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Floating point numbers are an important data type in compu-
tation which is used extensively. Yet, many users do not know
the standard which is used in almost all computer hardware
to store and process these. In this article, we explain the
standards evolved by The Institute of Electrical and Elec-
tronic Engineers in 1985 and augmented in 2008 to represent
floating point numbers and process them. This standard is
now used by all computer manufacturers while designing
floating point arithmetic units so that programs are portable
among computers.

Introduction

There are two types of arithmetic which are performed in comput-
ers: integer arithmetic and real arithmetic. Integer arithmetic is
simple. A decimal number is converted to its binary equivalent
and arithmetic is performed using binary arithmetic operations.
The largest positive integer that may be stored in an 8-bit byte is
+127, if 1 bit is used for sign. If 16 bits are used, the largest
positive integer is +32767 and with 32 bits, it is +2147483647,
quite large! Integers are used mostly for counting. Most scientific
computations are however performed using real numbers, that is,
numbers with a fractional part. In order to represent real numbers
in computers, we have to ask two questions. The first is to decide
how many bits are needed to encode real numbers and the second
is to decide how to represent real numbers using these bits.
Normally, in numerical computation in science and engineering,
one would need at least 7 to 8 significant digits precision. Thus,
the number of bits needed to encode 8 decimal digits is approxi-
mately 26, as log210 = 3.32 bits are needed on the average to
encode a digit. In computers, numbers are stored as a sequence of
8-bit bytes. Thus 32 bits (4 bytes) which is bigger than 26 bits is
a logical size to use for real numbers. Given 32 bits to encode real
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numbers, the next question is how to break it up into an integer
part and a fractional part. One method is to divide the 32 bits into
2 parts, one part to represent an integer part of the number and the
other the fractional part as shown in Figure 1.

In this figure, we have arbitrarily fixed the (virtual) binary point
between bits 7 and 8. With this representation, called fixed point
representation, the largest and the smallest positive binary num-
bers that may be represented using 32 bits are

Binary Floating Point Numbers

This range of real numbers, when fixed point representation is
used, is not sufficient in many practical problems. Therefore,
another representation called normalized floating point represen-
tation is used for real numbers in computers. In this representa-
tion, 32 bits are divided into two parts: a part called the mantissa
with its sign and the other called the exponent with its sign. The
mantissa represents fractions with a non-zero leading bit and the
exponent the power of 2 by which the mantissa is multiplied. This
method increases the range of numbers that may be represented
using 32 bits. In this method, a binary floating point number is
represented by

(sign) × mantissa × 2± exponent

where the sign is one bit, the mantissa is a binary fraction with a
non-zero leading bit, and the exponent is a binary integer. If 32

Figure 1. Fixed point repre-
sentation of real numbers in
binary using 32 bits.

As the range of real
numbers

representable with
fixed point is not

sufficient,normalized
floating point is used to

represent real
numbers.
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bits are available to store floating point numbers, we have to
decide the following:

1. How many bits are to be used to represent the mantissa (1 bit
is reserved for the sign of the number).

2. How many bits are to be used for the exponent.

3. How to represent the sign of the exponent.

The number of bits to be used for the mantissa is determined by
the number of significant decimal digits required in computation,
which is at least seven. Based on experience in numerical
computation, it is found that at least seven significant decimal
digits are needed if results are expected without too much error.
The number of bits required to represent seven decimal digits is
approximately 23. The remaining 8 bits are allocated for the
exponent. The exponent may be represented in sign magnitude
form. In this case, 1 bit is used for sign and 7 bits for the
magnitude. The exponent will range from –127 to +127. The
only disadvantage to this method is that there are two representa-
tions for 0 exponent: + 0 and – 0. To avoid this, one may use an
excess representation or biased format to represent the exponent.
The exponent has no sign in this format. The range 0 to 255 of an
8-bit number is divided into two parts 0 to 127 and 128 to 255 as
shown below:

All bit strings from 0 to 126 are considered negative, exponent
127 represents 0, and values greater than 127 are positive. Thus
the range of exponents is –127 to +128. Given an exponent string
exp, the value of the exponent will be taken as (exp –127). The
main advantage of this format is a unique representation for
exponent zero. With the representation of binary floating point
numbers explained above, the largest floating point number
which can be represented is

The number of bits
to be used for the
mantissa is
determined by the
number of
significant decimal
digits required in
computation,
which is at least
seven.

