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In this article, we look at some of the less explored aspects

of the gamma function. We provide a new proof of Euler’s

reflection formula and discuss its significance in the theory of

special functions. We also discuss the solution of Landau to a

problem posed by Legendre, concerning the determination of

values of the gamma function using functional identities. In

1848, Oscar Schlömilch gave an interesting additive analogue

of the duplication formula. We prove a generalized version of

this formula using the theory of hypergeometric functions.

Introduction

A common misconception is that the study of special functions is

a potpourri of hideous-looking formulas subjected to tricky ma-

nipulations. Nothing could be farther from the truth inasmuch as

the study of special functions reveals a great deal of form, struc-

ture and symmetry, often related to Lie groups of symmetries of

differential equations. While its connection to number theory is at

least three hundred years old1, in the last many decades, surpris-

ing connections with combinatorics and Hopf algebras have been

unearthed. Among the special functions, the gamma function oc-

cupies a rather distinguished position, and elementary aspects of

it are taught in undergraduate and master level courses which oc-

casionally includes the Bohr–Mollerup theorem. In this article,

we discuss many less known properties of the gamma function

emphasizing the form and structure alluded above with some new

proofs. Parts of the note deal with some aspects that seem to have

fallen into oblivion whose origins can be traced back to the clas-

sic volumes of A. M. Legendre and Oscar Schlömilch. In fact, a Keywords

Gamma function, Euler’s reflec-

tion formula, Legendre’s duplica-

tion formula.

problem proposed by Legendre was resolved by E. Landau, which
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1For instance, Euler’s factorization of ζ(z).
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we present briefly for the benefit of the readers. We also show that

Landau’s result is complete and extend it to values of the gamma

function for complex arguments. Further, we substantially gen-

eralize an additive analogue of the duplication formula given by

Schlömilch and provide a proof for the same towards the end of

the article.

The gamma function first appeared in analysis nearly 300 years

agoFollowing the

function-theoretic

approach of Weierstrass,

one could also define the

gamma function in terms

of an infinite product.

in a letter written by Euler to Goldbach in 1729. In the nota-

tion of A. M. Legendre, the function Γ(z) is defined as

Γ(z) =

∫ ∞

0

t
z−1

e
−t

dt, Re z > 0. (1)

It is easy to show using integration by parts in the above definition

that Γ satisfies the basic functional relation

Γ(z + 1) = zΓ(z), Re z > 0. (2)

The integral in the RHS of (1) defines a holomorphic function in

the right half-plane R = {z ∈ C : Re z > 0}. By virtue of (2),

Γ continues analytically as a meromorphic function on the com-

plex plane with simple poles at 0,−1,−2, . . . , and in particular is

devoid of any essential singularities in C. We refer to [12] for his-

torical details and references to original sources. It is convenient

to have at our disposal the closely related beta function (so named

by Binet), which is defined as

B(z,w) =

∫ 1

0

t
z−1(1 − t)w−1

dt, Re z > 0, Re w > 0.

It is possible to obtain many other integral representations for the

beta function by applying simple variable transformations in the

above definition. We obtain the following useful representation

by setting s = t/(1 − t) in the above definition.

B(z,w) =

∫ ∞

0

s
z−1

(1 + s)z+w
ds, Re z > 0, Re w > 0.The beta-gamma relation

bears close resemblance

to a corresponding

formula relating the

character sums of Jacobi

and Gauss in algebraic

number theory [9, p. 57].

(3)

The two functions, beta and gamma, are connected via the famous

beta-gamma relation of Euler given by

Γ(z)Γ(w) = B(z,w)Γ(z + w), Re z > 0, Re w > 0. (4)
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The reflection formula, discovered by Euler, given by

Γ(z)Γ(1 − z) =
π

sin πz
, (5)

expresses the gamma function as “one half of the sine function”

in a multiplicative sense. One can thus expect factorizations of

the sine function to have gamma analogues and a notable case is

the famous duplication formula discovered by A. M. Legendre in

1809. The function ϕ(z) = sin πz factorizes as

ϕ(z) = 2ϕ

(
z

2

)
ϕ

(
z

2
+

1

2

)
, (6)

with the corresponding gamma analogue being

√
πΓ(z) = 2z−1Γ

(
z

2

)
Γ

(
z

2
+

1

2

)
. (7)

The analogy between (6) and (7) is striking and even more so is

the analogy between the submultiple angle formula

ϕ(z) = 2k−1
ϕ

(
z

k

)
ϕ

(
z

k
+

1

k

)
. . . ϕ

(
z

k
+

k − 1

k

)
,

and its gamma analogue (stated below) due to Gauss (1812). Gauss’s multiplication

formula embeds as a

special case of a

beautiful reciprocity

formula given by J. A.

