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Uncovering Dimension*
An Introduction to the Concept of Dimension in Topology

Tulsi Srinivasan

For common objects, we have a shared intuition about what
it means to be one, two or three dimensional. Translating that
intuition into a precise definition requires us to closely probe
what mathematical structures we are considering and exam-
ine more exotic objects, for which dimension is less intuitive.
This article explores the idea of dimension and its historical
development through the lens of topology.

Introduction

What do we mean when we say the real line is one-dimensional or
that the Cartesian plane is two-dimensional? For most of us, the
answer would probably involve coordinates. The Cartesian plane,
R?, is two-dimensional because every point can be uniquely spec-
ified by a pair of coordinates. The coordinates are also indepen-
dent, in the sense that once we choose the x-coordinate, the y-
coordinate can be chosen as any real number, and it still gives us
a point on the plane.

Similarly, any point in Euclidean space R>, can be uniquely given
by three independent coordinates, and any point on the real line R
can be uniquely specified by a single coordinate. More formally,
these spaces are vector spaces (over R), whose dimension can be
deduced from the number of elements in a basis. For example,
the set {(1,0),(1,0)} is a basis for R2, as the plane consists of
exactly those points of the form (x,y) = x(1,0) + ¥(0,1), and
(1,0) cannot be obtained from (0, 1). Similarly, R and R3 have
{1} and {(1, 0, 0), (0, 1, 0), (0, 0, 1)} respectively as bases.
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Figure 1. The disk and the
circle of radius 1 centered at
the origin.

Figure 2. The image of f
in the plane.

The circle and the disk
are not vector spaces,
and it may not
immediately be clear
what their dimension

should be.
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Contrast these spaces with the disk or the circle as in Figure 1;
again, any point is given by two coordinates. In the disk, once we
choose the x-coordinate to be 0, while there are infinitely many
choices for the y-coordinate, they all have to lie between —1 and
1. In the circle, once we choose the x-coordinate to be O, there
are exactly two choices for the y-coordinate. These are not vector
spaces, and it may not immediately be clear what their dimension
should be. However, as we will soon see, they are among the
best-behaved objects whose dimensions we can study.

1. Distorting Vector Spaces

What happens when we apply functions to R, R? or R3? For
example, the function f; : R — R? given by f1(¢) = (¢,1), has its
image (see Figure 2) as the line y = x in the plane. The original
space, or domain, is a one-dimensional vector space with basis
{1}, and its image is also one-dimensional with basis {(1, 1)}. This
is an example of a linear transformation, a map that preserves
vector space structure.
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Linear transformations are not too interesting as far as dimension
is concerned. They take vector spaces to vector spaces and can
either preserve or lower dimension. As one studies in linear alge-
bra, the dimension of the image is given by the rank of the map.
On the other hand, if we look at the function f> : R — R? given
by f2(¢) = (cos(?), sin(¢)), its image is a circle in the plane (Figure
3). This, as we have seen, is not a vector space.

We could argue that the circle is two-dimensional, as it cannot be
accommodated in one-dimensional space or because each point
has two coordinates. Or we could switch to polar coordinates
(which have some but not all properties of the Cartesian coor-
dinates), under which the circle can be described as points where
one coordinate (radius) is fixed, and the other (angle) varies, which
could lead us to say the circle is one-dimensional. Or, since f; is
differentiable, we could apply our earlier arguments to look at
the rank of the derivative of f, at each point. Or, if we decide
to look around single points rather than at the whole circle, we
might observe that when we zoom in to a ‘neighbourhood’ of any
point, it looks like a line, which is one-dimensional. In contrast,
if one zooms in around a point on the disk, any neighbourhood
looks like a plane, which is two-dimensional. This line of reason-
ing leads to defining the dimension of objects called manifolds,
which, informally, are spaces that ‘locally’ resemble R".

What happens if the function is not differentiable? If one looks
at just continuous functions, things get even worse (or better, de-
pending on how much chaos one finds desirable). For example,
the steps in Figure 4 lead to a continuous map from the interval
[0, 1] to the plane, whose image is called the Sierpifiski triangle.
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Figure 3. The image of f,
in the plane.
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Figure 4. The first few
steps in constructing the
Sierpifiski triangle.

Figure 5. The Sierpiriski
triangle.

The first glimpse into the
puzzling nature of
dimension was obtained
by Cantor.

1006

The image of the limit of these maps looks something like the
lacy fractal (Figure 5), and it is hard to say whether the twists
and turns have produced a one-dimensional or a two-dimensional
figure or whether the notion of dimension is even a meaningful
one for it.

