This
includes non-potential/non-conservative force fields [15]. In such
cases, the equation for 6(¢) is,

de 0
B, = Uen (6)
dt 0x
One may question the usage of the directional derivative gt =u 6‘1 ,
as opposed to the convective derivative, i.e., % = gt + U= a . Itis

easy to check that such a change does not affect the final equation
for 6. In particular, assuming the Euler equation in one space

dimension,

ou

ot a =f (7

instead of Newton’s second law, one can obtain the same evolu-
tion equation for 0 (i.e., g—ﬁ‘c).

In the case of the pendula or simple harmonic oscillators (with
f = —a’x), the Euler equation has a simple solution:

u(x,t) = a x cot(at + ), (8)

which represents the velocity field (5 is a constant). The integral

curves of this velocity field (obtained from & = y) are,

dt

x(t) = Csin(at + ), 9)

where C is a constant. One can relate the constants S and C to ini-
tial conditions on x and u#, when choosing a specific, single curve
in the family. With a fixed initial 8, one can obtain its evolution, as
well as the evolution equation, directly from the velocity field too.
Alternatively, as in the preceding discussion here one may obtain
the time evolution of € (i.e. 6”) by transporting 24 5y In time starting
from a fixed initial value. Both approaches eventually yield the
same final result, i.e. the same equation for 6. Thus, it is clear
that the time-dependence of 8 is through the time-dependence of
x(t), and is not explicit.
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2.1 Notion of Meeting of Trajectories

Let us now develop the notion of meeting of trajectories. As
stated just above, the trajectory x(¢) has an initial position xy and
initial velocity ug. Further, name the trajectory with initial po-
sition xo + Axp and initial velocity uy + Aug as x’(r). One can
write,

. AX() = QQAXO,

(x=x0,1=0)

Aug = —
Ho ox

where 6 is termed as the initial expansion [15] and is given as:

Au

6y = —
0 Ax

. (10)
(1=0)

If at time 7 = 77, the two trajectories meet, then,
o
x(tf) =X (lf) .

From this condition, we can find the initial value of 6 for which
two trajectories may meet at some future time 7;. Notice that 6
depends on the ratio of Au and Ax at ¢t = 0. Thus, there are infinite
possible values of Au and Ax at + = 0, which have the same 6,
thereby defining a family. It may also happen that the family of
trajectories never meet. In such a case, there is no finite value for
the meeting time [15].

In one dimension, we can also write 6 (¢) as,

ou 1 dAx
0t) = —~ — —. 11
® ox  Ax dt (i
Thus, it may be interpreted as the fractional rate of change of

separation between two trajectories [15]. Further rewriting and
integrating gives,

dAx
— = 6(nHd
Ax f (2) dz,

which implies,

Ax = Axp . exp (f O(I)dt). (12)
0

6y depends on the ratio
of Auand Ax att = 0.
Thus, there are infinite
possible values of Au
and Ax at t = 0, which
have the same 6,
thereby defining a
family.
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If 0 () » —oo(0) in
finite time, then

Ax — 0(o0) in finite
time, i.e., trajectories
converge (diverge).

Hence, the divergence or convergence of the family of trajectories
is related to the values of 6 (¢). If 6(f) —» —oo in finite time, then
Ax — 0 in finite time, i.e., trajectories converge. This is the well-
known notion of meeting/focusing of a family of trajectories (see
the penultimate section where the analogy with geodesic congru-
ences is discussed). If 6(r) — oo in finite time, then Ax — oo
in finite time, i.e., the family of trajectories diverges. Such be-
haviour is termed defocusing.

We now move on to discuss the simple harmonic oscillator (or,
equivalently, simple pendula) [15]. The equation of motion here
is:

o 2

X=—-a x, (13)

where « is the angular frequency. The general solution turns out
to be:
u
x(f) = xocos(ar) + (—0) sin(az), (14)
(07

and the velocity X = u is given as,
u(t) = —axg sin(at) + ug cos(at). (15)

The initial conditions are x(f)|;=0) = X0, u()|¢=0) = uo.

Let us assume we have two pendula with initial positions xo and
X0 + Axp and initial velocities ug and ug + Aug, respectively. Here
x(t) may be taken as the variable ‘length of the pendulum X an-
gle’. Using x(#) (14), we obtain,

x1(1) = xocos(ar) + (%) sin(a),

Uuo

A
ﬂ) sin(ar).
a

x2(t) = (xp + Axg) cos(at) + (

Thus, the separation between neighbouring trajectories at time ¢
is,

Ax(t) = Axgy cos(at) + % sin(at) = Axy {cos(ozt) + @ sin(ozt)}.
(16)

Let the trajectories meet at time 7 = 77 (see Figure 3). We have,

X1 (tf) = X7 (tf) or Ax(tf) =0,
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which gives, from (16),

0o tan(aty) = —a. a7)

Thus, we obtain a relation between focusing time (tf) and initial
expansion (6p). We can surely consider more than two pendula
and adjust their initial positions and velocities in such a way that
the initial value of expansion (6p) is the same for the family.