Schobloch [12, Theorem

3.7].

(2π)
n−1

2 n
1
2
−zΓ(z) =

n−1∏

j=0

Γ

(
z

n
+

j

n

)
. (8)

1. Proof of the Reflection Formula

Numerous proofs of the reflection formula are available in the

literature, and proofs due to Dirichlet, Dedekind and Gauss are

discussed in [12] in addition to a new proof based on the additive

approach to gamma function with the initial value problem

d
2

dx2
(log y(x)) =

∞∑

n=1

1

(x + n)2
, y(1) = 1, y′(1) = Γ′(1),

as a point of departure. Complete details of Dedekind’s proof are

available in [13]. Here, we shall discuss a proof with the flavour
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of partial differential equations. Although the argument given

here has some features in common with the proof in [12, The-

orem 3.3], some essential differences make this proof somewhat

didactic. The crucial step in the argument is the non-vanishing

of the gamma function. We show that the gamma function has

no zeros in the complex plane, using the duplication formula for

which we give a well-known elementary proof for completeness.

Theorem 1 (Legendre’s duplication formula). For z in the right

half-plane, (7) holds.

Proof. Let x be a positive real number. On setting t = sin2
u in

the definition for B(x, x), we obtain

22x−1B(x, x) = 2

∫
π/2

0

sin2x−1(2u)du =

∫
π

0

sin2x−1
udu

= 2

∫
π/2

0

sin2x−1
udu = B(x, 1/2).

Appealing to the beta-gamma relation, we get the stated result for

positive real values of x. The result follows for all z in the right

half-plane via analytic continuation. �

Lemma 2. The function Γ(z) has no zeros in C.

Proof. SupposeThe non-vanishing of the

gamma function can also

be proved as a direct

consequence of the

Euler’s reflection

formula.

z0 ∈ C is a zero of the gamma function. Since

Γ(z0 + n) must also vanish for every natural number n, we may as

well assume that Re(z0) > 0. Now, (7) implies

Γ

(
z0

2

)
= 0, or Γ

(
z0

2
+

1

2

)
= 0.

Define z1 =
z0

2
+
ǫ1

2
, where ǫ1 = 0 and ǫ = 1 in the former and latter

case respectively. Similarly, we obtain another zero z2 =
z1

2
+

ǫ2

2

with ǫ2 = 0 or 1. Continuing in this manner, we obtain a sequence

of zeros {zn}n∈N∪{0} satisfying the recursive relation

zn =
zn−1

2
+
ǫn

2
,
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with ǫn = 0 or 1, ∀n ∈ N. Repeated application of the above

relation yields

zn =
z0

2n
+

n∑

j=1

ǫ j

2n+1− j
, ∀n ∈ N. (9)

We claim that if j , k, then z j , zk. Assume to the contrary that

z j = zk for some j , k. We may assume without loss of generality

that j < k. Then, from (9), we have

Im

[(
1

2 j
−

1

2k

)
z0

]
= 0,

which is a contradiction since the Gamma function has no positive

real zeros (as can be easily seen from (1)). The sequence {zn} is

evidently bounded since |zn| ≤ |z0| + 1,∀n ∈ N from (9). Hence,

it must contain a subsequence which converges to a point w. The

point w must be an essential singularity, but this is a contradiction

since the only singularities of the gamma function are poles. �

We now state and prove Liouville’s theorem for harmonic func-

tions, which we shall use in conjunction with Lemma 2 to prove

Euler’s reflection formula. For the reader uninitiated in the theory

of distributions, we provide some basic definitions in Box 1.

Lemma 3 (Liouville’s theorem for harmonic functions). Assume

that h : Rn −→ R is a harmonic function satisfying the condition

|h(x)| ≤ |P(x)|, ∀x ∈ Rn
, (10)

where P(x) is a polynomial of degree k. Then, h(x) is itself a

polynomial of degree at most k.

Proof. The proof is certainly folk-lore. The estimate (10) implies

that the function h(x) defines a tempered distribution [15], and so

taking the Fourier transform of ∆h = 0, we conclude

|ξ|2̂h(ξ) = 0.
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Box 1. Definitions from the Theory of Distributions.

1. We consider the space of test functions defined as the vector space S(Rn) consisting of

smooth functions φ : Rn −→ C such that for each pair of multi-indices α, β, we have

ρα,β(φ) := sup
x∈Rn

|xα∂βφ(x)| < ∞.

