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Two Identities∗

Björner and Welker studied homology of k-equal partition

lattices and obtained interesting identities for (n − 1)!. In this

article, simple combinatorial proofs of these identities are dis-

cussed.

Introduction

The following identities hold for all integers n ≥ 2,

(n − 1)! =
∑� n

2 �
t=1

{∑
j1+ j2+...+ jt=n;

ji≥2,∀i

(n−1)!
( j1−1)!( j2)!···( jt)!

∏t
k=1( jk − 1)

}

(1)
and

(n − 1)! =
∑� n

2 �
t=1(t − 1)!

{∑
0=i0≤i1≤...≤it;

it=n−2t

∏t−1
j=0(n − 2 j − i j − 1)( j + 1)i j+1−i j

}
.

(2)
The inner sum in (1) is carried over all tuples ( j1, j2, . . . , jt) of
positive integers ≥ 2 such that j1+. . .+ jt = n, while the inner sum
in (2) is carried over all tuples (i1, . . . , it) of non-negative integers
such that 0 = i0 ≤ i1 ≤ . . . ≤ it = n − 2t. These interesting
identities are implicit in the works of Björner and Welker [1], and
Björner and Wachs [2] on partition lattices.

In this article, we shall discuss simple combinatorial proofs of
these identities. Keywords

Permutations, multinomial

coefficients, poset, order

complex, partition lattice.1. Permutations and Multinomial Coefficients

In this section, we introduce notations and the basic concepts re-
quired to understand these identities and their proofs.
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Let N = {0, 1, 2, . . .} be theThe number n! =
n(n − 1)...(2)(1) is called

factorial n. Stirling
showed that

√
2πn
(

n
e

)n
gives a good

approximation to n! for
large positive integer n.

Here e is the base of
natural logarithm.

set of non-negative integers. For
α, β ∈ N, with α ≤ β, the subset

[α, β] = {a ∈ N : α ≤ a ≤ β} ,

is called an integer interval. If n ≥ 1, we simply write [n] =
{1, 2, . . . , n} for [1, n]. Further, the number of elements of a finite
set A is denoted by |A|,
Definition 1.1. A bijective mapping σ : [n] −→ [n] is called a
permutation of [n]. Let Sn be the set of all permutations of [n].

A permutation σ ∈ Sn is determined by the sequence σ(1), σ(2),
. . . , σ(n). Let σ(i) = σi ∈ [n]. Then a convenient way to rep-
resent the permutation σ is by arranging σ1, σ2, . . . , σn in a line
as σ = σ1σ2 . . . σn. This representation is called the one-line no-
tation of σ. Thus, a permutation σ ∈ Sn can be equivalently re-
garded as a rearrangement of the sequence 1, 2, . . . , n. For n = 3,
we have

S3 = {123, 132, 213, 231, 312, 321}.

Definition 1.2. For n ≥ 1, the number n(n − 1)(n − 2) · · · (2)(1) =∏
i∈[n] i is denoted by n! (read as factorial n). By convention,

0! = 1.

We verify that |Sn| = n!. In fact, using one-line notation of per-
mutations, we see that there are n choices for the first position,
(n − 1) choices for the second position and in general, (n − i + 1)
choices for ith position (1 ≤ i ≤ n).The inversion table of a

permutation determines
the permutation.

Thus the number of permu-
tations of [n] is n!.

Since composition of two bijective mappings is again a bijective
mapping, the composition of two permutations of [n] is also a
permutation of [n]. The set Sn is a group under the composi-
tion operation. The group Sn is a very important finite group.
However, in this article, we have not made any use of the group
structure of Sn.

Consider the set

Yn = {(a1, . . . , an) ∈ Nn : 0 ≤ ai ≤ n − i ∀i}.
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Clearly, Yn = [0, n − 1] × [0, n − 2] × . . . × [0, 0] is a Cartesian
product of integer intervals. Since |Sn| = |Yn| = n!, one would
like to have an explicit bijection between Sn and Yn. One such
bijection is given by inversion table (see [3]).

Definition 1.3. Let σ = σ1σ2 . . . σn ∈ Sn. Let ai be the number
of entries j in the one-line notation of σ to the left of i such that
j > i. In other words, if σk = i, then

ai = |{σs : s < k and σs > σk = i}|.