Further, one may obtain the above expression for 7, from the so-
lution of the equation for 6(¢) given as,

de

+ 6> = —a’.
dt @

(18)

It is straightforward to integrate this simple first order differential
equation. The solution turns out to be [15],

19)

6() = a(ﬁo - a/tan(a/t))’

a + Gy tan(atr)

where the initial condition is 6(#)|=0) = 6o. Figure 4 shows the
variation of 6(¢) with t.

Since the condition for meeting of trajectories in finite time is
6 — —oo as t— 1y, we find,

O tan(atys) = —a, (20)

Figure 3.
monic oscillator/simple pen-
dula:
for arbitrarily chosen val-

Simple har-
Plots of trajectories

ues of the initial position
(x0) and the initial velocity
(u1). Note that [6p]=T~! and
[@]=T"!. Here, 6,=2, and &
=3 in corresponding units.

-
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Figure 4.

monic oscillator/simple pen-

Simple har-

dula: Expansion 6(¢) for var-
ious 6y in unit of T~! with
@=3 units.

Figure 5.

monic oscillator/simple pen-

Simple har-

dula: Meeting/focusing time
(ty) with initial expansion
(6o in T~! unit), @ = 3 units.

5 T T T
—00= -1
—00= 0 (]
00= 2
&
0.6 0.8

which is the same as (17).
Thus, the formula for the meeting time is given as,

2y

As the tangent function can have any value between —oo to oo,
trajectories will meet for all values of the initial expansion (6)
and a. Figure 5 shows the variation of 17 with 6.
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3. Experiments

We now set up an experiment involving simple pendula to learn
whether our theoretical model and its quantitative predictions can
explain the experimental observations. In particular, the meet-
ing/focusing time is one quantity which we obtain in our model
and also measure in the experiment.

3.1 Practical Considerations

A practical realization of the theoretical model discussed above
demands a modification in the given expression for 7 due to the
finite size of the bobs of the pendula and a careful look at the issue
of air-damping, which we elaborate on below.

3.1.1 Finite size-correction for meetingffocusing time

In Section 2, the theory was developed, assuming point masses
representing the bobs of the simple pendula. For practical pur-
poses, the bob of a simple pendulum is of finite size. In the deriva-
tion of (21), the focusing/meeting of two trajectories occur when
the separation between point particles becomes identically zero.
In practice, when two bobs meet, they do so at their boundaries
and not at their centres of mass (see Figure 6). Thus, (21) needs
to be modified for this finite-size effect.

Figure 6. Finite-size cor-

rection.
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Let us assume that we have two bobs with initial positions xo1,
xo2 and initial velocities ugp, ugy respectively. Following (14), the
positions of these bobs after some time ¢ can be written as,

x1(t) = xp1 cos(at) +( 2 )sm(a/t)
x2(1) = xgp cos(at) + ( 5 )sm(at)

where, a = \/%, and [ is length of the pendula. When they

strike/meet, the separation between them is equal to the sum of
their radii, 1.e.,

b)) = x| = ri+ 1, (22)

where, 7| and r; are the radii of the bobs. Using the above-stated
expressions for xi(f), x2(¢) in (22), we obtain

|(xo2 — xo1) cos(ar) + (M) sin(ar)| = ri + 2. (23)
(04

. . ) Uy — U .
Since the initial expansion 6y = u, we rewrite (23) as
X02 — Xo1
L I
|(xo2 = xo1)|| cos(ar) + - sin(ar))| =ri+r. (24)

Therefore, we have

r+nrn

cos(at’,) + — % sm(a/t )N=A= (25)
| cos(ar i

|x02 - x01|

where 0 < A < 1, which follows from the requirement 0 < r| +
r < |x02 — x01| (i.e., initial separation always greater than sum of
radii).

Squaring both sides of (25) we obtain,

02 2A6,
(—g + 1] sinz(a/t}) _n sin(ar}) + A’ -1=0, (26)
a

which is a quadratic in sin(a/t},) and can be easily solved to get t},
as,

| Aby+ (6 +0? - 4202
;= —sin"! |a. - @n
I a 65 + a?
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The other solution of the quadratic, given as,

L S B ‘/(9(2) ra?-Ata?) (28)
.= — . s
I 0(2) +a?

is discarded since it gives a negative t’f O<A<].