The functions ρα,β form a family of semi-norms on S(Rn) making it a Hausdorff space and

the vector space operations on S(Rn) are continuous with respect to this topology.

2. A continuous linear map u : S(Rn) −→ C is called a tempered distribution. An example

of a tempered distribution is the Dirac distribution δ0 which is defined by φ 7→ φ(0).

3. If u is a tempered distribution, its j−th partial derivative is the tempered distribution ∂ ju :

S(Rn) −→ C given by

φ 7→ −u(∂ jφ).

4. Let Ω be an open set in Rn. A function f : Ω −→ R is said to be harmonic if it is twice

continuously differentiable and ∆ f = 0, where ∆ is the Laplace operator.

5. A tempered distribution u is said to be harmonic if for φ ∈ S(Rn), we have u(∆φ) = 0.

6. The Fourier transform of a test function φ is defined to be the element φ̂ ∈ S(Rn) given by

φ̂(ξ1, . . . , ξn) =

∫

Rn

φ(x) exp(−ix · ξ)dx1dx2 . . . dxn.

7. The Fourier transform of a tempered distribution u is the tempered distribution û given by

φ 7→ u(φ̂).

Thus, ĥ is a distribution with point support at the origin, and there-

fore is a linear combination of Dirac delta and finitely many of its

derivatives [15, p. 80], i.e.

ĥ =
∑

|α|≤k

cαδ
(α)

0
.

Thus, h(x) itself must be a polynomial and the estimate (10) forces

the degree of h to be at most k. �
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We are now ready to prove the reflection formula. Since this part

of the argument is identical to that in [12, Theorem 3.3], the proof

is kept to a bare minimum.

Theorem 4 (Euler’s reflection formula). For z ∈ C \ Z, (5) holds.

Proof. Observe that the function F defined by

F(z) = zΓ(z)Γ(1 − z)
sin πz

z
,

is an entire function devoid of zeros and has period one. Hence,

F(z) = exp G(z) for some one-periodic entire function G(z), and

so

exp(Re G(z)) = |F(z)| ≤ C exp π|y|, |y| ≤ 1/2.

We conclude by one-periodicity that the harmonic function Re

G(z) is bounded by a linear polynomial and hence by Lemma 3,

we obtain G(z) = A + Bz. The constants A and B can be deter-

mined easily, namely A = ln π and B = 0, and the result fol-

lows. �

The reflection formula is also significant from the point of view

of harmonic analysis inasmuch as it appears a very special case of

Ramanujan’s Master formula [5, equation (1.30)] which was re-

cast by G. H. Hardy as a Paley Wiener theorem for Mellin trans-

forms, that we state below. We also mention the more recent

multi-dimensional analogues available in [3].

Theorem 5 (Ramanujan). Assume that φ is a holomorphic func-

tion in a half-plane Re z > −η (η > 0) and satisfies an estimate of

the form

|φ(z)| ≤ C exp(q Re z + r |Im z|)

In [5, p. 15], G. H.

Hardy remarks that

Ramanujan was

especially fond of (11)

and made continual use

of it.

for certain constants C, q and r with 0 < r < π. Then,

∫ ∞

0

x
s−1
ψ(x)dx =

π

sin πs
φ(−s), (11)

where ψ(x) =
∑∞

n=0(−x)n
φ(n) and 0 < Re s < η.
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Note that the series appearing in the expression for ψ(x) converges

when 0 < x < exp(−q), but Hardy shows that it continues analyt-

ically to a sector containing [0,∞). Further, note that the integral

on the LHS of (11) is the Mellin transform of the function ψ.

Setting φ(x) = 1 in (11) and using (3), we obtain the reflection

formula for 0 < x < 1, which can be extended to C \ Z using

analytic continuation.

2. Legendre’s Problems and Landau’s Theorem

Legendre, in his book [7], takes up the problem of determining

the values of the gamma function given its values on a subset of

(0, 1]. The first problem of this kind is finding the least number

of values among

Γ

(
1

m

)
, Γ

(
2

m

)
, . . . , Γ

(
m − 1

m

)
, (12)

from which all others may be determined by employing (2), (5)

and (8). After taking logarithms, the problem translates into a

question of computing the rank of a certain matrix with entries 0,

1 and −1. M. A. Stern proved [14] that the required least number

of values in (12) is 1
2
ϕ(m), where ϕ is the Euler’s totient function.

An elegant solution to the above problem expressed in terms of a

structure theorem for finite abelian groups appears in [8].