The main
advantage of
biased exponent
format is unique
representation for
exponent 0.
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0.1111 . . . 1111 × 2 11111111

| 23 bits
= (1 – 2 –23) × 2255–127

3.4 × 1038.

The smallest floating point number is
0.10000 … 00 × 2–127

| 23 bits
0.293 × 10–38 .

Example. Represent 52.21875 in 32-bit binary floating point
format.

52.21875 = 110100.00111 = .11010000111 × 26.
Normalized 23 bit mantissa = 0.11010000111000000000000.
As excess representation is being used for exponent, it is equal to
127 + 6 = 133.
Thus the representation is
52.21875= 0.11010000111 × 2133 = 0.110100000111 ×210000101.
The 32-bit string used to store 52.21875 in a computer will thus be
01000010111010000111000000000000.
Here, the most significant bit is the sign, the next 8 bits the
exponent, and the last 23 bits the mantissa.

IEEE Floating Point Standard 754-1985

Floating point binary numbers were beginning to be used in the
mid 50s. Therewas no uniformity in the formats used to represent
floating point numbers and programs were not portable from one
manufacturer’s computer to another. By the mid 1980s, with the
advent of personal computers, the number of bits used to store
floating point numbers was standardized as 32 bits. A Standards
Committee was formed by the Institute of Electrical and Elec-
tronics Engineers to standardize how floating point binary num-
bers would be represented in computers. In addition, the standard
specified uniformity in rounding numbers, treating exception
conditions such as attempt to divide by 0, and representation of 0
and infinity ( This standard, called IEEE Standard 754 for

Institute of Electrical
and Electronics

Engineers
standardized how

floating point binary
numbers would be

represented in
computers, how these

would be rounded,
how 0 and would be
represented and how

to treat exception
condition such as

attempt to divide by 0.



15RESONANCE � January 2016

GENERAL � ARTICLE

floating point numbers, was adopted in 1985 by all computer
manufacturers. It allowed porting of programs from one com-
puter to another without the answers being different. This stan-
dard defined floating point formats for 32-bit and 64-bit numbers.
With improvement in computer technology it became feasible to
use a larger number of bits for floating point numbers. After the
standard was used for a number of years, many improvements
were suggested. The standard was updated in 2008. The current
standard is IEEE 754-2008 version. This version retained all the
features of the 1985 standard and introduced new standards for 16
and128-bit numbers. It also introduced standards for representing
decimal floating point numbers. We will describe these standards
later in this article. In this section, we will describe IEEE 754-
1985 Standard.

IEEE floating point representation for binary real numbers con-
sists of three parts. For a 32-bit (called single precision) number,
they are:

1. Sign, for which 1 bit is allocated.
2. Mantissa (called significand in the standard) is allocated 23
bits.

3. Exponent is allocated 8 bits. As both positive and negative
numbers are required for the exponent, instead of using a
separate sign bit for the exponent, the standard uses a biased
representation. The value of the bias is 127. Thus an exponent
0 means that –127 is stored in the exponent field. A stored
value 198 means that the exponent value is (198 – 127) = 71.
The exponents –127 (all 0s) and + 128 (all 1s) are reserved for
representing special numbers which we discuss later.

To increase the precision of the significand, the IEEE 754 Stan-
dard uses a normalized significand which implies that its most
significant bit is always 1. As this is implied, it is assumed to be
on the left of the (virtual) decimal point of the significand. Thus
in the IEEE Standard, the significand is 24 bits long – 23 bits of
the significand which is stored in the memory and an implied 1 as
the most significant 24th bit. The extra bit increases the number

The current standard
is IEEE 754-2008
version. This version
retained all the
features of the 1985
standard and
introduced new
standards for 16-bit
and128-bit numbers.
It also introduced
standards for
representing decimal
floatingpoint
numbers.
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of significant digits in the significand. Thus, a floating point
number in the IEEE Standard is

(– 1) s × (1. f )2 × 2exponent – 127

where s is the sign bit; s = 0 is used for positive numbers and s
= 1 for representing negative numbers. f represents the bits in the
significand. Observe that the implied 1 as the most significant bit
of the significand is explicitly shown for clarity.

For a 32-bit word machine, the allocation of bits for a floating
point number are given in Figure 2. Observe that the exponent is
placed before the significand (see Box 1).

