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An Elementary Introduction to Driven Damped

Oscillators®

Carl E. Mungan

The steady-state motion of a sinusoidally driven, linearly
damped oscillator is deduced and graphed without using pha-
sors or differential equation methods. Only basic trigonome-
try and derivatives are employed to make the analysis acces-
sible to introductory students. The frequency dependence of
the phase shift is motivated physically. Application to simple
ac filter circuits is made.

1. Introduction

Driven damped oscillations arise in introductory physics, both for
a mass on a spring in a viscous fluid and for an inductor, resistor,
and capacitor, wired in series [1]. Some textbooks state the equa-
tions for the frequency dependence of the resulting amplitude and
phase shift without deriving them. Books that do present a deriva-
tion typically adopt one of two methods to do so. A mathematical
approach is to solve Newton’s second law in the case of a mechan-
ical oscillator or Kirchhoff’s voltage loop rule in the case of an ac
circuit written as a second-order, linear, inhomogeneous, ordinary
differential equation. Alternatively, an engineering approach is
the method of phasors. However, neither of these methods is par-
ticularly accessible to introductory physics students. Instead, the
present article only uses elementary derivatives and trigonometry
to obtain the key results.

The following trigonometric relations are needed in the analysis.
The top panel in Figure 1 plots sin ¢ over one cycle of oscillation
from O to 2z. Since there are equal areas above as below the
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Figure 1. Graphs of one
cycle of a sine function and
its square, used to deduce
their mean values without
mathematical calculation.

The average value of a
sinusoidal function can
be obtained graphically.
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horizontal axis of this graph, the mean value (denoted by angular
brackets) is

(sing) =0 )]

over any integer number of cycles. The bottom panel in Figure
1 plots sin® ¢ over the same angular range from 0 to 2. Again,
there are equal areas above as below a horizontal line drawn mid-
way between the peaks and troughs of oscillation, so that

) 1
<sm ¢> =,. )
These mean values are unaffected if one moves the vertical axes

of these two graphs horizontally by any arbitrary angle. For ex-
ample, shifting the vertical axis rightward by /2 implies that

(cos¢p) =0 3)
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and
<0052 ¢> = é 4)
Alternatively, one can use this idea that sin? ¢ and cos? ¢ must

have equal mean values and combine it with the Pythagorean
identity sin® ¢+ cos? ¢ =1 to deduce (2) and (4).

The double-angle formula for cosine is
cos(A + B) = cos Acos B —sin A sin B. ®))

Students who are familiar with complex exponentials can verify
this formula by equating the real part of each side of the identity

ei(A+B) — eiAeiB‘ (6)
Similarly the double-angle formula for sine,

sin(A + B) = cos A sin B + sin A cos B, (7)

can be obtained by equating the imaginary part of each side of
(6). Now change the sign of B in (5) to get

cos(A — B) = cosAcos B+ sinAsin B, (®)

because cos(—B) = cos B and sin(—B) = —sin B. Adding together
(5) and (8) gives

cos(A + B) + cos(A — B) = 2cos A cos B. 9)

The rest of the article is organized as follows. Section 2 justi-
fies an analogy between mechanical and electromagnetic oscilla-
tors so that instructors can map the results for one topic onto the
other, depending on which they are teaching. Section 3 analyzes
a driven RLC series circuit. Section 4 graphically explores the
key results. Section 5 applies these ideas to series circuits treated
as voltage dividers.