The second problem is measure theoretic. Let us say that a subset

S ⊆ (0,∞) is a fundamental set for Γ(x) if the restriction Γ|S deter-

mines Γ completely on (0,∞) through finitely many applications

of (2), (5) and (8). For example, the functional relation (2) imme-

diately gives (0, 1] as a fundamental set. The reflection formula

now gives (0, 1/2) ∪ {1} as a fundamental set. Using the duplica-

tion formula and (5), one can show without much difficulty that

the fundamental set (0, 1/2)∪ {1}may be shrunk to (0, 1/3]∪ {1}.

In [4, p. 28], it is claimed that the fundamental set may be shrunk

to (0, 1/4) by virtue of the duplication formula, though it is not so

obvious. However, we provide an elementary argument to show

that the fundamental set can be shrunk to (0, 1/4] ∪ {1/3, 1}.
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Let us introduce some notations before proceeding further. For

any subsets A, B ⊆ (0,∞), we define A � B if the values of

the gamma function on B completely determine its values on A.

Clearly, the relation � is both reflexive and transitive, with the

following additional properties:

1. A ⊆ B implies A � B,

2. A1 � B1, A2 � B2 implies A1 ∪ A2 � B1 ∪ B2.

Theorem 6. The set (0, 1/4] ∪ {1/3, 1} is a fundamental set for

the gamma function.

Proof. We prove this in two steps. We first show that (0, 1/2) �

(0, 1/3] and then show that (0, 1/3] � (0, 1/4] ∪ {1/3} to con-

clude that (0, 1/4] ∪ {1/3, 1} is a fundamental set for the gamma

function.

From (7), it is evident that for any z ∈ (0,∞), we have {z/2 +

1/2} � {z, z/2}. For z ∈ (0, 1/3], we have z/2, z ∈ (0, 1/3]

and z/2 + 1/2 ∈ (1/2, 2/3]. This implies (1/2, 2/3] � (0, 1/3].

From (5), we have [1/3, 1/2) � (1/2, 2/3], which further implies

[1/3, 1/2) � (0, 1/3]. Hence, (0, 1/2) � (0, 1/3].

To show (0, 1/3] � (0, 1/4] ∪ {1/3}, we choose a suitable combi-

nation of (5) and (7) in order to apply a technique similar to the

first part of the proof. Setting z = 2α + 1/2 and z = 4α in (7), we

obtain

√
πΓ(2α + 1/2) = 22α−1/2Γ(α + 1/4)Γ(α + 3/4), and
√
πΓ(4α) = 24α−1Γ(2α)Γ(2α + 1/2),

respectively. And setting z = α + 3/4 in (5), we obtain

Γ(α + 3/4)Γ(1/4 − α) =
π

sin π(α + 3/4)
.

Multiplying the three equations obtained above and cancelling

like terms (since gamma is non-vanishing), we obtain

Γ(4α)Γ(1/4 − α) =
26α−3/2

sin π(α + 3/4)
Γ(2α)Γ(α + 1/4). (13)
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From the above equation, it is evident that for any α ∈ (0, 1/4),

we have {α + 1/4} � {4α, 2α, 1/4 − α}. For α ∈ (0, 1/42), we

have 4α, 2α, 1/4 − α ∈ (0, 1/4) and α + 1/4 ∈ (1/4, 1/4 + 1/42).

This implies (1/4, 1/4 + 1/42) � (0, 1/4). Therefore, we obtain

(0, 1/4+ 1/42) � (1, 1/4]. Now, for α ∈ (0, 1/42 + 1/43), we have

2α, 4α, 1/4−α ∈ (0, 1/4+1/42) and α+1/4 ∈ (1/4, 1/4+1/42 +

1/43). This implies (1/4, 1/4 + 1/42 + 1/43) � (0, 1/4 + 1/42).

Thus, we obtain (0, 1/4 + 1/42 + 1/43) � (0, 1/4]. Repeating

this process infinitely many times, we obtain (0, 1/3) � (0, 1/4].

Finally, we have (0, 1/3] � (0, 1/4] ∪ {1/3}. �

Definition 7 (Germinating function). A continuous function f :

(0,∞) −→ R is said to be a germinating function if there are mea-

surable subsets S ⊆ (0,∞) of arbitrarily small measure such that

f |S determines f completely through finitely many applications

of functional identities.

A. M. Legendre [7] posed the problem of finding fundamental

subsets for the gamma function, having measure as small as pos-

sible. E. Landau [6] provided the solution to this problem by

proving that the gamma function is a germinating function. For

the benefit of the readers, we include Landau’s proof of this re-

sult. It is remarkable that his proof makes use of only (2) and (7),

and doesn’t require other functional identities (namely (5), and

(8) with n > 2). The following lemma would be needed.