Then I(σ) = (a1, a2, . . . , an) is called the inversion table of σ.

Clearly, the inversion table I(σ) ∈ Yn for every σ ∈ Sn. Also,
every element a = (a1, a2, . . . , an) ∈ Yn is the inversion table of
a unique permutation in Sn. Construct a τ ∈ Sn as follows. If
n, n− 1, . . . , n− i+ 1 have been inserted in one-line notation of τ,
then insert n − i so that there are exactly an−i elements to the left
of n − i. Clearly, I(τ) = a. Thus the mapping σ �→ I(σ) induces a
bijection I : Sn −→ Yn. We illustrate inversion table construction
with an example. Let n = 6 and σ = 426153. Then I(σ) =
(3, 1, 3, 0, 1, 0). On the other hand, let a = (2, 3, 3, 1, 1, 0) ∈ Y6.
Then τ = 641523 ∈ S6 such that I(τ) = a. In fact, the one-line
notation of τ is obtained in the following sequence of steps,

6 → 65 → 645 → 6453 → 64523 → 641523 = τ.

We now describe binomial and multinomial coefficients.

Definition 1.4. Let n, k ∈ N such The number of
k-element subsets of [n]
is precisely the binomial
coefficient

(
n
k

)
.

that k ≤ n. The number(
n
k

)
= n!

k!(n−k)! is called a binomial coefficient.

We recall the binomial theorem,

(1 + x)n =

n∑
k=0

(
n
k

)
xk, where x a variable.

Indeed, the binomial coefficient
(
n
k

)
is the coefficient of xk in the

expansion of (1 + x)n. Further,
(
n
k

)
has a combinatorial interpre-

tation. For n ≥ 1 and 0 ≤ k ≤ n, the number of all k-element
subsets of [n] is precisely

(
n
k

)
. Thus,

(
n
k

)
∈ N.
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Definition 1.5. Let r ≥ 1 and n, k1, k2, . . . , kr ∈ N, such that∑r
i=1 ki = n. The number(

n
k1, k2, . . . , kr

)
=

n!
(k1!)(k2!) · · · (kr!)

is called a multinomial coefficient. Clearly,
(
n
k

)
=
(

n
k, n−k

)
.

We have the multinomial theorem,

(x1 + x2 + · · · + xr)n =
∑

(k1,k2 ...,kr)∈Nr ;
k1+k2+...+kr=n

(
n

k1, k2, . . . , kr

)
xk1

1 xk2
2 · · · xkr

r ,

where x1, x2, . . . , xr are variables.

Definition 1.6. Let n, r ≥ 1, and k1, k2, . . . , kr ∈ N such that∑r
i=1 ki = n. An r-tuple (B1, . . . , Br) of subsets of [n] is called an

ordered disjoint decomposition of [n] of the type (k1, k2, . . . , kr) if

1. |Bi| = ki,

2. Bi ∩ B j = ∅ for i � j,

3. B1 ∪ B2 ∪ . . . ∪ Br = [n].

If, in addition, each Bi � ∅, then we say that the r-tuple (B1, B2, . . . , Br)
is an ordered set-partition of [n] of the type (k1, k2, . . . , kr).

Proposition 1.7. The number of ordered disjoint decompositions
of [n] of the type (k1, k2, . . . , kr) is the multinomial coefficient(

n
k1 , k2,...,kr

)
.

Proof. Let (B1, B2, . . . , Br) be an orderedAn element i ε[n − 1] is
called an ascent (or a

descent) of a
permutation σ εSn if

σ(i) < σ(i + 1)
(respectively,

σ(i) > σ(i + 1)).

decomposition of [n]
of the type (k1, k2, . . . , kr). Then |Bi| = ki. The number of ways of
choosing subset B1 is

(
n
k1

)
. If B1, . . . , Bi−1 for i ≥ 2 have already

been chosen, then Bi is a ki-element subset of [n]\(B1∪. . .∪Bi−1).
Thus the number of ways of choosing Bi is precisely

(
n−k1−...−ki−1

ki

)
.