2. Analogous Quantities for Mechanical and Electromagnetic
Oscillators

Suppose a mass m is connected to a spring obeying Hooke’s law
of stiffness constant k and is subject to a linear damping force
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Key trig identities

needed in the derivation

are the double-angle
formulas.
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For a mechanical

oscillator, the velocity

lags behind the driving
force by the phase shift
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0.

with drag coeflicient b while being driven by a sinusoidal force F
of amplitude Fy,«x and angular frequency w. Start a timer at the
instant the driving force is at a maximum value so that Newton’s
second law becomes

—kx — bu + Fpax COS Wt = ma, (10)

where x, v, and a are the displacement, velocity, and acceleration
of the mass and ¢ is the elapsed time. (10) can be rewritten as

2

Fnax COs wt = mdt2 +b

dx

+ kx. 11
5 Tk (11)

Assuming the driver has been on long enough that the drag force
has damped out any initial transients in the response of the sys-
tem, the displacement x of the mass (from its equilibrium posi-
tion) will be forced to oscillate sinusoidally at the same angular
frequency w as F but not necessarily in phase with it (as discussed
in the Appendix) so that

X = Xmax Sin(wt — 9), (12)

where xp.x is the displacement amplitude. For example, if the
phase shift 6 happens to equal —n/2, then (12) becomes x =
Xmax COS wt according to (7), in which case the displacement is
in phase with the driving force. Having chosen the trigonometric
function in (12) to be a sine function, its time derivative is

U = Umax COS(wt — 0) where vmax = WXmax, (13)

so that ¢ is seen to represent the phase lag of the velocity with
respect to the driving force. For example, 6 = 7/2 would imply
the velocity of the mass reaches its peak value one-quarter of a
period after the driver attains a maximum value.

Now, consider the RLC circuit in Figure 2. Assume the ac power
supply has been switched on for a long enough time that the re-
sistance has damped out any initial transients in the current. A
timer is started at the instant that this driving emf & is peaking so
that it can be described by a cosine function of time,
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(14)

£ = Emax COS W,

with amplitude ey, and angular frequency w. According to Kirch-
hoff’s voltage loop rule, the rise in potential across the power sup-
ply equals the sum of the potential drops across the inductance L,
resistance R, and capacitance C so that

dl q
t=L—+IR+ 15
Emax COS W 7 c (15)
which can be rewritten as
d’ dg 1
smaxcoswt:Ldtg +Rd_6t] + Cq. (16)

Comparing (11) and (16), the following analogs are evident. The
driving force F is analogous to the driving voltage &; the dis-
placement x is analogous to the charge g; the velocity v = dx/dt
is analogous to the current I = dg/dt; the mass m, which repre-
sents the inertia opposing changes in velocity is analogous to the
inductance L opposing changes in current; the drag coefficient b,
which gives rise to mechanical energy losses (transformed into
thermal energy in the viscous fluid) is analogous to the resistance
R, which gives rise to electrical energy losses (transformed into
thermal energy in the resistor); and the stiffness constant k, which
is the ratio of the spring force to the displacement is analogous
to the reciprocal of the capacitance because 1/C is the ratio of
the capacitor voltage to the charge. So in accordance with these
analogs, (13) and (12) respectively become

I = I,,x cos(wt — 0)

i~

(17
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An RLC se-
ries circuit driven by a si-

Figure 2.

nusoidally oscillating emf
e. The charges on the two
plates of the capacitor are
equal in magnitude and op-
posite in sign; ¢ itself can
be either positive or negative
according to (18) and is con-
dq/dt for
the indicated current direc-

sistent with 1 =

tion. The arrow next to the
power supply indicates that
¢ equals the difference in po-
tential between its left and
right terminals (rather than
the other way around); ¢ it-
self can be either positive or
negative, according to (14).

For an electromagnetic
oscillator, the current
lags behind the driving
emf by the phase shift 6.
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and
g = Gmax Sin(wt — 8) where o = ——. (18)
w

3. Circuit Analysis

With reference to Figure 2 and (14) and (17), the problem is the
following. Assuming that the values of L, R, C, enax, and w are
known, find the values of I,,,x and 6. From I,,,x and § one can
deduce anything else one might want to know about the circuit,
such as the charge on the capacitor plates, or the voltages across
and power delivered to or from each of the circuit elements. Thus
the complete response of the circuit to a given driver will have
been determined.