Lemma 8 (Landau). For any δ ∈ (0, 1] and an arbitrary interval

(α, β] with 0 ≤ α < β ≤ 1, we can find a non-negative integer m

and intervals I, {Ji : 1 ≤ i ≤ m} such that

(α, β] � I ∪ J1 ∪ · · · ∪ Jm,

where I ⊆ (0, δ/2] and Ji ⊆ (δ/2, 1] for each 1 ≤ i ≤ m. More-

over, the lengths of these intervals satisfy the conditions

|I| +

m∑

i=1

|Ji| = β − α, and |I| >
δ

4
(β − α).

Proof. If β ≤ δ/2, there is nothing to prove since I = (α, β] sat-

isfies the given conditions. If β > δ/2, let m be the least natural
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number such that
β

2m
≤
δ

2
.

Therefore, we have
β

2m−1
>

δ

2
,

which further implies

1

2m
≥

β

2m
>

δ

4
.

From equation (7), it is clear that

(α, β] �

(
α

2
,

β

2

]
∪

(
α

2
+

1

2
,

β

2
+

1

2

]
.

The second interval is a subset of (1/2, 1] ⊆ (δ/2, 1]. Thus, we

do not transform it further. Through an m-fold application of (7)

on the first interval, we obtain

(α, β] �

(
α

2m
,

β

2m

]
∪ J1 ∪ · · · ∪ Jm,

where Ji ⊆ (1/2, 1] ⊆ (δ/2, 1] and the sum of the lengths of the

intervals I = (α/2m
, β/2m], {Ji}i∈[m] is equal to β − α. Moreover,

the interval I ⊆ (0, δ/2] and its length is

|I| =
β − α

2m
>

δ

4
(β − α).

�

Theorem 9 (Landau). The gamma function Γ : (0,∞) → R is a

germinating function.

Proof. For any δ > 0, we show that there exists a fundamental set

for the gamma function having Lebesgue measure less than δ. We

begin with the fundamental interval (α, β] = (0, 1]. From Lemma

8, we obtain intervals I0, J1, . . . , Jm such that I0 ⊆ (0, δ/2] and

Ji ⊆ (δ/2, 1] for each i ∈ [m]. Moreover, these intervals satisfy

the conditions

(0, 1] � I0 ∪ J1 ∪ · · · ∪ Jm, and

m∑

i=1

|Ji| < (1 − δ/4).
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Further, applying Lemma 8 to each of the Jis, we obtain intervals

Ii, Ji,1, . . . , Ji,mi
such that Ii ⊆ (0, δ/2] and Ji, j ⊆ (δ/2, 1] for each

j ∈ [mi]. Moreover, we have

(0, 1] � I0∪


m⋃

i=1

Ii

∪


m⋃

i=1

mi⋃

j=1

Ji, j

 , and

m∑

i=1

mi∑

j=1

|Ji, j| < (1−δ/4)2
.

After t iterations, we can find a finite collection of intervals {Ia}a∈A

and {Jb}b∈B such that Ia ⊆ (0, δ/2] for each a ∈ A and Jb ⊆

(δ/2, 1]. Moreover, these intervals satisfy the conditionLandau mentions in [6]

that his result holds for

all functions satisfying

functional identities

similar to (2) and (7)

(that is, functional

identities with the same

affine relations between

the arguments). One

such function is the sine

function. We remark that

the subsequent results in

this section also hold for

such functions.

(0, 1] �


⋃

a∈A

Ia

 ∪

⋃

b∈B

Jb

 , and
∑

b∈B

|Jb| < (1 − δ/4)t
.

We can choose t so large that

(1 − δ/4)t
< δ/2,

or equivalently

t <
log(δ/2)

log(1 − δ/4)
.

Thus, we have found a fundamental set for the gamma function

having Lebesgue measure less than δ. �

The following result states that the above theorem is sharp and

cannot be improved further, thereby settling completely Legen-

dre’s original problem of finding fundamental sets for the gamma

function, having measure as small as possible.

Theorem 10. Let A ⊆ (0,∞) be a set with Lebesgue measure

zero. Then, A is not a fundamental set for the gamma function.