Thus, in practice, the meeting/focusing time depends not only on
the value of the initial expansion () and « (as in (21)), but also
on the value of A. In the limiting case when r; = r, = 0 (or
A = 0), (27) reduces to (21) (focusing time when the bobs are
point particles).

3.1.2 Air-damping

In reality, the oscillation of a pendulum is damped by air. To
calculate the damping constant (5), we studied the successive os-
cillations of one of the two identical pendula used in our main
experiment. From the logarithmic decrement of the successive
amplitudes (we have taken 20 oscillations) of the damped sim-
ple harmonic oscillator, the value of the damping constant (8) is
estimated to be (0.00309 + 0.00005) sec™!. This value is very
small as compared to the angular frequency (a), which is (3.260
+ 0.002) rad sec™! (see next section for its measurement). Thus,
in our experimental results, we ignored the contribution of air-
damping while obtaining the trajectories of the pendula.

3.2 Experimental Setup

Figure 7 shows the schematic diagram of our simple setup. In
our experiment, we took two pendula (A and B in Figure 7). The
bobs of the pendula were of nearly equal diameter (24.94 + 0.02
mm and 24.82 + 0.02 mm) and weight (70.821 + 0.001 gm and
71.020 = 0.001 gm). The length of each pendulum was nearly
equal (92.2 + 0.1 cm). The angular frequency a can be found
from the length of each pendulum and is, as stated above, (3.260
+ 0.002) rad sec™!. We have also checked the angular frequency
from a direct measurement of the time period of oscillation, and

In practice, the
meeting/focusing time

depends not only on the

value of the initial

expansion (6p) and « (as
in (21)), but also on the

value of A (defined in
(25)).
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Figure 7. Schematic di-
agram of the experimental
setup. A and B: Pendula,
R: Rod, M: marking on the
rod, and T and T’: threads
attached to the bobs of the
pendula.

Since we will be dealing
with instantaneous
positions and velocities
of the two pendula, the
origin of their
trajectories is not

relevant.

the difference between the value found and that obtained from
the length is insignificant. To keep the motion of two bobs in the
same plane, we fixed a marked steel rod (R in Figure 7) on the
table. The marking (M) on the rod and the equilibrium position
of the bobs were at the same distance from the side of the table.
We fixed thin threads (T and T”) on both bobs.

3.3 Measurements

To set the motion, threads T and T’ were pulled at mark M and
then released one after the other. To achieve different initial ve-
locities for two bobs, one of them was first released from mark
M on the rod. When it attained a certain velocity in its trajectory,
the bob of the other pendulum was released from the same mark
M. The time difference between the release of the first and second
bobs was varied to generate trajectories of the pendula with dif-
ferent sets of values for xg1, x02, #g1, and ugy. The amplitude of
the oscillations in the experiment are small in order to conform to
the ‘simple’ pendulum assumption. The trajectories of both bobs
were recorded simultaneously using a wireless camera that can
record 60 frames per second. It is to be noted that since we will
be dealing with instantaneous positions and velocities of the two
pendula, the origin of their trajectories is not relevant.
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3.3.1 Measurements of position and time

To obtain the positions of the bobs, we processed the video using
OpenCV Python code [16, 17]. Two bobs were painted with dif-
ferent colours—green and blue. After removing the background
using a bandpass filter, the program differentiated two bobs fol-
lowing the HSV (hue, saturation and value) code. The code chose
the planar projection of the spherical balls and defined the centre
of the corresponding circles, which determined the position of
their centres on their trajectories. From the code, we obtained
the position of the centre of mass of the two bobs with respect to
the equilibrium positions. To convert it into a real physical unit
of length, we measured the diameter of one of the bobs using a
slide-calliper and by the code. The estimated conversion factor,
obtained from the ratio of these values, was used throughout the
experiment to study the trajectories of the bobs in a real physical
unit. This conversion factor also defines the length corresponding
to one pixel and is used as the error in position measurements.

As mentioned above, the video was recorded with 60 frames per
second. By counting the number of frames between two desired
positions of the bobs, the total time lapse could be estimated. The
error in our measurement of time is 1/60 second.