The potential drop across the resistor is in phase with the current,
Vg = IR = I,,xR cos(wt — 9) (19)

using (17). The potential drop across the capacitor lags the cur-
rent by a quarter cycle,

1
Ve = 4 = LXe sin(wt — 6) where X¢ = — (20)
C wC

using (18). The potential drop across the inductor leads the cur-
rent by a quarter cycle,

Vi = LE = —Inhax Xy sin(wt — 6) where X; = wL 2D

using (17). According to Kirchhoft’s voltage loop rule, the rise in
potential & across the power supply equals the sum of the potential
drops across the inductor, resistor, and capacitor so that

Ve . VL V.
gL . B (22)

Imax Imax ImaX Imax

after dividing every term by the current amplitude. Define the
impedance of the series RLC combination to be the amplitude of
the voltage applied across it (by the power supply) divided by the
amplitude of the current to it,

7 = fmax. (23)

I max
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Xi—Xc

-

R
If one can find Z, this definition gives I;,.x. Thus the problem is
now to find Z and ¢.

To do so, substitute (14), (19), (20), and (21) into (22) to obtain

Z coswt = Rcos(wt — 0) — (X — X¢) sin(wt — ) 24)

using (23). (24) must hold for all values of . Two particular
values of ¢ can be used to solve for the two sought quantities.
First, choose the instant in time when wt = ¢ so that (24) becomes

Zcosd =R. (25)
Second, substitute wt = § — /2 into (24) to get
Zsind = X; — X¢ (26)

using (8). (25) and (26) uniquely specify the right triangle sketched
in Figure 3. From this triangle diagram one can read off three key
equations. The power factor (so named because of (38) below) is

R
o= _, 27
cos 7 27)

the impedance is

Z = \R?+ (X, — X¢)?, (28)

and the phase shift between the driving emf e and the resulting

current / is
n_l XL - XC

i~

0 = ta (29)
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Figure 3.
gram relating key quantities
The
side adjacent the acute an-

Triangle dia-

relevant to ac circuits.

gle J (representing the phase
shift) is the resistance R, the
side opposite ¢ is the differ-
ence in the inductive and ca-
pacitive reactances X;, — X¢,
and the hypoteneuse is the
total impedance Z.

The impedance Z and
phase shift 6 completely
determine the
responding current to the
driving emf.

The triangle diagram is
also the key result of a
phasor analysis.

The power factor,
impedance, and phase
shift are directly read off
the triangle diagram.

1039



GENERAL ARTICLE

Figure 4. Current ampli-
tude I for the circuit in
Figure 2 as a function of
the angular frequency w of
the power supply. The fre-
quency and current at reso-
nance are labeled. The cir-
cuit elements were chosen to
satisfy L/R = 25RC. The
horizontal axis ranges from
0 to 2wy.

For this series circuit,
the current is the same in
every element, and the
voltages across the
components sum up to
the voltage of the power

supply.
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(28) and (29) complete the solution of the problem .

It is worth
emphasizing to students that for single-loop series circuits, the
same current I flows out of the power supply and to every circuit
element R, L, and C. In contrast, the voltages across each of the
four of them are in general different.

4. Graphical Presentations of the Solution

Substituting (28) into (23) results in

€max
2
\/R2 wL - 2)

expressed in terms of the five givens. To plot it as a function of

(30)

maX -

the driving frequency, consider two limiting values. When w — 0
then X¢c — oo so that I;,,;x = 0 because the capacitor prevents a
dc current from flowing across the gap between its plates. On the
other hand, as w — oo then X; — oo so that I, = 0 again,
this time because the inductor blocks sudden changes in current.
However, I, is positive at all other values of w, and thus one
anticipates it must peak at what is called the resonant angular
frequency wy. Specifically, Inax peaks when the denominator of
(30) is a minimum. In turn, that occurs when the quantity inside

i~
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+x/2

@y

-/2

the parentheses is zero, implying

1
VILC

1
a)oLZ I =

e (31)

wo =

The resonant frequency equals the natural frequency of an un-
damped undriven LC circuit. At this frequency, the reactance of
the inductor and capacitor cancel each other. So the current am-
plitude simplifies to emax/R according to (30), just as it would if
the power supply were connected across the resistor alone. Thus
a graph of I, has the shape shown in Figure 4.