Proof. Let E be the countable collection of identities containing

(2), (5), and (8) for each n ∈ N. For i ∈ N, let Ai be the set

of points on which the value of the gamma function can be de-

termined by at most i applications of identities in E to the set of

values of the gamma function on the set A0 = A. Let us choose

any identity e ∈ E. Then, e contains finitely many, say k, gamma

values. For example, the n = 2 instance of (8) contains k = 3
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gamma values. Let Te be the collection of k(k−1) affine transfor-

mations which take the argument of one of these k gamma values

to that of another. Then, it is easy to check that

Ai ⊆ Ai−1 ∪


⋃

e∈E

⋃

t∈Te

t(Ai−1)



for each i ∈ N. Therefore, λ(Ai−1) = 0 implies λ(Ai) = 0 since the

Lebesgue measure λ is complete. Then, it follows by induction

that λ(Ai) = 0 for each i ∈ N ∪ {0}. The set of points on which

the values of the gamma function can be determined using finitely

many identities in the set E is equal to B =
⋃∞

i=0 Ai. It follows

that λ(B) =
∑∞

i=0 λ(Ai) = 0, and hence A is not a fundamental set

for the gamma function. �

Throughout the above discussion, we considered values of gamma

function only at positive real points. However, it is possible to

extend these results to the full domain of definition D = C \

{0,−1,−2, . . . }, of the gamma function. The theorem given be-

low is an analogue of Theorem 9.

Theorem 11. For any δ > 0, there exists a measurable subset

S ⊆ D with Lebesgue measure less than δ so that Γ|S determines Γ

completely through finitely many applications of functional iden-

tities.

Proof. Let δ > 0. For each n ∈ N ∪ {0}, we define the set S n by

S n = {x + iy : x ∈ (0,∞) and − 2n
< y < 2n}.

Further, we define

S = {x + iy : x ∈ I and − 1 < y < 1},

where I ⊆ (0,∞) is a measurable fundamental set for the gamma

function with λ(I) < δ

2
, as constructed in the proof of Theorem 9.

We claim that S is the required set. To show this, we first note that

S is Lebesgue measurable and λ(S ) < 2 · δ
2
= δ. Next, we show

that S 0 � S (� can be defined for subsets of D in the same way
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as before). This can be shown by imitating the proof of Theorem

9 combined with that fact that

Re

(
z

2
+

m

2

)
=

Re(z)

2
+

m

2
,

for m ∈ {0, 1}, and

−1 < Im

(
z

2

)
= Im

(
z

2
+

1

2

)
< 1,

for |Im(z)| < 1. Now, we show that S n � S n−1 for each n ∈ N.

This follows directly from duplication formula since z/2, z/2 +

1/2 ∈ S n−1 for z ∈ S n. Using the transitive property of �, we

conclude that S n � S for each n ∈ N. For any point z0 in the right

half-plane R, there exists an n0 ∈ N such that z0 ∈ S n0
. Therefore,

we have R � S . Further, using (5) (or by repeated application of

(2)), we obtain D � R, which when combined with R � S gives

D � S . �

Finally, we remark that there does not exist any set S ⊆ D having

Lebesgue measure zero such that Γ|S determines Γ completely on

its domain through finitely many applications of (2), (5) and (8).

The proof of this statement is the same as that of Theorem 10.

However, there remains the question of the existence of minimal

fundamental sets leading to the following interesting problem.Oscar Xavier Schlömilch

may be ranked as a

significant contributor to

classical analysis in the

19th century, and his

Compendium der

Höheren Analysis [11]

together with

Analytische Studien [10]

are significant

publications. Among

other topics in special

functions, his name is

associated with the

generating function for

Bessel functions of

integer order.

Problem 12 (Minimal fundamental sets). Do minimal fundamen-

tal sets for the gamma function exist? If so, does there exist a

measurable/non-measurable minimal fundamental set?

3. Schlömilch’s Generalization of the Duplication Formula

While the refection formula and the duplication formula are mul-

tiplicative in nature, there is a beautiful additive formula due to

O. Schlömilch [10, Section 5] which generalizes the duplication

formula. The result of Schlömilch seems to have passed into

oblivion since there is no mention of it in modern works on spe-

cial functions. In this section, we further generalize the formula
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of Schlömilch. The original proof of Schlömilch employs cer-

tain remarkable transformations of integrals but as such cannot

be adapted to prove our proposed generalization. We have thus

included both the original proof of Schlömich as well as a new

proof of the generalized version.

Theorem 13 (Schlömilch). Let m be a non-negative integer and

z ∈ C be such that Re(z) > m. The Pochhammer

symbol (α)n is defined as

α(α + 1) . . . (α + n − 1),

and is also known as the

rising factorial.

Then,

2z−1

√
π

Γ

(
z + m + 1

2

)
Γ

(
z − m

2

)
=

m∑

n=0

Γ(z − n)

2nn!
(m − n + 1)2n, (14)

where (.)2n is the Pochhammer symbol.

