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The Mathematical Legacy of Jacques Tits*

B. Sury

The ‘Erlangen Program’ of Felix Klein worked by ‘reduc-
ing’ problems in geometry to the study of their symmetry
groups—thereby algebraizing geometry. Jacques Tits’s work
goes in the opposite direction—he made fundamental contri-
butions to the abstract theory of groups via geometric meth-
ods. His geometric techniques apply to not only finite groups,
but also to rather diverse situations such as groups defined

over the p-adic numbers, and to the so-called arithmetic groups

etc. Tits’s ideas have enriched many of the important ad-
vances in group theory and geometry in the last six decades.
He designed the theory of so-called ‘buildings’ which incor-
porates geometrically the algebraic structure of linear groups.
Amazingly, these ideas have also led to applications in sub-
jects like the study of Riemannian manifolds of higher rank
that are seemingly remote from the original developments.

Introduction

One is hard put to attempt to describe the decisive impact that
Jacques Tits’s ideas have had in the mathematical landscape over
the last six decades. Nevertheless, we are emboldened to try and
communicate some of the legacy of Tits’s everlasting work.

During one of his lectures, Tits said: “It has to be expected that, in
my lectures, geometry will often take its revenge from the Erlan-
gen program, the theory of groups serving as a pretext this time.”
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groups and linear algebraic groups, their infinite-dimensional ver-
sions like Kac—Moody groups (which are of interest to physicists
as well), and combinatorial aspects like Coxeter groups (also of
interest to theoretical computer scientists).

Before we go on to give a brief description of the manifold con-
tributions of Tits, we point out that notions such as ‘buildings’
invented for convenience by mathematicians are superficial ana-
logues of these objects in daily life. They cannot be taken liter-
ally. For instance, in the mathematical theory of buildings, there
are apartments, walls, chambers etc. but a chamber may belong
to two different apartments!

We start with a brief peek into at his early life and background.

Early Life, French Citizenship and Honors

Jacques Tits was born in Uccle, a place in the outskirts of Brus-
sels, Belgium on August 12, 1930 to Léon Tits and Louisa André.
His mother Louisa was a piano teacher and his father Léon was
a mathematician. Jacques was something of a child prodigy and
was allowed to skip many years in school. As his father died
when Jacques was 13, he took to tutoring students several years
senior to him, teaching them differential and integral calculus.
At the age of 14, he gained admission to the Free University of
Brussels when he passed the university’s entrance examination.
He earned his doctorate there at the age of 20, under the direction
of Paul Libois—his thesis was titled ‘Généralisation des groupes
projectifs basés sur la notion de transitivité.” He produced a com-
plete classification (this is the only place where we state a result
using group theoretic language without explanation) of the finite
sharply n-transitive groups for all n > 2. His PhD thesis includes
a novel geometry of projective and affine spaces (over a field)
in terms of a transformation group from which the geometry is
extracted and treated infinite groups as well. Indeed, two of the
‘gems’ from his thesis (obtained already at the age of 17) are the
following assertions (see Reference 1):

Sharply 4-transitive permutation groups are necessarily finite.
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Let G be a permutation group that is triply transitive on a set
S. Let p # q in S, and assume that the G-stabilizer of p and q
is abelian. Then G must be the projective linear group of 2 X 2
matrices over some field, acting on the projective line.

In 1956, Jacques married a historian, Marie-Jeanne Dieuaide when
he was an assistant at the university. Since 1956, they had been

inseparable until the passing of Jacques Tits on the 5th of Decem-

ber, 2021; they had no children. Until 1964, Tits was a Professor

at the Free University in Brussels. Tits’s list of doctoral students

includes several well-known names such as Francis Buekenhout,

Jens Jantzen, Guy Rousseau, Jean-Pierre Tignol and Olivier Math-
ieu.

Buekenhout has made an interesting remark about Tits’s way of
working (see Reference 1). He says that unlike most mathemati-
cians, Tits constructed all of his mathematics in his head, without
using paper and pen, including the proofs of difficult results!

Tits accepted a position at the University of Bonn in 1963 where
he remained for a decade. In 1973, he moved to College de France
in Paris as the Chair of Group Theory. At that time, one had to
have French citizenship to teach there and Tits became a French
citizen in 1974. He had to renounce Belgian nationality then as
the Belgian rules did not allow dual nationality. He remained in
College de France until he retired in the year 2000 as an Emeritus
professor.