The other component of the solution is the phase lag of I relative
to € as given by (29),

-1 wL wC

0 = tan (32)

It was remarked in connection with (20) and (21) that the cur-
rent leads the potential drop across a capacitor (which can be re-
membered as frozen water ‘ICE’, indicating that the current ‘I’
for a capacitor ‘C’ comes before the emf ‘E’ across it) but lags
the potential drop across an inductor (remembered as a man’s
name ‘ELI’). Accordingly, X; has a positive sign in front of it,
and X¢ a negative sign in the numerator of the ratio in (29). To
plot this phase shift versus w, again consider the two limiting
values. As w — 0 one gets 6 = tan~!(—o0) = —n/2, whereas
6 = tan"!(+00) = 4+7/2 as w — oo. Furthermore, at resonance

i~
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Figure 5. Phase shift ¢
of the current relative to the
driving emf for the circuit
in Figure 2 as a function
of the angular frequency w
of the power supply. The
values at zero, the resonant,
and infinite frequencies are
labeled.
ments were chosen to satisfy
L/R = 25RC. The hori-
zontal axis ranges from O to

The circuit ele-

2(4)0.

The current amplitude is
maximum at the
resonant frequency.

An overall mnemonic is
“ELI the ICE man.”
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The average power

equals the product of the
rms current, rms Voltage,

1042

and power factor.

one has ¢ = tan~!(0) = 0 because the inductor and capacitor can-
cel each other’s effects so that the emf is effectively applied only
across the resistor, in which case the current is in phase with it.
The graph is, therefore, as sketched in Figure 5.

Next, consider the power delivered by the generator to the RLC
series combination. As for any two-lead device, the instantaneous
power is given by the product of the current supplied to the com-
bination from (17) and the voltage across it from (14),

P = Ie = I35 &Emax cOs(wt — §) cos wt

= 5 ImaxEmax [cosQwt — 6) + cos ] (33)

using (9) in the last step with A = wt — ¢ and B = wt. Now time
average this result to obtain

Payg = ;Imaxgmax cos (34)

using (3) with ¢ = 2wt — 6. This expression can be written more
compactly using rms (‘root-of-the-mean-of-the-square’) values.
For the current from (17) one gets

I
fns = (s 057 9) = =7 (35)

using (4) with ¢ = wr — 6. Likewise for the supply emf from (14)

one finds
&
Erms = <8r2nax cos? ¢> = % (36)

using (4) with ¢ = wt. These two results imply that (23) can be
rewritten as

7 = Zms (37)
Irms
Substituting (35) and (36) into (34) leads to
Pavg = Iims&rms COS 0. (38)

Using the expression for the power factor cos ¢ found from the
triangle diagram in (27), this result can be rewritten in two other
ways. Eliminating &g using (37) gives

Pavg = I2R, (39)
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which emphasizes that power is only dissipated on average in the
resistor; the inductor and capacitor alternately store and release
electromagnetic energy as the charge and current increase and
decrease during the oscillations. For plotting purposes, instead,
eliminate Iy, using (37) to find