Proof. We begin with the following well-known identity for cos ku

[2, p. 180], where k = 2m+1, is an odd natural number and u ∈ C.

cos ku = cos u

m∑

n=0

(−1)n

(2n)!
sin2n

u



n∏

j=1

(k2 − (2 j − 1)2)


. (15)

Setting x = e
iu and using

cos ku =
1

2

(
x

k +
1

xk

)
, cos u =

1

2

(
x +

1

x

)
, and sin u =

i

2

(
x −

1

x

)
,

in (15), we obtain

x
k +

1

xk
=

(
x +

1

x

) m∑

n=0

1

22n(2n)!

(
x −

1

x

)2n



n∏

j=1

(k2 − (2 j − 1)2)


.

Dividing both sides by x and using k = 2m + 1, we obtain

x
2m +

1

x2m+2
=

(
1 +

1

x2

) m∑

n=0

1

(2n)!

(
x −

1

x

)2n

(m − n + 1)2n. (16)

For n = 0, 1, . . . ,m, let us define

M2n =
1

(2n)!
(m − n + 1)2n, (17)

so that (16) can be written as

x
2m +

1

x2m+2
=

(
1 +

1

x2

) m∑

n=0

M2n

(
x −

1

x

)2n

.
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Let z be a complex number with Re(z) > m. Dividing the above

equation by
(
x

2 + 1
x2

)z+ 1
2 and integrating from 0 to 1, we obtain

∫ 1

0

x
2m

dx

(
x2 + 1

x2

)z+ 1
2

+

∫ 1

0

dx

x2m+2
(
x2 + 1

x2

)z+ 1
2

=

m∑

n=0

M2n

∫ 1

0

(
x − 1

x

)2n

(
x2 + 1

x2

)z+ 1
2

(
1 +

1

x2

)
dx.

(18)

Substituting y = 1
x

in the second integral appearing in the above

equation, the left hand side equals

∫ ∞

0

y
2m+2z+1

dy

(
y4 + 1

)z+ 1
2

.

Further, substituting r = y
4 in the above expression, we recognize

it as a beta integral and appealing to the beta-gamma relation (4),

we get

LHS of (18) =
1

4

Γ
(

z+m+1
2

)
Γ
(

z−m

2

)

Γ
(
z + 1

2

) . (19)

The integrals appearing on the right hand side of (18) are likewise

beta integrals as is evident from the discussion that follows.

∫ 1

0

(
x − 1

x

)2n

(
x2 + 1

x2

)z+ 1
2

(
1 +

1

x2

)
dx =

∫ 1

0

(
1
x
− x

)2n

(
2 +

(
1
x
− x

)2
)z+ 1

2

(
1 +

1

x2

)
dx.

Upon substituting z = 1
x
− x followed by r = z

2

2
, the above integral

takes the form

2n

2z+1

∫ ∞

0

r
n− 1

2 dr

(1 + r)z+ 1
2

,

which, as asserted is a beta integral in view of (3). Appealing to

the beta-gamma relation (4), we obtain

2n

2z+1

∫ ∞

0

r
n− 1

2 dr

(1 + r)z+ 1
2

=
2n

2z+1

Γ
(
n + 1

2

)
Γ(z − n)

Γ
(
z + 1

2

) . (20)
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Using (19) and (20) in (18), and multiplying both sides by Γ
(
z + 1

2

)
,

we obtain

1

4
Γ

(
z + m + 1

2

)
Γ

(
z − m

2

)
=

1

2z+1

m∑

n=0

2n
M2nΓ

(
n +

1

2

)
Γ(z − n).

(21)

Further substituting the values of M2n from (17) and using the

known values

Γ

(
n +

1

2

)
=

(2n)!

22nn!

√
π,

of the gamma function, we obtain the desired result. �

Observe that when m = 0, the above theorem reduces to the du-

plication formula of Legendre. Further, setting z = m + 2l + 1 for

some non-negative integer l, in (14) gives

(
m + l

m

)
=

m∑

n=0

1

2m+n

(
m + n

m

)(
2l + m − n

2l

)
,

which bears some resemblance with the Chu-Vandermonde iden-

tity.

Hypergeometric

functions in one form or

another can be traced

back to J. Wallis and A.

L. Crelle with the first

decisive analytic study

due to Euler. Gauss

recognized its supreme

place in analysis in his

great memoir of 1812, in

which he studied it in the

complex domain listing

23 identities expressing

known transcendental

functions in terms of it.

See Weierstrass [16].