Throughout the last six decades, Tits had been an essential part of
the mathematical landscape in myriad ways. One of the most im-
portant contributions to the Bourbaki volumes is due to Tits, when
he shared the contents of his work ‘Groupes et Géométries de
Coxeter’—a work in which he generously acknowledged H.S.M.
Coxeter’s pioneering ideas. This appeared in Chapter 4 of Bour-
baki’s Groupes et algebres de Lie in the 1960’s and Tits’s paper
was not published until 2001! In fact, the nomenclature ‘Coxeter
group’, ‘Coxeter Graph’ which are ubiquitous in the theory of Lie
and algebraic groups were introduced by Tits. Some of the awards
and honors that were accorded to Tits include the Wettrems Prize
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”This is probably neither
the time nor the place to
start a polemic.
However, I cannot but
express my deep
disappointment — no
doubt shared by many
people here — in the
absence of Margulis
from this ceremony. In
view of the symbolic
meaning of this city of
Helsinki, I had indeed
grounds to hope that I
would have a chance at
last to meet a
mathematician whom I
know only through his
work and for whom I
have the greatest respect
and admiration.”

— Jacques Tits
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of the Royal Belgium Academy of Sciences in 1958, the Grand
Prix of the French Academy of Sciences in 1976, the Wolf Prize
in 1993, the Cantor medal in 1996, and the Abel Prize (along
with John Thompson) in 2008. Tits remained the Editor in Chief
of the mathematical publications of the IHES from 1980 to 1999.
He also founded the premier journal Inventiones Mathematicae
and served as an editor during 1966-1975. He was an invited
speaker in the ICMs (International Congress of Mathematicians)
in 1962, 1970 and 1974. He was also a member of the Fields
Medal committees in 1978 and 1994. When he read the Fields
Medal laudatio for Margulis in 1978, Margulis had not been al-
lowed by the Soviet authorities to attend the Congress. Tits had
boldly remarked then:

“This is probably neither the time nor the place to start a polemic.
However, I cannot but express my deep disappointment — no doubt
shared by many people here —in the absence of Margulis from this
ceremony. In view of the symbolic meaning of this city of Helsinki,
I had indeed grounds to hope that I would have a chance at last
to meet a mathematician whom I know only through his work and
for whom I have the greatest respect and admiration.”

It is remarkable that Tits’s address was delivered in Finlandia
Hall, where the 1975 Helsinki Agreements dealing with security
and cooperation in Europe were concluded. Margulis was finally
able to visit and stay at the University of Bonn for three months
in 1979. In a small ceremony there, Tits handed over the Fields
medal to Margulis.

The Birth of ‘Immeubles’

Galois (1811-1832) is considered the father of modern group the-
ory. By the 1870’s, his work was much better understood through
the works of Jordan. This was followed by Lie’s developments of
the theory of continuous transformation groups (now called Lie
groups). Elie Cartan and Killing had classified the simple Lie
groups by late 19th century. At this point, it was realized by some

-
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researchers (especially Dickson) that these groups defined over
real and complex numbers have analogues over other fields such
as the rational numbers or even over finite fields. There was a
period of stangancy—especially, in the understanding of the so-
called exceptional groups of type E, F, G—until after the second
world war. The year 1955 saw the appearance of the seminal
work of Claude Chevalley which not only gave a complete classi-
fication of these groups but proved, at one stroke, the ‘simplicity’
of these groups. During this period, Tits had been developing his
theory of buildings on his own, especially motivated by his wish
to understand the exceptional groups to which he was introduced
by Hopf during a visit to Ziirich. The simple Lie groups of classi-
cal type were known to have geometric interpretations in terms of
projective geometry. The exceptional groups proved elusive for
a long time. In 1954, Tits made a profound geometric construc-
tion in terms of the group and its so-called parabolic subgroups.
This world of incidence geometries is referred to by Jeremy Gray
as “Tits created a world out of nothing.” These constructions fit
in perfectly with the projective spaces and were pre-cursors to
the theory of buildings. Tits constructed what is now known as
the “Tits group” which is an addition to the 26 so-called sporadic
groups and, is often called the 27th sporadic group. The first
computer-free proof of the existence of the simple group called
the Hall-Janko group was given in an elegant geometric manner
by Tits using an extension of the generalized hexagon of order
2. Tits came out with a full-fledged theory in 1974 that not only
gave a complete understanding of the structure of these groups
but went much beyond its originally envisioned aims. Tits’s the-
ory of (what is now known as) Tits buildings became a unifying
principle that is central to many developments in group theory. In
that sense, Tits was a ‘theory builder’—pun intended!