In this article, we explore the concept of dimension that applies
to vector subspaces of R” when considered along with distortions
under continuous maps. So we need to think of these spaces, not
as vector spaces, or even manifolds but as something less rigid.
Then, we have to find a new definition of dimension that makes
sense for the circle, the disk, and even pathological objects like
the Sierpinski triangle.

2. An Informal Introduction to Topology

What if we drop all structure and focus just on sets? Perhaps the
first glimpse into the puzzling nature of dimension was obtained
by Cantor. Georg Cantor and Richard Dedekind were German
mathematicians who are considered pioneers of set theory. Cantor
asked if we can have a one-to-one correspondence or bijection
between the line and the plane (that is, if the two sets have the
same cardinality). Against his own intuition, Cantor was able to
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show exactly this during his correspondence with Dedekind in the
1870s. Cantor then remarked

...Rather the distinction which exists between fig-
ures of different dimension numbers must be sought
in entirely different aspects than in the number of in-
dependent coordinates, which is normally held to be
characteristic. [1]

For example, our earlier observations about the possible dimen-
sion of the disk or the circle don’t make sense when we consider
them as sets with no further structure. Cantor’s function started
as a relatively simple function from R” to R that interwove the
decimal expansions of n-tuples to form a single decimal expan-
sion. Through feedback from his correspondence with Dedekind,
he was able to correct the errors to produce a more complicated
function. As Dedekind pointed out, this function was not contin-
uous [2].

In real and multivariable calculus, one encounters the infamous
€-0 definition of continuity. For maps from R to R, an equivalent
definition is that a map is continuous precisely when the preimage
of an open interval is an open interval or a union of open intervals.
For maps from R” to R™, similarly, a map is continuous precisely
when the preimage of an “open m-ball” is a union of “open n-
balls”. Here, an open 1-ball is an open interval, an open 2-ball is
a disk without its boundary, an open 3-ball is a solid ball without
its boundary, and so on.

Since we have chosen to study continuous distortions of R", what
we need is a structure that is compatible with continuity, known as
the topology of that space. This is what Henri Poincaré described
as a “third geometry” (along with metric and projective geome-
try), where “quantity is completely banned” [3]. Since open balls
seem to determine continuity, the topology on a space is a col-
lection of subsets, called open sets, satisfying certain conditions
with respect to unions and intersections. The collection of open n-
balls in R" determines its standard topology. As all our examples
so far are subsets of R”, we consider them with the topology they
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Rather the distinction
which exists between
figures of different
dimension numbers must
be sought in entirely
different aspects than in
the number of
independent coordinates,
which is normally held
to be characteristic.

—Georg Cantor
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A continuous bijection

with a continuous
inverse is called a

homeomorphism and

intuitively allows

stretching, bending and
shrinking, but not tearing

1008

or glueing.

inherit, i.e., a topology determined by intersecting open n-balls
with the subset in question.

3. Invariance of Dimension

Cantor’s map, being discontinuous, is not compatible with the
standard topology on R and R%. One of the natural questions to
arise after Cantor’s finding was that whether his bijection could be
made continuous. A slightly stronger form of the question asked
if the inverse of this bijection could be made continuous too.

A continuous bijection with a continuous inverse is called a home-
omorphism and intuitively allows stretching, bending and shrink-
ing, but not tearing or glueing. Thus, an object distorted from one
form to another under a homeomorphism can be changed back
to its original form under another homeomorphism. Topologists
consider two objects to be the same if there is a homeomorphism
between them. For example, the letter ‘U’ is considered the same
as ‘V’, but different from the letter ‘O’.

The question of invariance of dimension asked if there can ever
be a homeomorphism between R” and R” for n different from m.
In other words, if we stretch, bend and shrink R” without glueing
or tearing, does the resulting object still have dimension n? It was
Cantor’s work that made the question even worth considering, as
mathematicians in the nineteenth century took the answer to be
an obvious yes. In his microscopically detailed history of the in-
variance of dimension, Dale Johnson describes how, after Cantor
constructed his bijection, his sceptical correspondent Dedekind
“warns Cantor not to polemize openly against the original ‘arti-
cle of faith’ of manifold theory unless he (Cantor) examines the
conjectured question of invariance”. [1]

Further doubt was cast on the issue in 1890 when Guiseppe Peano
defined a ‘dimension-raising’ continuous map from the interval
[0, 1] whose image is a square. We omit the description of the
map here, but like the function whose image is the Sierpinski
triangle above, it is defined as the limit of a sequence of func-
tions, each of whose images seems to occupy more and more
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space of the square. One might then well imagine there could
be a map combining the properties of those given by Cantor and
Peano, shattering natural intuitions about dimension being (topo-
logically) an intrinsic feature of R”. When we looked at the
Sierpiniski triangle, we asked whether it is meaningful to explore
the dimension of the image of R" under continuous maps. This is
very much tied to whether or not there is a definition of dimen-
sion of R" (equalling n) that is actually a feature of its topology
and, therefore, to the question of invariance of dimension.