We now state and prove a generalization of the above theorem.

The proof involves expressing the infinite series in the right hand

side of (14) as a hypergeometric function and application of some

hypergeometric identities and transformations along with Euler’s

reflection formula.

Theorem 14. Let w, z ∈ C be such that w+ z− 1/2 is non-integer

and z,w are not non-positive integers. Then,

1
√

2π

2w+zΓ(w)Γ(z)

1 − cot wπ cot zπ
=

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w−z−n+1/2)2n,

(22)

where (.)2n is the Pochhammer symbol.

Proof. We begin with the RHS and show that it is equal to the

LHS. Multiplying and dividing the RHS by Γ(w + z − 1/2), and
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expressing the Pochhammer symbol as a gamma quotient, we get

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w − z − n + 1/2)2n

= Γ(w + z − 1/2)

∞∑

n=0

Γ(w + z − n − 1/2)

Γ(w + z − 1/2)

Γ(w − z + n + 1/2)

Γ(w − z − n + 1/2)

2−n

n!
.

(23)

The coefficient in the summation on the RHS of the above equa-

tion can further be written as

Γ(w + z − n − 1/2)

Γ(w + z − 1/2)

Γ(w − z + n + 1/2)

Γ(w − z − n + 1/2)

= (w − z + 1/2)n

Γ(w + z − n − 1/2)

Γ(w + z − 1/2)

Γ(w − z + 1/2)

Γ(w − z − n + 1/2)
.

(24)

Now using Euler’s reflection formula (or the functional relation

(2)), we have

Γ(w − z + 1/2)

Γ(w − z − n + 1/2)
= (−1)n

Γ(z − w + n + 1/2)

Γ(z − w + 1/2)
,

and
Γ(w + z − n − 1/2)

Γ(w + z − 1/2)
= (−1)n

Γ(3/2 − w − z)

Γ(3/2 − w − z + n)
.

Using the above two equations in (24) and expressing gamma

quotients as Pochhammer symbols, we obtain

Γ(w + z − n − 1/2)

Γ(w + z − 1/2)

Γ(w − z + n + 1/2)

Γ(w − z − n + 1/2)

=
(w − z + 1/2)n(z − w + 1/2)n

(3/2 − w − z)n

.

Using the above equation in (23), we get

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w − z − n + 1/2)2n

= Γ(w + z − 1/2)

∞∑

n=0

(w − z + 1/2)n(z − w + 1/2)n

(3/2 − w − z)n

(1/2)n

n!
.

The infinite sum on the RHS of the above equation can be identi-

fied as a hypergeometric function to obtain

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w − z − n + 1/2)2n

= Γ(w + z − 1/2) 2F1(w − z + 1/2, z − w + 1/2; 3/2 − w − z; 1/2).
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Applying Euler’s transformation [1, Theorem 2.2.5] to the hyper-

geometric function in the above equation, we get

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w − z − n + 1/2)2n

= 2w+z−1/2Γ(w + z − 1/2) 2F1(1 − 2w, 1 − 2z; 3/2 − w − z; 1/2).

The parameters of the hypergeometric function 2F1(a, b; c; 1/2)

in the above equation satisfy the condition c = 1
2
(a + b + 1),

and hence using Gauss’s second summation theorem [1, Theorem

3.5.4(i)], we obtain

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w − z − n + 1/2)2n

= 2w+z−1/2Γ(w + z − 1/2)
Γ(1/2)Γ(3/2 − w − z)

Γ(1 − w)Γ(1 − z)
,

which can further be written as

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w − z − n + 1/2)2n

= 2w+z−1/2Γ(1/2)
Γ(w)Γ(z)Γ(w + z − 1/2)Γ(3/2 − w − z)

Γ(w)Γ(1 − w)Γ(z)Γ(1 − z)
.

Now, applying Euler’s reflection formula to the gamma products

Γ(s)Γ(1 − s) for s = w, z, and w + z − 1/2, the above equation

reduces to

∞∑

n=0

Γ(w + z − n − 1/2)

2nn!
(w − z − n + 1/2)2n

= 2w+z−1/2Γ(1/2)
Γ(w)Γ(z) sin πw sin πz

π sin π(w + z − 1/2)
,

= −2w+z−1/2Γ(1/2)
Γ(w)Γ(z) sin πw sin πz

π cos π(w + z)
.

Using the known value Γ(1/2) =
√
π and the angle-sum formula

for cosine in the above equation yields the desired result. �

We finally remark that replacing w with z+m+1
2

and z with z−m

2
in

the above theorem yields Theorem 13.
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