Example. Represent 52.21875 in IEEE 754 – 32-bit floating point
format.
52.21875 = 110100.00111

= 1.1010000111 × 25.
Normalized significand = .1010000111.
Exponent: (e – 127) = 5 or, e = 132.
The bit representation in IEEE format is

0 10000100 10100001110000000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

Figure 2. IEEE 754 repre-
sentation of 32-bit floating
point number.

Box 1.

Why does IEEE 754 standard use biased exponent representation and place it before the significand?

Computers normally have separate arithmetic units to compute with integer operands and floating point
operands. They are called FPU (Floating Point Unit) and IU (Integer Unit). An IU works faster and is cheaper
to build. In most recent computers, there are several IUs and a smaller number of FPUs. It is preferable to use
IUs whenever possible. By placing the sign bit and biased exponent bits as shown in Figure 2, operations such
as x <r.o.> y,where r.o. is a relational operator, namely, >, < , , and x, y are reals, can be carried out by integer
arithmetic units as the exponents are integers. Sorting real numbers may also be carried out by IUs as biased
exponent are the most significant bits. This ensures lexicographical ordering of real numbers; the significand
need not be considered as a fraction.



17RESONANCE January 2016

GENERAL ARTICLE

Special Values in IEEE 754-1985 Standard (32 Bits)

Representation of Zero: As the significand is assumed to have a
hidden 1 as the most significant bit, all 0s in the significand part
of the number will be taken as 1.00…0. Thus zero is represented
in the IEEE Standard by all 0s for the exponent and all 0s for the
significand. All 0s for the exponent is not allowed to be used for
any other number. If the sign bit is 0 and all the other bits 0, the
number is +0. If the sign bit is 1 and all the other bits 0, it is –0.
Even though +0 and –0 have distinct representations they are
assumed equal. Thus the representations of +0 and –0 are:

+0

0 00000000 00000000000000000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

–0

1 00000000 00000000000000000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

Representation of Infinity: All 1s in the exponent field is
assumed to represent infinity ( A sign bit 0 represents + and
a sign bit 1 represents – . Thus the representations of + and
– are:
+

0 11111111 00000000000000000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

–

1 11111111 00000000000000000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

Representation of Non Numbers: When an operation is per-
formed by a computer on a pair of operands, the result may not be
mathematically defined. For example, if zero is divided by zero,

As the significand is
assumed to have a
hidden 1 as the most
significant bit, all 0s
in the significand part
of the number will be
taken as 1.00…0.
Thus zero is
represented in the
IEEE Standard by all
0s for the exponent
and all 0s for the
significand.

All 1s in the
exponent field is
assumed to
represent infinity ( ).
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the result is indeterminate. Such a result is called Not a Number
(NaN) in the IEEE Standard. In fact the IEEE Standard defines
two types of NaN. When the result of an operation is not defined
(i.e., indeterminate) it is called a Quiet NaN (QNaN). Examples
are: 0/0, ( – ), . Quiet NaNs are normally carried over in the
computation. The other type of NaN is called a Signalling Nan
(SNaN). This is used to give an error message. When an operation
leads to a floating point underflow, i.e., the result of a computation
is smaller than the smallest number that can be stored as a floating
point number, or the result is an overflow, i.e., it is larger than the
largest number that can be stored, SNaN is used. When no valid
value is stored in a variable name (i.e., it is undefined) and an
attempt is made to use it in an arithmetic operation, SNaN would
result. QNaN is represented by 0 or 1 as the sign bit, all 1s as
exponent, and a 0 as the left-most bit of the significand and at least
one 1 in the rest of the significand. SNaN is represented by 0 or
1 as the sign bit, all 1s as exponent, and a 1 as the left-most bit of
the significand and any string of bits for the remaining 22 bits. We
give below the representations of QNaN and SNaN.

QNaN

0 or 1 11111111 00010000000000000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

The most significant bit of the significand is 0. There is at least
one 1 in the rest of the significand.

SNaN

0 or 1 11111111 10000000000001000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

The most significant bit of the significand is 1. Any combination
of bits is allowed for the other bits of the significand.

When an arithmetic
operation is

performed on two
numbers which
results in an
indeterminate

answer, it is called
NaN (Not a Number)
in IEEE Standard.
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Largest and Smallest Positive Floating Point Numbers:

Largest Positive Number

0 11111110 11111111111111111111111
Sign Exponent Significand
1 bit 8 bits 23 bits

Significand: 1111 … 1 = 1 + (1 – 2–23) = 2 – 2 –23.
Exponent: (254 – 127) = 127.
Largest Number = (2 – 2–23) × 2127 3.403 × 1038.
If the result of a computation exceeds the largest number that can
be stored in the computer, then it is called an overflow.