Hence, the number of ordered disjoint decompositions of [n] of
the type (k1, k2, . . . , kr) is given by(

n
k1

)(
n − k1

k2

)
· · ·
(
n − k1 − . . . − kr−1

kr

)
=

(
n

k1, k2, . . . , kr

)
.

�

We now proceed to give proofs of identities (1) and (2).
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2. Combinatorial Proofs of Two Identities

For n ≥ 2, let Xn = {σ ∈ Sn : σ(2) = n}. For σ ∈ Xn, let σ̂ be the
permutation obtained from σ by deleting n = σ(2). The mapping
σ �→ σ̂ induces a bijection between Xn and Sn−1. Clearly, |Xn| =
|Sn−1| = (n − 1)!.

Let σ ∈ Sn. Let A = [α, β] ⊆ [n] with α < β. Then the restriction
σ |A of σ to A is the mapping σ |A: A −→ [n] given by σ |A (i) =
σ(i) for i ∈ A.

Definition 2.1. Let σ ∈ Sn. An element i ∈ [n − 1] is called
an ascent of the permutation σ ∈ Sn if σ(i) < σ(i + 1). More
generally, if A = [α, β] ⊆ [n] with α < β, then i ∈ [α, β − 1] is
called an ascent of σ |A if σ(i) < σ(i + 1).

Let σ ∈ Xn. Then note that 1 is always an ascent of σ. Let A =
[α, β] ⊆ [n] with α < β. We say that A is a maximal increasing
run of σ if the restriction σ |A: A −→ [n] is a strictly increasing
function and σ |A′ is not monotonic for any integer interval A′

with A � A′ ⊆ [n]. Let {A1, A2, . . . , Ar} be the set of all maximal
increasing runs of σ ∈ Xn. Set tσ =

∑r
i=1� |Ai|

2 �. Then 1 ≤ r ≤ tσ ≤
n
2 .

Definition 2.2. Let σ ∈ Xn. Suppose there exists a strictly in-
creasing sequence 1 = �1, �2, . . . , �t in [n − 1] such that

1. �k+1 − �k ≥ 2 for 1 ≤ k ≤ t, where On cleverly counting
elements of a finite set in
two ways, one gets an
identity.

�t+1 = n + 1, and

2. σ |[�k, �k+1−1] has only one ascent at �k for 1 ≤ k ≤ t.

Then we say that σ has t number of block ascents.

If σ ∈ Xn has t number of block ascents, then t = tσ. It is easy to
show that every σ ∈ Xn has t number of block ascents for some
t with 1 ≤ t ≤ � n

2�. In fact, �t is the largest ascent of σ, i.e.,
�t ∈ [n − 1] is the largest number such that σ(�t) < σ(�t + 1).
Also, �k is the largest ascent of the restriction σ |[�k+1−1] of σ to
[�k+1 − 1] for 1 ≤ k < t.

Example: We illustrate the above notions with the help of an
example. Let n = 7 and σ = 2731465 ∈ X7. Then σ̂ = 231465 ∈
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S6. The maximal increasing runs of σ are A1 = [1, 2] and A2 =

[4, 6]. We see that tσ = 2. The largest ascent of σ is �2 = 5
as σ(5) = 4 < 6 = σ(6). Further, σ |[4]= 2731 has only one
ascent at �1 = 1. Clearly, σ has 2 block ascents. Let us take
another element σ′ = 2713465 ∈ X7. Then σ̂′ = 213465 ∈ S6.
The maximal increasing runs of σ′ are A′1 = [1, 2] and A′2 =
[3, 6]. Thus tσ′ = 3. Now the largest ascent of σ′ is �′3 = 5. The
restriction σ′ |[4]= 2713 and its largest ascent is �′2 = 3. Since
σ′ |[2]= 27, it has only one ascent �1 = 1. Thus σ′ has 3 block
ascents.

We have |Xn| = (n − 1)!. On counting permutations in Xn ac-
cording to the number of block ascents, we shall prove identity
(1).

Theorem 2.3. For n ≥ 2, the identity (1) holds.

Proof. Let Xn(t) be the subset of Xn consisting of permutations
having t number of block ascents. Then Xn has a disjoint decom-
position

Xn =

� n
2 �∐

t=1

Xn(t).