Before we give a brief, informal sketch of the theory of buildings,
we recall what Tits himself had to say (on the occasion of his
winning the Abel Prize along with John Thompson) about his
motivations in developing these notions (see References 1, 3):

“I studied these objects because I wanted to understand these

-
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“I should say that the
terminology like
buildings, apartments,
and so on is not mine. I
discovered these things,
but it was Bourbaki who
gave them these names.
They wrote about my
work and found that my
terminology was a
shambles. They put it in
some order, and this is
how the notions like
apartments and so on
arose.”

“I would say that
mathematics coming
from physics is of high
quality. Some of the best
results we have in
mathematics have been
discovered by
physicists.”
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exceptional Lie groups geometrically. In fact, I came to mathe-
matics through projective geometry; what I knew about was pro-
Jjective geometry. In projective geometry you have points, lines,
and so on. When I started studying exceptional groups I sort of
looked for objects of the same sort. For instance, I discovered
— or somebody else discovered, actually — that the group Eg is
the collineation group of the octonion projective plane. And a
little bit later, I found some automatic way of proving such re-
sults, starting from the group to reconstruct the projective plane.
I could use this procedure to give geometric interpretations of the
other exceptional groups, e.g., E7 and Eg. That was really my
starting point. Then I tried to make an abstract construction of
these geometries. In this construction I used terms like skeletons,
for instance, and what became apartments were called skeletons
at the time.” . ..

“I should say that the terminology like buildings, apartments, and
so on is not mine. I discovered these things, but it was Bourbaki
who gave them these names. They wrote about my work and found
that my terminology was a shambles. They put it in some order,
and this is how the notions like apartments and so on arose.” ...

“I would say that mathematics coming from physics is of high
quality. Some of the best results we have in mathematics have
been discovered by physicists.”

In what follows, we use a few definitions that come from basic
algebraic topology. For those who are not familiar with these
notions, it suffices to say that points, line segments, triangles,
tetrahedra and their higher dimensional analogues called ‘regu-
lar polytopes’ are the ‘simplices’ being spoken of below.

A “building” of dimension n (called ‘immeuble’ in French) is a
simplicial complex A that is obtained by gluing together certain
subcomplexes called apartments which satisfy certain properties
(see References 4, 5, 6).

The idea is to encode all the information in constructing the build-
ing in terms only of adjacency properties of simplices of maximal

-
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dimension. More precisely, the properties are:

(a) for any r < n, every r-simplex is contained in at least three
chambers (another name for n-simplices);

(b) every pair of simplices lies in a common apartment;

(c) every (n — 1)-simplex in an apartment is contained in exactly
two adjacent chambers;

(d) any two apartments containing two simplices are isomorphic,
with an isomorphism that fixes the simplices.

Every apartment has associated to it, a ‘Coexeter group’; in this
manner, apartments are also ‘Coxeter complexes’ (see 3.). In
fact, for any two chambers intersecting in a ‘panel’ (an (n — 1)-
dimensional simplex), there is a simplicial automorphism of or-
der 2 (also called a reflection) that carries one chamber to the
other while fixing all the common points. The finite set S of re-
flections generate a Coxeter group (W, S). For any two of the
generators 5; # s; in S, there is a relation (s;s;)"7 = 1 where
2 < m;j = mj; < oco. The group of all permutations of a finite set,
the group of isometries of the plane generated by the affine re-
flections with respect to the sides of an equilateral triangle and—
more generally—the Weyl groups of Lie groups—can be viewed
as Coxeter groups. Given a Coxeter group (W, S), subsets J of §
give ‘standard’ subgroups W; of W generated by the elements in
J. The partially ordered set of standard cosets, where E is said to
be a face of F (and write E < F) if E 2 F is the Coxeter complex
associated to (W, §) and is called its geometric realization.