3.3.2 Measurement of velocity

We assume the motion only along a line (say x-axis) and get the
value of x-position at subsequent times using the code. Next, we
use the central difference method to determine its velocity (which
is the derivative of position with respect to time). Note that if we
have the value of a function f(x) at x;, x; — h and x; + A, then its
first derivative at x = x; to the first order of £, is given by

fxi=h)+ f(x;i +h)
2h '

In our case, with the known value of the position at time ¢, t; — h

fix) =

(29)

and #; + h, the velocity at t = #; to first order in 4 is given by,

x(t; — h) + x(t; + h)
2h ’

V(i) = x(t;) = (30)

The videos are processed
by the OpenCV Python

code to obtain the
positions of the bobs.

Velocity of the bobs are

measured through the
central difference
method.
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Figure 8.  Variation of

meeting/focusing time with
initial expansion.

A fairly good agreement
between the theoretical
model-based values and
the experimental data
validates the predicted

expression for t} 27).

T ® Expt. data points
0.7 - . .
[~ Theo. plot w/o size correction
(0.6 © Calc. data points w/ size correction

0.5
0.4
0.31
0.2
0.1
)

Focusing time in sec

o -1
90 in sec

where a dot denotes a first derivative w.r.t. time. Note that we
recorded the video with 60 frames per second. The positions can
be obtained for each & = % sec.

4. Theoretical Model Versus Experimental Findings

We now compare the t}. values found in our theoretical model and
the experimentally observed meeting/focusing time for different
values of initial expansion (6p). In Figure 8, the experimental
data points are shown by square symbols. The solid blue line
plots the expected variation of the focusing time without the size
correction following (21). The red open symbols represent values
obtained from (27) after including the size correction to the meet-
ing/focusing time. It is to be noted that the theoretical model-
based plot with the size correction is not a smooth curve as the
parameter A in (27) does not have a constant value. It depends on
the xpp — xo1 for a given value of dy (25). A fairly good agreement
between the theoretical model-based values and the experimental
data validates the predicted expression for t}. (27).

We also obtain the expansion of trajectories, 6(¢), as a function
of time, for both positive and negative initial values of 6, i.e., .
The symbols in Figure 9 (a) and (b) plot the experimental data
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Expansion with time
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points for a negative and a positive value of 8y, respectively. The
theoretical model-based plots following (19) are shown by the
solid lines in these figures. The trajectories of the two bobs for
the above values of 8y are shown in Figure 9 (¢) and (d). Here too,
the experimental data are shown by symbols in the graphs, and
the theoretical model-based trajectories following (14) are shown
by the solid lines. It is important to note that the trajectories in
Figures 9 (c) and 9 (d) do not exactly meet. The reason for this is
the finite-size correction discussed in detail earlier. In Figures 8
and 9, the theoretical curves are for @ = 3.260 rad sec™!, xy and
6 are in mm and sec™!, respectively.

5. Analogy

As mentioned in Section 1, the meeting/focusing time of trajec-
tories derived above in the mechanics example and thereafter re-
alised in an experiment is analogous to the notion of focusing of
geodesics in Riemannian geometry/gravitational physics. Let us
now explain how the analogy works [15].

To obtain the Raychaudhuri equations in Riemannian geometry,

Figure 9. Variation of ex-
pansion with time for (a) a
negative value of 6y (filled
black symbol), (b) a posi-
tive value of 6y (open black
symbol). The calculated val-
ues of the same using (19)
are shown by solid red lines.
In (¢) and (d), the trajecto-
ries of two bobs correspond-
ing to (a) and (b), respec-
tively, are shown by green
and blue symbols. The same
as could be estimated from
(14) are shown by the solid
lines. The error bars for the
experimental data are within
the size of the symbols.

i~

RESONANCE | March 2023

405



GENERAL ARTICLE

Mechanical systems General Relativity
Parameter: time () Parameter: A (affine, non-affine)
Trajectories Geodesics

Family of trajectories Congruence of geodesics

(timelike and null)

Meeting of trajectories Geodesic focusing

Time of meeting Value of parameter A at focal point

o) = 2 Expansion (Trace (Vu;))

Equation for 8(¢) (one dimension) Equation for (1) (three dimensions, time-like)

9, 2 _ PV _
at0=—o =

k(?) @+ 162 = 02 + w? - Ryju'u) = g(A)

Table 1. The analogy sum-
marised.

we use the gradient of the normalised, timelike four-velocity field
u (it = 1), given by V ju;. Here, V; is the covariant derivative,
Ui = gi juf and g;; is the component of the metric tensor in the line
element ds®> = g;;dx'dx/. V;u; is a tensor of rank two and can
therefore be decomposed into its trace, symmetric traceless, and
antisymmetric parts, which represent, respectively, the isotropic
expansion, shear and rotation of the congruence (for more details
see [5-8]). The trace of V;u;, given as V juj is defined as the
expansion (6), which, for one dimensional mechanics is just g—;‘c
(2) [8], a quantity we have introduced and named as 6.