We need onlyConsider the set
Rn = [0, n] × [0, n]. We

have |Rn| = (n + 1)2. Let
Dk = {(a, b) ε Rn :

a + b = k}. Then

Rn =

2n∏
k=0

Dk.

Also, |Dk | = k + 1 for
0 ≤ k ≤ n and

|Dk | = 2n − k + 1 for
n ≤ k ≤ 2n. Thus

counting elements of Rn

in two ways, we deduce
the familiar identity

1 + 2 + . . . + n = n(n+1)
2 .

to show that

|Xn(t)| =
∑

j1+ j2+...+ jt=n;
ji≥2,∀i

(n − 1)!
( j1 − 1)!( j2)! · · · ( jt)!

t∏
k=1

( jk − 1).

Let σ ∈ Xn(t). Then there is a sequence 1 = �1 < �2 < . . . <
�t < n such that �k+1 − �k ≥ 2 and σ has exactly one ascent in
[�k, �k+1 − 1] at �k for 1 ≤ k ≤ t. Let Bk = {σ(r) : �k ≤ r <
�k+1}. Then πσ = (B1, . . . , Bt) is an ordered set-partition of [n]
associated to σ such that n ∈ B1 and |Bk| = �k+1 − �k. Also, σ(�k)
is a chosen element of Bk \ {max Bk} and σ(�k + 1) < σ(�k + 2) <
. . . < σ(�k+1 − 1), where max Bk is the largest element of Bk.
On the other hand, an ordered set-partition π = (B1, . . . , Bt) of [n]
with n ∈ B1, |Bk| = �k+1−�k and chosen element bk ∈ Bk\{max Bk}
for 1 ≤ k ≤ t determines a unique permutation σ ∈ Xn(t) such
that πσ = π. In view of Proposition 1., the number of ways of
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choosing an ordered set-partitions π = (B1, . . . , Bt) of [n] with
n ∈ B1 is given by the multinomial coefficient

(
n − 1

�2 − �1 − 1, �3 − �2, . . . , n − �t + 1

)
=

(n − 1)!
(�2 − �1 − 1)!(�3 − �2)! · · · (n − �t + 1)!

.

Further, the number of ways of choosing each bk ∈ Bk \ {max Bk}
for 1 ≤ k ≤ t is given by (�2 − �1 − 1)(�3 − �2 − 1) · · · (n − �t).
Putting jk = �k+1 − �k and summing over all possible sequences
( j1, . . . , jt), we get |Xn(t)|, as desired. �

Theorem 2.4. For n ≥ 2, the identity (2) holds.

Proof. The identity (2) can be deduced from a modified counting
of Xn(t). For each σ ∈ Xn(t), consider the associated ordered
partition πσ = (B1, . . . , Bt). Choose a permutation ρ ∈ St with
ρ(1) = 1 such that max Bρ(1) > max Bρ(2) > . . . > max Bρ(t). Let
Bρ(k) = Bρ(k) \ {bρ(k),max Bρ(k)}. Let ik be the number of elements
in
⋃k

r=1 Bρ(r) bigger than the max Bρ(k+1) for k < t and it = n − 2t.
The number of ways of choosing ρ ∈ St with ρ(1) = 1 is (t − 1)!.
Also, the number of ways of choosing Bρ(1), . . . , Bρ(t) for a given
0 = i0 ≤ i1 ≤ . . . ≤ it = n−2t is

∏t−1
k=0(n−2k− ik −1)(k+1)ik+1−ik .

Thus,

|Xn(t)| = (t − 1)!
∑

0=i0≤i1≤...≤it=n−2t

t−1∏
j=0

(n− 2 j− i j − 1)( j+ 1)i j+1−i j .

This proves identity (2). �

We now give a more direct way to establish identity (2).

Let Yn−1 = {a = (a1, . . . , an−1) ∈ Nn−1 : 0 ≤ ai ≤ n − i − 1∀i}.
Then |Yn−1| = (n − 1)!. For 1 ≤ t ≤ � n

2� and i = (i1, . . . , it) with
0 = i0 ≤ i1 ≤ . . . ≤ it = n − 2t, set

Yn−1(i) = Yn−1((i1, . . . , it)) =
n−1∏
k=1

Ik(i),
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CLASSROOM

where

Ik(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, n − 2 j − i j − 2] if k = ( j + 1) + i j for 0 ≤ j ≤ t − 1,

[n − j − k − 1, n − k − 1] if i j+1 > i j for 0 ≤ j ≤ t − 1

and k ∈ [ j + 2 + i j, j + 1 + i j+1],

[0, n − k − 1] if k ∈ [n − t + 1, n − 1].