The apartment whose Coxeter group is (W, §) is then the geomet-
ric realization of (W, S).

When W is a finite group, the corresponding apartment is topo-
logically a sphere; so, the corresponding building is said to be
spherical. If we consider the Coxeter group consisting of the
group of isometries of the plane generated by the affine reflec-
tions with respect to the sides of an equilateral triangle, then the
corresponding Coxeter complex is simply the whole plane tiled
by equilateral triangles.

The ‘flag’ complex corresponding to (the projective space of) a
finite-dimensional vector space V over any field is an example of a
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Coxeter complex:
Plane tiled by equilateral triangles
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building. The simplices are chains of proper, non-zero subspaces
oOcVicVy---CV,CV

The chambers (maximal simplices) are those chains as above with
r = dim(V) — 1; so, necessarily, dim(V;) = i.

If we have a linear group like the group G := SL,(k) of n X n
matrices of determinant 1 over a field &, there is a natural build-
ing associated to it. This association depends on the subgroup
structure of the group. It depends on the subgroup B of upper tri-
angular matrices in G, the subgroup N of monomial matrices in G
(those with exactly one non-zero entry in each row and each col-
umn), and the subgroup 7 of diagonal matrices in G. The quotient
group W := N/T is called the Weyl group of G, and comes with a
set S of reflections which generate it; (W, S ) is naturally a Coxeter
group. The building corresponding to G is called its Tits building
and the group G acts on its building by simplicial automorphisms.
It is possible to obtain group theoretic consequences using the ac-
tion of G and its subgroups. This 4-tuple (G, B, N, §) is formally
now known as a Tits system. For instance, the formalism allows
one to obtain for free the simplicity (that non-existence of non-
trivial normal subgroups) theorem:

For any field k (with a few exceptions of small finite cardinality),
and any simple linear algebraic group G defined, and isotropic
over k (that is, it has a subgroup isomorphic over k to a group of
diagonal matrices), the abstract group (the uninitiated may think
of groups like S L,(k),S O,(k), S p,(k) etc.) is, modulo its finite
center, a simple group.

Although Tits’s motivation to introduce buildings was to study the
structure of linear algebraic groups—especially, the elusive “ex-
ceptional groups” (see References 5, 6), there are buildings which
are not associated with groups. However, in 1974, Tits proved the
remarkable theorem that (thick, irreducible, spherical) buildings
of rank > 2 must come from groups.

After the initial introduction of these Tits systems, it was real-
ized that there are more general Tits systems arising when we
study groups of matrices defined over other fields like p-adic
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fields. These “Bruhat-Tits buildings” have led to several far-
reaching consequences. For instance, the Bruhat-Tits building
for the group S 1,(Q,) of 2 X 2 matrices of determinant 1 with
entries in the field Q, of p-adic numbers is 1-dimensional; that
is, it is a tree—see the figure.

Using the Bruhat-Tits tree, one can prove:
Every discrete subgroup of S L,(Q,) which is torsion-free (that is,
has no nontrivial elements of finite order) must be a free group.

The Bruhat-Tits building for p-adic groups is the analogue of the
Riemannian symmetric spaces over the reals. One can use the
Bruhat-Tits building to prove conjugacy theorems or results on
open compact subgroups as fixed point theorems. For example,
a theorem of Bruhat, Tits and Rousseau shows that the reduc-
tive groups G over p-adic fields k for which G(k) is compact are
precisely those which do not possess any k-split tori (subgroups
isomorphic over k to a group of diagonal matrices).

More remarkably, Lubotzky, Philips and Sarnak made crucial use
of the Bruhat-Tits tree of S 1,(Q)) to construct expander graphs
called Ramanujan graphs; higher dimensional Bruhat-Tits build-
ings have been later used to construct higher dimensional ex-
panders.