After efforts by several mathematicians, the question was settled
in 1912, with Dutch mathematician LEJ Brouwer’s proof that R”
and R” are not homeomorphic for n # m. Brouwer is probably
best-known for his fixed point theorem, which says that a contin-
uous map from an n-ball to itself always leaves some point fixed,
and he laid the foundations for many ideas in general and alge-
braic topology. He also had a deep interest in philosophy and a
somewhat quarrelsome nature where other mathematicians were
concerned. His proof of invariance of dimension introduced some
ideas about the degree of a map and simplicial approximations
that play an important role in algebraic topology and also led to
a professional rivalry with Lebesgue. However, it did not indi-
cate any satisfactory topological definition of dimension, and this
continued to occupy Brouwer [1].

4. Inductive Dimension: Poincaré, Brouwer, Menger and Urysohn

The first step in defining dimension topologically was probably
made by Poincaré, who observed that dimension can be defined
inductively, saying

...To divide space, cuts that are called surfaces are
necessary; to divide surfaces, cuts that are called lines
are necessary; to divide lines, cuts that are called
points are necessary; we can go no further and a point
can not be divided, not being a continuum. [4]

While there is deep insight in this paragraph, it does not imme-
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Brouwer is best-known

for his fixed point

theorem, which says that
a continuous map from
an n-ball to itself always
leaves some point fixed,

and he laid the
foundations for many
ideas in general and
algebraic topology.
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Figure 6. The figure-eight
and two 3-balls joined at a
point.

]A property that remains
unchanged under homeomor-

phisms.
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diately give a mathematical definition. For example, most people
would agree that the figure-eight and the object consisting of two
3-balls meeting at a point shown in Figure 6 have different dimen-
sions (whatever the exact values are). But both can be divided by
a cut at a single point.

The quotation above appears in a book published in 1913, and
similar ideas appear in a paper he wrote in a philosophy journal
in 1912 [3]. 1912 was also the year of Poincaré’s death, so it was
left to others to mathematically refine his idea.

In 1913, a year after he proved the invariance of dimension, Brouwer
introduced a topological invariant' called Dimensionsgrad that
made use of the inductive nature of dimension pointed out by
Poincaré. He did this by refining the notion of a cut so that the
kind of problem we saw above does not occur and was able to
show that the dimension of R” is indeed n with his definition [5].
After this, Brouwer did not publish in dimension theory for over
a decade.

In the meantime, in the early 1920s, two mathematicians—Pavel
Urysohn and Karl Menger—also began working on a definition of
topological dimension. Urysohn was at Moscow University, and
Menger was at the University of Vienna, and their initial work
appears to be independent of Brouwer as well as one another [2].

The essence of their ideas became what is today known as the
small inductive dimension. In this idea, informally, a zero-dimensional
space is one in which the boundary of a small ‘neighbourhood’
around any point is empty; a one-dimensional space is one in
which the boundary of a small neighbourhood around any point
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Step 1 Step 2 Step 3 Step 4 Step 5

X
\—> Neighbourhood of x

0-D Boundary

Figure 7. The first few
steps in constructing the
Cantor set.

1-D Boundary

is at most zero-dimensional, a two-dimensional space is one in
which the boundary of a neighbourhood of any point is at most
one-dimensional, etc. Here, the boundary of a set can be thought
of as the place where the set and its complement meet.

For example, singletons, finite sets, the natural numbers, and the
rationals all have dimension zero, as small neighbourhoods of
points, being points, have no boundary. Even the Cantor set,
which is obtained from an infinite process of removing succes-
sive middle-thirds from an interval, the first few steps of which
are shown in Figure 7, is zero-dimensional.

On the other hand, the circle has dimension one, as the boundary
of an open arc is zero-dimensional, as can be seen in Figure 8.
Similarly, the disk has dimension two, as the boundary of an open
2-ball, being a circle, is one-dimensional.

Brouwer’s definition, after a small technical error was corrected,
coincides with this in some common spaces. However, the new
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Figure 8. Inductive dimen-
sion of the circle and disk.

Singletons, finite sets,
the natural numbers, and
the rationals all have
dimension zero, as small
neighbourhoods of
points, being points,
have no boundary.
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Figure 9. Tiling of I by in-
tervals that overlap at most

pairwise.