Smallest Positive Number

0 00000001 00000000000000000000000
Sign Exponent Significand
1 bit 8 bits 23 bits

Significand = 1.0.
Exponent = 1 – 127 = –126.
The smallest normalized number is = 2–126 1.1755 × 10–38.

Subnormal Numbers: When all the exponent bits are 0 and the
leading hidden bit of the siginificand is 0, then the floating point
number is called a subnormal number. Thus, one logical represen-
tation of a subnormal number is

(–1)s × 0.f × 2–127 (all 0s for the exponent) ,

where f has at least one 1 (otherwise the number will be taken as
0). However, the standard uses –126, i.e., bias +1 for the exponent
rather than –127 which is the bias for some not so obvious reason,
possibly because by using –126 instead of –127, the gap between
the largest subnormal number and the smallest normalized num-
ber is smaller.

The largest subnormal number is 0.999999988×2–126. It is close
to the smallest normalized number 2–126.

When all the
exponent bits are 0
and the leading
hidden bit of the
siginificand is 0, then
the floating point
number is called a
subnormal number.
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The smallest positive subnormal number is

0 00000000 00000000000000000000001
Sign Exponent Significand
1 bit 8 bits 23 bits

the value of which is 2–23 × 2 –126 = 2–149.

A result that is smaller than the smallest number that can be stored
in a computer is called an underflow.

You may wonder why subnormal numbers are allowed in the
IEEE Standard. By using subnormal numbers, underflow which
may occur in some calculations are gradual. Also, the smallest
number that could be represented in a machine is closer to zero.
(See Box 2.)

Box 2. Machine Epsilon and Dwarf

In any of the formats for representing floating point numbers, machine epsilon is defined as the difference
between 1 and the next larger number that can be stored in that format. For example, in 32-bit IEEE format with
a 23-bit significand, the machine epsilon is 2 –23 = 1.19 × 10– 7. This essentially tells us that the precision of
decimal numbers stored in this format is 7 digits. The term precision and accuracy are not the same. Accuracy
implies correctness whereas precision does not. For 64-bit representation of IEEE floating point numbers the
significand length is 52 bits. Thus, machine epsilon is 2–52 = 2.22 ×10–16. Therefore, decimal calculations with
64 bits give 16 digit precision. This is a conservative definition used by industry. In MATLAB, machine epsilon
is as defined above. However, academics define machine epsilon as the upper bound of the relative error when
numbers are rounded. Thus, for 32-bit floating point numbers, the machine epsilon is 2–23/2 5.96 ×10–8.

The machine epsilon is useful in iterative computation. When two successive iterates differ by less than |epsilon|
one may assume that the iteration has converged. The IEEE Standard does not define machine epsilon.

Tiny or dwarf is the minimum subnormal number that can be represented using the specified floating point
format. Thus, for IEEE 32-bit format, it is

0 00000000 00000000000000000000001
Sign Exponent Significand
1 bit 8 bits 23 bits

whose value is: 2 –126– 23 = 2–149 1.4 × 10– 45. Any number less than this will signal underflow. The advantage
of using subnormal numbers is that underflow is gradual as was stated earlier.

By using subnormal
numbers, underflow
which may occur in

some calculations are
gradual.
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When a mathematical operation such as add, subtract, multiply,
or divide is performed with two floating point numbers, the
significand of the result may exceed 23 bits after the adjustment
of the exponent. In such a case, there are two alternatives. One is
to truncate the result, i.e., ignore all bits beyond the 32nd bit. The
other is to round the result to the nearest significand. For
example, if a significand is 0.110 .. 01 and the overflow bit is 1,
a rounded value would be 0.111… 10. In other words, if the first
bit which is truncated is 1, add 1 to the least significant bit, else
ignore the bits. This is called rounding upwards. If the extra bits
are ignored, it is called rounding downwards. The IEEE Stan-
dard suggests to hardware designers to get the best possible result
while performing arithmetic that are reproducible across differ-
ent manufacturer’s computers using the standard. The Standard
suggests that in the equation

c = a <op> b,

where a and b are operands and<op> an arithmetic operation, the
result c should be as if it was computed exactly and then rounded.
This is called correct rounding.

In Tables 1 and 2, we summarise the discussions in this section.