The Raychaudhuri equation for the expansion of a timelike geodesic
congruence follows from an evaluation of ukv, (V jui), which is

the generalisation of the quantity u% (g—ﬁ), for higher dimensions
and curved spacetimes [3,5-8]. The equation for 6 is given as:

g—j + %92 = —Riju'v! — oijo + wijw’ = g(1),  (31)
where, A is a parameter, w;; is the antisymmetric rotation tensor,
oj is the symmetric traceless shear tensor and R;; is the Ricci
tensor (for a definition of the Ricci tensor and a derivation of the
above equation see [5, 6]). The focusing theorem follows by as-
suming w;; = 0 and R;u'u/ > 0, reducing the equation to an
inequality % + %92 < 0. Integrating the inequality leads to the
conclusion that § — —oo within a finite A [5, 6].
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Recall that the equation for the expansion (6) in one dimensional
mechanical systems was (as shown in (5)),

de >’V
- - - . 2
m + 6 P k(1) (32)

Looking at (31) and (32), one can easily notice similarities. In
(31), A is a parameter, and in (32), ¢ is an external parameter. In
the second term of (31) there is a % factor arising due to three
space dimensions. In (32), this factor is just one, as we work in
only one space dimension. Finally, the R.H.S. term is a func-
tion of the parameter (¢ or 1) in both equations. It may be noted
that in mathematics, such equations are known as Riccati equa-
tions [18]. Thus, the parallels between (a) the various quanti-
ties, (b) the equation for mechanical systems and the one in Rie-
mannian geometry and (c) the resultant notion of the meeting of
trajectories/focusing are quite easily seen. We do seem to have
an analog Raychaudhuri equation in mechanics. The analogy is
summarised in Table 1.

How is such an analogy useful? First and foremost, it is a tool for
introducing the basic elements of the Raychaudhuri equation and
the focusing theorem to those who may not be familiar with it.
Next, it is possible that the analog equation (as well as its higher
dimensional generalisations in mechanics), can be investigated as
an equation in its own right with the motivation of learning about
collisions as well as avoidance in a family of trajectories. Finally,
solutions of the analog equation in mechanics can lead us towards
developing criteria for initial conditions for invoking avoidance in
a family of trajectories. Such an approach (though not carried out
yet) may be relevant in the context of conjunction assessment and
risk analysis programmes associated with artificial satellites, as
explained in [21].

6. Concluding Remarks

Let us now conclude with some possible avenues of future work.

It is certainly possible to go beyond the simple experiment dis-
cussed here. A straightforward extension is to study systems

Thus, the parallels
between (a) the various
quantities, (b) the
equation for mechanical
systems and the one in
Riemannian geometry
and (c) the resultant
notion of the meeting of
trajectories/focusing are
quite easily seen. We do
seem to have an analog
Raychaudhuri equation
in mechanics.
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Our present work is only
a beginning. The future

aim is to broaden the
scope of mechanics
through studies on

families of trajectories as

opposed to individual
ones.

where drag forces are present. For example, the simple exper-
iment related to Stokes’ law [2] may be modified to perform a
study similar to what has been done here. The theoretical model
and its details appear in [15]. Further, one may go beyond one
dimension. Here too, the theory has been developed [15] and
applied to projectile motion [1, 2], which may be studied exper-
imentally. The basic idea would be to shoot several projectiles
from different positions at different velocities and obtain, using
videography, the positions of each projectile at subsequent times.
One can study the evolution of expansion, shear and rotation in
this example and find out how the meeting/focusing time varies
with initial conditions.

Moving away from mechanics, a formal study of families of tra-
jectories also has useful applications in elasticity and fluids, as
briefly indicated in [6]. A more elaborate discussion along these
lines (especially the occurrence of caustics and vortices in me-
dia) may be possible following the detailed framework provided
in [19,20].

In conclusion, our present work is only a beginning. The future
aim is to broaden the scope of mechanics through studies on fam-
ilies of trajectories as opposed to individual ones. The immediate
outcome of these studies is its direct link with a topic usually
discussed in the context of Riemannian geometry and general rel-
ativity. It remains to be seen whether such analyses have useful
applications in mechanical systems. At the very least, this novel
approach surely provides a simple and worthwhile analog which
may be used while introducing the basics of the Raychaudhuri
equation and its consequences. Moreover, through the experi-
ments reported here, we have probably, for the first time, found a
way to realise in a laboratory experiment a rather involved con-
cept like focusing of trajectories, through this analogy.
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