2
R
Payg = s (40)
R +(wL - L)

The graph of this expression in Figure 6 looks nominally simi-
lar to that in Figure 4. But keep in mind that Ij,x is inversely
proportional to Z, whereas P,y is inversely proportional to 72
and thus their shapes are not actually the same. However, both
curves peak at exactly wg given by (31). Again at that resonance
frequency the reactances of the inductor and capacitor cancel, so
that the peak value of P,y is sfms /R according to (40). The full
width at half maximum (FWHM) is Aw given by the difference
in the angular frequencies w; and w labeled in Figure 6 at which
Pye = £2,/2R. Substituting that average power into the left-
hand side of (40) and solving for the positive roots of the two

resulting quadratic equations, one finds [2],

R

Aw = 41
W=, (41)

which is exact regardless of how large R is. Consequently, if the
quality factor is defined as the reciprocal fractional width of the

i~
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Figure 6. Average power
Py, dissipated in the resis-
tor for the circuit in Fig-
ure 2 as a function of the
angular frequency w of the
power supply. The values at
resonance and the frequen-
cies at half the maximum
height are labeled for ease
in identifying the width Aw
of the peak. The circuit el-
ements were chosen to sat-
isfy L/R = 25RC. The hori-
zontal axis ranges from 0O to
2wy.

The average power is
maximum at the
resonant frequency.
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Figure 7. Charge ampli-
tude gmax on the capacitor
for the circuit in Figure 2
as a function of the angu-
lar frequency w of the power
supply. The values at the
peak and at zero frequency
are labeled. The circuit el-
ements were chosen to sat-
isfy L/R = 25RC. The hori-
zontal axis ranges from 0 to
2wy.

A large quality factor
results in oscillations for
many cycles before
decaying away when
there is no driver.

The charge amplitude
does not peak at the
resonant frequency.
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q max

Emax/ WOppe R

resonance peak,
(42)

_ Wo
Q_Aa)’

it must also be exactly equal to

_1\/Z
0=\

which expresses it in terms of the three circuit elements.

(43)

In contrast to Iyax and Pyyg, which peak at exactly wy, the charge
amplitude does not. According to (18) and (30),

Emax

\/Rsz + L2(w? - w(z))2

; (44)

gmax =

which peaks when the argument of the square root is a minimum.
By setting its derivative to zero, that is found to occur at an angu-
lar frequency of

1 1
= W 4 /1 -— ided Q> —. 45
Wpeak = WO 5 Q2 provided Q \/2 (45)

If O >> 1 then wpeak ~ Wy, but gmax peaks at zero frequency when
R > (2L/C)'/2. Substituting @ = wpeak into (44), the peak value
of Gmax is found to be emax(WrrcR)™" Where wgyc is the angular
frequency of oscillation of an undriven underdamped RLC circuit

i~
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[3]. Specifically wrrc = woll — (40%)~'1"/? where Q is defined
by (43), but the FWHM of the charge peak is not given by (41)
and so (42) does not apply to its graph.

Also, in contrast to Iyax and Payg, which are zero at w = 0, at that
frequency gmax = €maxC according to (44). A graph of gpax is
presented in Figure 7.

5. Application to Series Filter Circuits

Suppose voltage output leads (which draw minimal current) are
connected across the resistor in Figure 2. From (19) and (23), it

follows that
Vout max — ImaxR — R

9
Vin max Emax Z

(46)

where Vo = Vg and Vi, = &. (46) is a voltage divider equation:
the ratio of the output to the input voltage amplitudes is the ratio
of the output to the input impedances. According to the graph
in Figure 4, this ratio equals 100% at resonance but 0% at zero
and infinite frequencies. Thus it acts like a bandpass filter, cut-
ting off low and high frequencies but outputting the range from
approximately w; to w; in Figure 6.

Likewise, for the low-pass filter sketched in Figure 8, one finds

Vout max __ )& — 1 (47)

Vin max - Z V1+ (a)RC)z’

after putting X; = 0 in (28) because there is no inductor in the
circuit. This response is graphed in Figure 9. One can instead get
a high-pass filter by replacing the capacitor in Figure 8 with an

RESONANCE | June 2022 V\/\j\/\/\/\h

Figure 8. An RC series cir-
cuit used as a low-pass filter
where the input signal Vj, is
applied across both compo-
nents but the output Vo is
across the capacitor, which
shorts out at high frequen-

cies.