It is natural for mathematicians to look at the p-adic numbers
(a nonarchimedean construct) even to understand the real or the
complex picture. In fact, one studies all these together (some-
times known as the world of adelic numbers). If this is counter-
intuitive, it may be appropriate to recall the following metaphys-
ical quote by Yuri Manin in this context about physics (see page
297 of Reference 7):

“On the fundamental level our world is neither real nor p-adic; it
is adelic. For some reasons, reflecting the physical nature of our
kind of living matter (e.g. the fact that we are built of massive par-
ticles), we tend to project the adelic picture onto its real side. We
can equally well spiritually project it upon its non-Archimedean
side and calculate most important things arithmetically. The re-
lations between “real” and “arithmetical” pictures of the world
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is that of complementarity, like the relation between conjugate
observables in quantum mechanics.”

Other applications of the theory of buildings include those to
rigidity and super-rigidity theorems in discrete subgroups of Lie
groups, representation theory, construction of infinite-dimensional
Kac-Moody groups where ‘twin buildings’ play a role, study of
hyperbolic groups and manifolds of negative curvature.

The Tits Alternative

An amazing general result on groups of matrices shows a di-
chotomy that holds; viz.

A finitely generated group of matrices is either virtually solvable
(has a solvable subgroup of finite index) or contains a free, non-
abelian group.

A group of matrices is solvable means roughly that the matrices
commute at a higher level. A free nonabelian group is in a sense
the other extreme from a solvable group.

A free subgroup of G is roughly one which consists of all ‘words’
in an alphabet made up of some of the elements of G and their
inverses, and where the only simplifications of words allowed are
consequences of xx~! = 1 and x 'x = 1.

Tits’s result was a logical culmination of the ideas of such a di-
chotomy holding good. This has led to other analogous situations
where such a dichotomy has been observed, and gives a pathway
to study geometric and other questions involving linear groups.
Interestingly, instead of considering groups of matrices with en-
tries in a field, if we consider the entries from a skew field, Tits’s
alternative can fail.

For a group with a finite set of generators, it is an important prob-
lem to determine the growth behaviour in terms of # for the num-
ber of words of length n. The motivation is that the rate of volume
growth of the universal cover of a compact Riemannian manifold
coincides with the rate of growth of the fundamental group. This
also has applications to the curvature of the manifold. An imme-
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diate consequence of the above theorem of Tits is that a finitely
generated linear group either has exponential growth or has poly-
nomial growth. A striking result in the converse direction is Gro-
mov’s theorem on word growth which shows that if the number
of words of length n grows like a polynomial in n, then the group
is virtually nilpotent.

Here is a word about how one goes about proving a subgroup is
free on an alphabet set. This is referred to usually by the expres-
sive phrase ‘Ping-Pong lemma’—the lemma is originally due to
Klein.

If two subgroups A, B act on the union of two disjoint sets S, T
and a point p outside them in such a way that nontrivial elements
of A carry S U {p} to T and those of B carry T U {p} to S. Then,
no ‘word’ ajbiasb; - - - a,b, involving elements of both A, B can
be the identity element. The reason is that the point p is carried to
either § or T by the last syllable of the word after which the other
syllables play ‘ping-pong’ between the sets S and T and the point
never reaches back to p. The subgroups A, B then generate their
‘free product’. A free group is just the free product of infinite
cyclic groups. This method can be used for instance to prove that
the two matrices

o)

and

generate a free group of rank 2—by defining appropriate subsets
of the plane where they play ping-pong. The same proof works
when we have matrices where 2 is replaced by a complex number
w such that |w| > 2 while this is not necessarily true when [w| < 2.

-
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Borel-Tits, Bruhat-Tits and the Tits Classification

Some of Tits’s important joint work with Armand Borel deals
with the structure of the abstract groups G(k) and abstract ho-
momorphisms between such groups when G is a linear algebraic
group. Tits mentions that this happened in the following curious
fashion. He says that both Borel and Tits independently reached
the same conclusions often but used somewhat different methods.
So, it made sense to combine and write joint papers. The cele-
brated papers on Borel-Tits structure theory for reductive groups
over arbitrary fields are among the most quoted by mathemati-
cians of all hues. What Borel arrived at using the internal struc-
ture was reached at by Tits by his geometric intuition.