Then |Yn−1(i)| =
(∏t−1

j=0(n − 2 j − i j − 1)( j + 1)i j+1−i j
)

(t − 1)!.

Example: We illustrate the above construction in the case n = 5.
The possible values of t are t = 1, 2. For t = 1, i = (i1) = (3)
and the subset Y4((3)) = {(a1, 2, 1, 0) ∈ Y4} has 4 elements.
For t = 2, the sequence i = (i1, i2) has two possible values;
namely, (0, 1) and (1, 1). We see that the subset Y4((0, 1)) =
{(a1, a2, a3, 0) ∈ Y4 : a2 ≤ 1} has 16 elements, and the subset
Y4((1, 1)) = {(a1, 2, 0, 0) ∈ Y4} has 4 elements. Further, Y4 is a
disjoint union of these subsets and 24 = 4 + 16 + 4.

This example motivates the following alternate proof of Theorem
2.

Proof. Given a = (a1, . . . , an−1) ∈ Yn−1, we proceed to show that
there exists a unique i = (i1, . . . , it) for some 1 ≤ t ≤ � n

2� with
0 = i0 ≤ i1 ≤ . . . ≤ it = n − 2t such that a ∈ Yn−1(i). Set
i0 = 0. If a2 = a2+i0 ∈ [0, n − 4], then put i1 = i0. Otherwise,
a2 ∈ [n − 3, n − 3] = {n − 3}. Let r1 be the largest number such
that a1+ j ∈ [n − j − 2, n − j − 2] for all j ∈ [1, r1]. Then put
i1 = i0 + r1 = r1. Suppose (i1, . . . , is) has already been obtained
with desired properties. If is = n − 2s, then set t = s and i =

(i1, . . . , is). Otherwise is < n − 2s. If as+2+is ∈ [0, n − 2s − is − 4],
then put is+1 = is. On the other hand, if as+2+is ∈ [n − 2s − is −
3, n − s − is − 3], then choose the largest integer rs+1 such that
as+1+is+ j ∈ [n−2s− is−2− j, n− s− is−2− j] for all j ∈ [1, rs+1].
In this case, is+1 = is + rs+1. This completes the inductive step.
Hence, Yn−1 has a disjoint decomposition

Yn−1 =

� n
2 �∐

t=1

⎛⎜⎜⎜⎜⎜⎜⎝
∐

0=i0≤i1≤...≤it=n−2t

Yn−1((i1, . . . , it))

⎞⎟⎟⎟⎟⎟⎟⎠ .
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This proves identity (2). �

The mapping σ �→ I(σ̂) induces a bijection between Xn and Yn−1.
For 1 ≤ t ≤ � n

2�, set Yn−1(t) = {I(σ̂) : σ ∈ Xn(t)}. Clearly, Yn−1

is a disjoint union of Yn−1(t) and identity (1) can also be proved
from a counting of Yn−1 in two ways.

We ask the following question.

Question: Is it possible to prove identity (1) from a counting of
Yn−1 in two ways, without using a bijection between Yn−1 and Xn

(or Sn−1)?

Finally, for readers having some knowledge of algebraic topol-
ogy, we describe a connection between partition lattices and the
identities (1) and (2).

3. Partition Lattices

In this section, we illustrate some combinatorial and topological
aspects of partition lattices. For unexplained topological terms
and concepts, we refer to Bredon [4] and Hatcher [5].

Definition 3.1. A relation � on a non-empty set P is called a
partial ordering on P, if

1. � is reflexive (i.e. a � a for all a ∈ P),

2. � is antisymmetric (i.e. a � b and b � a in P ⇒ a = b),

3. � is transitive (i.e. a � b and b � c in P ⇒ a � c).

The set P with a Suppose a ≤ b in a poset
P. We say that b covers
a if there does not exist
cεP such that a < c < b.
A finite poset P is
determined by its cover
relation.

partial ordering � is called a partially ordered
set (or poset).