During his attempts to
prove the invariance of
dimension, Lebesgue

made a profound
observation about

n-dimensional cubes,

which is sometimes

referred to as the tiling
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or paving principle.
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definition proved more useful as the theory developed. There was
some animosity between Brouwer and Menger over how serious
the error was and, therefore, on whether Brouwer’s ideas were
precursors to dimension theory or the main discovery that only
needed to be refined and formalised [6]. On the other hand, van
Dalen says Brouwer viewed Urysohn, who pointed the error in
Brouwer’s definition, as the “rightful inheritor of his own topol-
ogy”, and took an interest in Urysohn’s mathematical legacy after
his tragically early death [7].

5. Lebesgue’s Covering Dimension

A very different path was taken by Lebesgue. During his at-
tempts to prove the invariance of dimension, Lebesgue made a
profound observation about n-dimensional cubes, which is some-
times referred to as the tiling or paving principle. The 1-cube
I is just the closed interval [0,1]. The 2-cube I? is the prod-
uct of the interval with itself, which is the square with vertices
(0,0),(1,0),(0,1) and (1,1). The 3-cube is I°, which is a cube
with vertices (0, 0, 0), (1,0, 0), (0, 1, 0), (0,0, 1), etc. Higher-dimen-
sional /" cannot be sketched but can be described mathematically.

We begin with I = [0, 1] and some small positive £. We can easily
‘cover’ I with open intervals of length € such that no point lies in
more than two of these open intervals. Figure 9 shows small open
intervals, considered to be tiles, coloured blue or red, that cover
1. The purple sections indicate an overlap of two tiles.

It would be easy to add more tiles and get three, four or more
tiles overlapping at various points. However, since the intervals
are open, if we try and remove the overlaps, the intervals will no
longer fully cover /. If we take any collection of open sets that
cover I, we can always find a sufficiently small € so that each &-
length tile in the pattern above lies completely in some set of the
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Figure 10. Tiling of I? with
at most triple-wise overlaps.

cover. We say that we have refined the cover by tiles that overlap
no more than pairwise (i.e., no more than two at a time).

Next, we consider the unit square I>. Figure 10 shows a tiling
with blue, yellow and red open squares. The dark blue-green
patches are where three tiles overlap; at all other points, we have
at most two tiles overlapping. The maximum number of tiles at
each overlap can easily be increased by adding more squares or
moving them around but cannot be reduced without creating gaps
in the cover. Imitating the same tiling, we can cover I° by tiles We can cover I? by tiles

of side any small positive &, such that every point lies in at most of side any small positive
&, such that every point

three tiles. Similar to earlier, any open cover can be refined by oo .
lies in at most three tiles.

square tiles that overlap no more than triple-wise (i.e., no more
than three at a time).

Going further, one can find a tiling by open cubes so that any
open cover of I3 can be refined by cubic tiles that overlap no more
than quadruple-wise (i.e., no more than four at a time). Tiles that
overlap at most triple-wise will not cover I°. A zero-dimensional
space, on the other hand, is one in which any open cover can be
refined by non-overlapping tiles.

Unfortunately, this insight was not proved rigorously in Lebesgue’s
1911 paper, and was corrected by Brouwer. Lebesgue himself of-
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One can use a tiling by

small open sets that

overlap no more than
two at a time to explain

why the dimension of

the circle or figure-eight
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is one.

fered another proof of it more than a decade later. However, he
did not extract a definition from it, and his observations were for-
mally given as a topological invariant called covering dimension
by Eduard Céch in 1933 [6]. This definition does not agree with
inductive dimension everywhere, but it does in a large class of
spaces (separable metric spaces).

One can use a tiling by small open sets that overlap no more than
two at a time to explain why the dimension of the circle or figure-
eight is one. With a little more work, one can also show that the
dimension of the Cantor set is zero, while that of the Sierpiriski
triangle is, perhaps surprisingly, one.

6. Conclusion

With the initial difficulties settled, dimension theory was able to
grow and flourish through the mid-twentieth century. There are
further notions of dimension that we have not talked about, in-
cluding the much more common notion of dimension of a man-
ifold (which does not apply to fractals like the Sierpifiski trian-
gle), Hausdorff dimension (which takes on non-integer values for
fractals, but is not a topological invariant), extension dimension,
homological and cohomological dimension, and several others.

However, even a patchy telling of the story of dimension brings
together several themes that frequently occur in mathematics: a
seemingly commonplace notion that turned baffling after a little
probing, a question about ordinary maps on ordinary spaces that
forced the construction of deeply counter-intuitive objects, an-
swers that drew on physical intuition, philosophical ideas, and
mathematical arguments, and the people who supported, chal-
lenged, riled, and illuminated the path for one another through
the process of discovery.
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