The Kneser-Tits conjecture asserts that the abstract group G(k)
(as soon as G is k-isotropic; that is, contains a diagonal subgroup
over k) equals the normal subgroup generated by the unipotent
radicals of minimal k-parabolic subgroups. This reduces in many
cases to the simplicity statement for the abstract groups G(k). The
Kneser—Tits conjecture was instrumental in developments in an-
other direction—rationality questions, Whitehead group and the
K-theory of central simple algebras.

As already mentioned above, Tits combined with Bruhat to con-
struct and study the Bruhat-Tits buildings associated to a linear
group over a p-adic local field. These are combinatorial in nature
and are analogues of Cartan’s symmetric spaces which appear in
the study over real numbers. For studying groups over arithmetic
fields like Q, one must combine both and hence, it was important
to frame applications of Bruhat-Tits theory in a language akin to
the language of symmetric spaces.

Finally, one of the crowning achievements of Tits’s work is the
classification theory of linear algebraic groups over general fields.
The theory of quadratic forms (that is, homogeneous polynomi-
als of degree 2) over fields is a rich, classical subject that is ubig-
uitous in mathematics. The classical theory of classification of
quadratic forms proceeds by realizing what is the largest sum of
copies of hyperbolic planes (forms which look like x> — y?) that
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can be cut off from the given quadratic form when one makes
a linear change of variables over the given field. This number
is called the Witt index (after E. Witt) of the form over that field.
The remaining part is called the ‘anisotropic kernel” of the quadratic
form. In analogy with the classification of quadratic forms over
general fields, Tits defined the ‘anisotropic kernel’ and the index
of a semisimple algebraic group over a general field. Roughly
speaking, one starts with the Cartan—Killing—Dynkin classifica-
tion of the groups over algebraically closed fields (fields where all
nonconstant polynomials possess roots). This is in terms of cer-
tain planar graphs called Dynkin diagrams where the number of
nodes—called the rank—indicates the size of diagonal subgroups
they possess (for instance, for SL, it is n — 1). Over a general
field k, one may have several different groups that become iso-
morphic to the same group when considered over the algebraic
closure k of k. These “k-forms” of G can be described by means
of keeping track of how the Galois group of k over k acts on the
Dynkin diagram. Nodes in the same orbit are placed vertically
above each other (that is, one is folding the Dynkin diagram).
Then, most importantly, certain orbits contribute to the diagonal
subgroup over k itself, and this is indicated by circling that orbit.
The ‘Tits index of G over &’ is thus the folded and circled Dynkin
diagram where the necessary information has been incorporated.
One may determine the relation between these ‘simple k-roots’ in
terms of these data. Finally, the k-forms of G are determined in
terms of the Tits index and the anisotropic kernel (made up from
the part without circled orbits). This is a very general classifica-
tion theorem and includes as special cases: (a) Wedderburn’s the-
orem that each central simple k-algebra can be written uniquely
as the matrix algebra M,(D) for some central division k-algebra
D and r > 1, and (b) Witt’s theorem alluded to above asserting
that a non-degenerate quadratic form is an orthogonal sum of a
uniquely determined anisotropic non-degenerate quadratic form
and a sum of hyperbolic planes. If one wishes to study groups
over an arbitrary field, in addition, one needs to know which Tits
indices occur there. This is specific to the field and Tits also de-
termined the admissible indices over several fields of interest. Ar-
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Different forms of the
exceptional group Eg
play a key role in topics
like string theory and
super-gravity.

Analogous to quaternion
and octonion algebras,
one has the notion of an
Albert algebra. Any
Albert algebra has
dimension 27. Tits used
automorphisms of
octonion and Albert
algebras to give an
explicit construction of
Lie algebras with eg as a
possible output; this is
known as Tits’s
construction.
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guably, this classification paper of Tits is the one that is used by
most mathematicians working on diverse aspects involving linear
algebraic groups.