A non-empty subset of a poset is also a poset under the induced
partial ordering.

Let (P,�) be a poset. We write a ≺ b in P, for a � b and a � b. A
subset S of P is called a chain if for any a, b ∈ S , either a � b or
b � a. We say that P is a finite poset if P has only finitely many
elements. A chain S = {a1, a2, . . . , as} in a finite poset P can be
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represented by arranging its elements in an increasing order, say
aj1 ≺ aj2 ≺ . . . ≺ ajs . In this case, we say that S is a chain of P
of length s− 1. A chain S is called a maximal chain of P, if there
does not exists a chain S ′ of P such that S � S ′. A finite poset P
is called a graded poset of rank n, if all maximal chains of P have
the same length n.

To every finite poset P, we can associate a simplicial complex
Δ(P).

Definition 3.2. Let V be a non-empty finite set. A collection K of
subsets of V is called an abstract simplicial complex on the vertex
set V , if

1. {v} ∈ K , ∀ v ∈ V ,

2. F ∈ K and G ⊆ F ⇒ G ∈ K .

Let K be a simplicial complex on V . Every F ∈ K is called
a face of K , and dimension of the face F is dim(F) = |F| − 1.
The 0-dimensional faces {v}, v ∈ V are called vertices, while 1-
dimensional faces are called edges of K . The empty set ∅ is al-
ways a face of K of dimension −1. The dimension of the sim-
plicial complex K is given by dim(K) = sup{dim(F) : F ∈ K},
where sup(A) denotes the supremum of the set A.

A face F of a simplicial complex K is called a maximal face if
there does not exist any face F′ ∈ K with F � F′. A max-
imal face of the simplicial complex K is called a facet. The
simplicial complex K is completely determined by its facets. If
F1, F2, . . . , Ft are all the facets of K , then we say that K =

〈F1, F2, . . . , Ft〉 is generatedA hollow tetrahedorn T

and the unit sphere S2

are the same topological
objects.

by the facets F1, F2, . . . , Ft. Fur-
ther, K is called a pure simplicial complex, if all its facets have
the same dimension.

A ‘nice’ topological space ‖K‖ can be associated to an abstract
simplicial complex K . The topological space ‖K‖ is called the
geometric realization of K , while the abstract simplicial complex
K is called a triangulation of ‖K‖. We conveniently use the term
simplicial complex for an abstract simplicial complex as well as

1160 RESONANCE | October 2019



CLASSROOM

for its geometric realization.

Example: Let v1, v2, v3, v4 be four non-coplanar points in the 3-
dimensional space R3. Let F1 = {v1, v2, v3}, F2 = {v1, v2, v4}, F3 =

{v1, v3, v4}, F4 = {v2, v3, v4} and K be the abstract simplicial com-
plex generated by Fi (1 ≤ i ≤ 4). Then K is a 2-dimensional
pure simplicial complex on the vertex set V = {v1, v2, v3, v4}. The
geometric realization ‖K‖ of K is the hollow tetrahedron T with
vertices vi (1 ≤ i ≤ 4) having the 2-dimensional triangular faces
spanned by these vertices. The vertices, edges and faces of T

correspond to 0-dimensional, 1-dimensional and 2-dimensional
faces of K , respectively. Since the hollow tetrahedron T is home-
omorphic to the unit sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
in R3, the abstract simplicial complex K is a triangulation of
the 2-dimensional unit sphere S2. Now, let F5 = {v3, v4} and
K′ = 〈F1, F5〉. Then K′ is a 2-dimensional non-pure simpli-
cial complex on the vertex set V . The geometric realization ‖K′‖
of K′ consists of the 2-dimensional triangular face spanned by
v1, v2, v3 and the line segment joining v3 and v4.

Definition 3.3. Let P be a finite poset and let Δ(P) be the set of
all chains of P. Then Δ(P) is called the order complex of P.

Since a subset of a chain of P is also a chain of P, the order
complex Δ(P) is a simplicial complex on the vertex set P. The
facets of Δ(P) are the maximal chains of P. Thus Δ(P) is a pure
simplicial complex of dimension n if and only if P is a graded
poset of rank n.