Series filter circuits can
be quickly analyzed
using the voltage divider
equation.
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Figure 9. Ratio of the
output to the input ampli-
tudes as a function of fre-
quency for the low-pass fil-
ter sketched in Figure 8. The
horizontal axis ranges from
0 to 8(RC)™!.
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V. V.

oul max " 1 max

1

inductor so that

Vout max — ﬁ — 1 , (48)

Vin max Z 1+ (ﬁ)2

after putting X¢c = 0 in (28). (48) is plotted in Figure 10.

Appendix: Motivating the Phase Shift

Perhaps the two hardest aspects of driven oscillators students have
to accept are—there is a phase shift between the driver and re-
sponse, and it is frequency-dependent. The purpose of this Ap-
pendix is to illustrate the necessity of introducing é(w) in the anal-
ysis.

Both the displacement x and the velocity v (or both the charge ¢
and the current /) cannot be in phase with the driver for the simple
reason that they are 90° out of phase with each other. Specifically,
if x is a sine function, then its derivative v is a cosine function.
Thus at least one of these two quantities must be phase shifted
relative to the driver.

However, in the case of an RC circuit connected to a battery
by closing a switch, the buildup of charge g on the initially un-
charged capacitor plates is gradual. Although the switch causes a
sudden rise in the driving emf from zero up to the battery voltage,
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v V.
out max’ " in max

1 B

g ¥ o]

there is a delay before the capacitor acquires a substantial frac-
tion of its maximum charge. Hence for an ac emf, there must be a
phase delay 0 in the function describing the charge g. But exactly
the same argument holds for the function describing the current /
for an LR circuit suddenly connected to a battery. Combining the
ideas in this and the previous paragraph, one now expects that if
say g is described by a sine function whose argument includes a
phase shift 9, then / must be described by a cosine function that
includes 9, justifying the form of (17) and (18), or (12) and (13).

Next, a simple demonstration is an eye-opening way to convince
students that the phase shift between the driver and its response
cannot merely be a constant but must vary with the driving fre-
quency. Get a large spring. Hold the top end in your hand and
attach a large weight to its bottom end such that the resonant fre-
quency is a few hertz. Start slowly oscillating your hand verti-
cally up and down. The weight will move approximately in phase
with your hand. Then gradually increase the frequency of oscil-
lation of your hand. The responding oscillations of the weight
will begin to shift out of phase relative to your hand, approaching
180° difference at high frequencies, such that the weight is mov-
ing upward at the instant your hand is moving downward, and
vice versa.

You can take advantage of the opportunity presented by this same
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Figure 10. Voltage trans-
mittance for a high-pass fil-
ter obtained by replacing the
capacitor in Figure 8 with
an inductor. The horizontal
axis ranges from O to 4R/ L.

Demonstrate the phase
shift using a spring and
weight.
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The average power
delivered to the
oscillator is maximized
when the driving
frequency matches the
resonant frequency.
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demonstration to show students that for a fixed amplitude of os-
cillation of your hand, the amplitude of oscillation of the hanging
weight is greatest at some intermediate frequency (near what is
called the resonant frequency) and is small at low and high fre-
quencies. You can remind students of those observations when
you later introduce the curves in Figures 4 and 7.

There is a competition between the angular frequency (k/m)'/? at
which the hanging mass m wants to oscillate (when undriven and
undamped) on the spring of stiffness constant k£ and the angular
frequency at which you are shaking your hand up and down. The
largest velocity response of the hanging mass occurs when these
two frequencies match. At that driving frequency, the velocity of
the mass must be in phase with the driving force of your hand
because then maximum power—given by the dot product of the
velocity and force—is delivered to the mass. That means the dis-
placement of the mass must be 90° out of phase with the driver
at resonance, agreeing with the preceding observations that they
were in phase at low frequencies and 180° out of phase at high
frequencies.
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