The exceptional groups and Tits’s construction

Though this short section concerns exceptional groups, we focus
on the Lie group Eg or the Lie algebra eg which is the largest
among the exceptional groups/Lie algebras. Moreover, different
forms of the algebraic group Eg over different fields play a role in
physics also. For instance, the compact real form of Eg appears in
string theory and, the split real form appears in super-gravity. A
striking feature of Eg is that the smallest dimension of a nontrivial
representation as matrices is 248—equal to the dimension—and
is the representation obtained by the action on its Lie algebra eg.
Thus, Eg can be viewed as the group of automorphisms of the Lie
algebra eg. All other types of Lie groups can be nontrivially rep-
resented via matrices of sizes that are smaller than the dimension
of the group. Further, it is clear that due to the diverse roles that
the forms of Eg play over different fields, it is necessary to con-

72*8 one could

struct Eg over any field. Starting with the lattice
give a Lie bracket structure making it a Lie algebra and by ex-
tending the scalars, one can obtain the ‘split’ form of eg over any
field k. Its automorphism group yields an algebraic group of type

Eg over k (see Reference 2).

Analogous to the quaternion and octonion algebras, one has the
notion of an Albert algebra. Tits used automorphisms of octo-
nion and Albert algebras to give an explicit construction of Lie
algebras which produces eg as a possible output; this is known as
Tits’s construction.

A Jordan algebra over & is a commutative, not necessarily associa-
tive k-algebra A in which the so-called Jordan identity (xy)(xx) =
x(y(xx)) holds. In particular, A is power associative. Given an
associative algebra B with multiplication ., the anti-commutator
é(x.y + y.x) defines on B the structure of a Jordan algebra, de-
noted by B+. A Jordan algebra A is said to be special if it is

-
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isomorphic to a Jordan subalgebra of B+ for an associative alge-
bra B, and exceptional otherwise. An Albert algebra is defined
to be a simple, exceptional Jordan algebra; it is known that any
Albert algebra has dimension 27. The automorphism group of an
Albert algebra is an exceptional algebraic group of type F4. Tits
and Weiss conjectured that the structure group of any Albert al-
gebra is generated by certain special operators, namely, the scalar
multiplications and the so called U-operators. For certain forms
of type E7 and Eg, Tits and Weiss proved that this conjecture
is equivalent to the Kneser—Tits conjecture mentioned above. In
very recent developments, the Tits—Weiss conjecture (and hence
the Kneser—Tits conjecture) has been affirmatively answered. The
fact that the root system of Eg has such a rich structure leads it to

be advertised by pretty pictures such as the one below:

Attribution: By Jgmoxness — Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php ?curid=8893046

In conclusion, Tits’s work is ubiquitous in modern mathematics
of the last six decades. He is a theory builder and his ideas have
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shaped the direction of study of linear algebraic groups, their rep-
resentation theory as well as their arithmetic study which are so
important to number theory. His staunch belief in geometrization
of the algebra involved has led to a view point which is so fruit-
ful in the present day that it seems inexorable and inevitable now.
Needless to say, many mathematical constructs (not just the build-
ings) are named after him. Indeed, his work on Coxeter groups
and Coxeter complexes which really put Coxeter’s ideas into fo-
cus and gave a foundation, could justify adding his name too to
these notions. We end by quoting a really beautiful theorem due
to L. Solomon and Tits:

The spherical Tits building of a finite group of Lie type is homo-
topically a bouquet of spheres.

Suggested Reading

[1] The Abel Prize 2008-2012, Helge Holden and Ragni Piene (Editors), Springer-
Verlag, Berlin Heidelberg 2014.

[2] Es, The Most Exceptional Group, Skip Garibaldi, Bull. Amer. Math. Soc.,
Vol.53, pp.643-671, October 2016.

[3] Interview with John G Thompson and Jacques Tits by Martin Raussen and
Christian Skau, Notices Amer. Math. Soc., Vol.54, pp.471-478, 2009.

[4] Buildings : Theory and Applications, Peter Abramenko & Kenneth S Brown,
Graduate Texts in Mathematics, Springer Science + Business Media LLC,
Vol.248, 2008.

[5]1 On buildings and their applications, J. Tits, Proceedings of the International
Congress of Mathematicians, Vol.1, Canadian Mathematical Congress, Mon-
treal, Que., pp.209-220, 1975.

[6] Buildings of Spherical Type and Finite BN-Pairs, Jacques Tits, Springer-Verlag,
Vol.386, Berlin-Heidelberg 1974, 311 pages.

[71 Conformal Invariance and String Theory, edited by P. Dita and V. Georgescu,
Academic Press, 1989.

—J\f\]\/\/\l\‘ RESONANCE | October 2022