We now proceed to describe a lattice. Let (P,�) be a poset and
x, y ∈ P. An element z ∈ P is called the supremum sup{x, y} of x
and y, if x � z, y � z and whenever A lattice P is said to be a

bounded lattice if the
least element 0̂ and the
largest element 1̂ exist in
P.
Every finite lattice is
bounded.

x � z′, y � z′ for any z′ ∈ P,
then z � z′. Also, an element w ∈ P is called the infimum inf{x, y}
of x and y, if w � x,w � y and whenever w′ � x,w′ � y for any
w′ ∈ P, then w′ � w.

Definition 3.4. A poset (P,�) is called a lattice if sup{x, y} and
inf{x, y} exist in P for every pair (x, y) of elements x, y ∈ P.

We write x ∨ y = sup{x, y} and x ∧ y = inf{x, y} and call them
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join and meet of x and y, respectively. For a finite lattice P, the
sup(S ) and inf(S ) exists in P for every subset S ⊆ P. In particular,
inf(P) = 0̂ is the least element of P while sup(P) = 1̂ is the largest
element of P. Set P̄ = P \ {0̂, 1̂}.
If P is a finite poset such that 0̂ ∈ P (or 1̂ ∈ P), then the order
complex Δ(P) has the homotopy type of a point, i.e., the geomet-
ric realization ‖Δ(P)‖ is contractible. Hence, for a finite lattice
P, the order complex Δ(P̄) of P̄ = P \ {0̂, 1̂} has more interesting
topological properties than the order complex Δ(P) of P.

We now give a few examples of finite lattices.
1. Boolean Lattices: Let P[n] = {A : A ⊆ [n]} be the power set
of [n]. Then P[n] is a poset with respect to the partial ordering
� induced by inclusion, i.e. A � B in P[n] if A ⊆ B. Since
every maximal chain in P[n] is of length n, it is a graded poset of
rank n. Further, the poset P[n] is a lattice as A ∨ B = A ∪ B and
A ∧ B = A ∩ B for any A, B ∈ P[n]. Also, 0̂ = ∅ and 1̂ = [n].
The lattice P[n] is an example of a Boolean lattice. We have
|P[n]| = 2n. On counting elements of P[n] according to their
cardinality, we get the identity

2n =

n∑
i=0

(
n
i

)
.

2. Partition Lattices: Let Πn be the set of all (unordered) set-
partitions of [n]. If (B1, B2, . . . , Bk) is an ordered set-partition of
[n], then the collection {B1, B2, . . . , Bk} is called a set-partition
of [n] with k-blocks. Let B = {B1, . . . , Bk}, C = {C1, . . . ,C�} ∈
Πn. We say that B is a refinement of C, if each block Bi of B is
contained in some blockA lattice P is said to be

distributive lattice if join
∨ distributes over meet
∧, and vice-versa.

The partition lattice
∏

n
is non-distributive for

n ≥ 3.

C j of C. Clearly, Πn is a poset under
the partial ordering � induced by refinement i.e., B � C in Πn if
B is a refinement of C. The poset Πn is a graded poset of rank
n − 1. Also, B ∧ C is the set partition of [n], whose blocks are
non-empty intersection Bi ∩ C j of the blocks of B and C. The
join B ∨ C is obtained in a finite sequence of steps. Set B0 =

B. Let B1 be the set-partition of [n] obtained by merging all the
blocks B j of B0 that intersect C1 non-trivially (i.e., B j ∩C1 � ∅).
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Clearly, B0 � B1 and the block C1 of C is contained in one block
of B1. If Bi−1 has already been obtained, then in the ith step,
the set-partition Bi is obtained by merging all blocks of Bi−1 that
intersect Ci non-trivially. We have B � B�,C � B� and B ∨ C =
B�. This shows that Πn is a lattice called the partition lattice
of [n]. Also, 0̂ = {{1}, {2}, . . . , {n}} and 1̂ = {[n]}. We illustrate
partial ordering, join and meet in the partition lattice Πn for n = 8.
We use compact notation 58|14|6|2|3|7 to denote the set-partition
B = {{5, 8}, {1, 4}, {6}, {2}, {3}, {7}} ∈ Π8. Let C = 146|2|58|37 and
D = 584|26|3|17. Since each block of B is contained in a block
of C, we have B � C. Also, B � D as the block {1, 4} of B is not
contained in any block of D. We have B ∧D = 58|4|2|6|1|7|3. In
order to obtain B ∨ D, we see that B1 = 5814|6|2|3|7 is obtained
by merging the blocks {5, 8} and {1, 4} of B. The blocks {5, 8}
and {1, 4} have non-empty intersection with the block {5, 8, 4} of
D. Similarly, B2 = 5814|26|3|7 is obtained by merging {2} and
{6}. Also, B3 = B2 and B4 = 58147|26|3. Hence, B ∨ D =
58147|26|3.

We now discuss some combinatorial properties of Πn. The cardi-
nality |Πn| = Bell(n) is called the nth Bell number. The number of
set-partitions of [n] having exactly k-blocks is called the Stirling
number S (n, k) of the second-kind. We have S (n, 1) = S (n, n) =
1, S (n, n − 1) =

(
n
2

)
and S (n, 2) = 2n−1 − 1. Also, there is a recur-

rence relation

S (n, k) = S (n − 1, k − 1) + kS (n − 1, k) for n ≥ k > 1.

This recurrence relation is proved as follows. Each B = {B1, . . . ,

Bk−1} ∈ Πn−1 with (k−1)-blocks gives a unique {B1, . . . , Bk−1, {n}}
∈ Πn with k-blocks. Thus the number of set-partitions of the form
{B1, . . . , Bk−1, {n}} ∈ Πn is precisely The number of

set-partitions of [n]
having k-blocks is called
the Stirling number
S (n, k) of the second
kind.

S (n−1, k−1). Also, for each
C = {C1, . . . ,Ck} ∈ Πn−1 with k-blocks, we can associate exactly
k different set-partitions C1, . . . ,Ck ∈ Πn (with k-blocks), where
Ci is the set-partition obtained from C by replacing the block Ci

in C with Ci ∪ {n}. Thus the number of D = {D1, . . . ,Dk} ∈ Πn

such that Di � {n} for all i is precisely kS (n − 1, k).

On counting elements of Πn according to the number of blocks,
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we get

Bell(n) =
n∑

k=1

S (n, k).

3. k-equal Partition Lattices: Let 2 ≤ k ≤ n and let

Πn,k = {B = {B1, . . . , Br} ∈ Πn : either |Bi| = 1 or |Bi| ≥ k, ∀i}.

Then Πn,k is also a poset under the partial order induced from Πn.
Further, Πn,k is a lattice. The lattice Πn,k is called the k-equal
partition lattice. Clearly, Πn,2 = Πn. For k > 2, Πn,k need not be
a graded lattice. In Π6,3, the maximal chains

1|2|3|4|5|6 ≺ 1|2|3|456 ≺ 1|2|3456 ≺ 1|23456 ≺ 123456,

and
1|2|3|4|5|6 ≺ 1|2|3|456 ≺ 123|456 ≺ 123456,

are of different lengths.

Let n ≥ 3. Consider the order complex Δ(Π̄n) of the poset Π̄n =

Πn−{0̂, 1̂}. Since all maximal chains of Π̄n are of length n−3, the
order complex Δ(Π̄n) is a pure simplicial complex of dimension
n−3. Using a notion of shellability for pure simplicial complexes,
it can be shown that Δ(Π̄n) is shellable and has the homotopy type
of a wedge (sum) of (n−1)! spheres of dimension n−3. Thus the
top (reduced) Betti number of Δ(Π̄n) is precisely (n−1)!. Björner
and Wachs introduced a notion of shellability for non-pure simpli-
cial complexes and showed that the order complex Δ(Π̄n,k) of the
poset Π̄n,k = Πn,k−{0̂, 1̂} is alsoΔ(Π̄n) has the homotopy

type of a wedge of
(n − 1)! spheres of

dimesnion n − 3.

shellable (see [2] (Theorem 6.1)).
Therefore, it is possible to calculate the (reduced) Betti numbers
of Δ(Π̄n,k). Since Πn = Πn,2, two different ways of calculating the
top (reduced) Betti number of Δ(Π̄n) give rise to identities (1) and
(2).
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