Table 1. IEEE 754-85 float-
ing point standard. We use f
to represent the significand,
e to represent the exponent,
b the bias of the exponent,
and ± for the sign.

Value Sign Exponent (8 bits) Significand (23 bits)
+0 0 00000000 00 … .00 (all 23 bits 0)
– 0 1 00000000 00 … .00 (all 23 bits 0)
+ 1.f 2(e – b)
e exponent, b bias

0 00000001to
11111110

a a …. a a (a = 0 or 1)

– 1.f 2(e – b) 1 00000001to
11111110

a a …. a a (a = 0 or 1)

+ 0 11111111 000 … 00 (all 23 bits 0)
– 1 11111111 000 … 00 (all 23 bits 0)
SNaN 0 or 1 11111111 000 … 01 to leading bit 0

011… 11 (at least one 1 in
the rest)

QNaN 0 or 1 11111111 1000 … 10 leading bit 1
Positive subnormal
0.f 2 x+1-b (x is
the number of
leading 0s in
significand)

0 00000000 000 … 01 to (at least one 1)
111… 11
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(–1)s × (1.f) × 2(exponent – 1023) ,

where s = ± 1, and f is the value of the significand.

The largest positive number which can be represented in this
standard is

0 11111111110 1111………………………………………..1111
Sign Exponent Significand
1 bit 11 bits 52 bits

which is = (2 – 2–52) × 2 (2046 – 1023) = (2 – 2–52) × 2 1023 10 3083.
The smallest positive number that can be represented using 64

Table 2. Operations on spe-
cial numbers. All NaNs are
Quiet NaNs.

IEEE 754 Floating Point 64-Bit Standard – 1985

The IEEE 754 floating point standard for 64-bit (called double
precision) numbers is very similar to the 32-bit standard. The
main difference is the allocation bits for the exponent and the
significand. With 64 bits available to store floating point num-
bers, there is more freedom to increase the significant digits in the
significand and increase the range by allocating more bits to the
exponent. The standard allocates 1 bit for sign, 11 bits for the
exponent, and 52 bits for the significand. The exponent uses a
biased representation with a bias of 1023. The representation is
shown below:

Sign Exponent Significand
1 bit 11 bits 52 bits

A number in this standard is thus

Operation Result Operation Result

n / ± 0 ± 0 / ± 0 NaN
± / ± ± – NaN
± n / 0 ± ± / ± NaN
+ ± × 0 NaN

With 64 bits
available to store

floatingpoint
numbers, there is
more freedom to

increase the
significant digits in
the significand and
increase the range
by allocating more

bits to the exponent.
The standard

allocates 1 bit for
sign, 11 bits for the
exponent, and 52

bits for the
significand.
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bits using this standard is

0 00000000001 0000………………………………….. 00000
Sign Exponent Significand
1 bit 11 bits 52 bits

whose value is 2 1–1023 = 2–1022.

The definitions of ± 0, ± , QNaN, SNaN remain the same except
that the number of bits in the exponent and significand are now 11
and 52 respectively. Subnormal numbers have a similar definition
as in 32-bit standard.

IEEE 754 Floating Point Standard – 2008

This standard was introduced to enhance the scope of IEEE 754
floating point standard of 1985. The enhancements were intro-
duced to meet the demands of three sets of professionals:

1. Those working in the graphics area.
2. Those who use high performance computers for numeric
intensive computations.

3. Professionals carrying out financial transactions who require
exact decimal computation.

This standard has not changed the format of 32- and 64-bit
numbers. It has introduced floating point numbers which are 16
and 128 bits long. These are respectively called half and qua-
druple precision. Besides these, it has also introduced standards
for floating point decimal numbers.

The 16-Bit Standard

The 16-bit format for real numbers was introduced for pixel
storage in graphics and not for computation. (Some graphics
processing units use the 16-bit format for computation.) The 16-
bit format is shown in Figure 3.

IEEE 2008 Standard
has introduced
standards for 16-bit
and 128-bit floating
point numbers. It
has also introduced
standards for
floatingpoint
decimal numbers.

The 16-bit format
for real numbers
was introduced for
pixel storage in
graphics and not
for computation.

Figure 3. Representation of
16-bit floating point numbers.
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Figure 4. Representation of
128-bit floating point number.

With 16-bit representation, 5 bits are used for the exponent and 10
bits for the significand. Biased exponent is used with a bias of 15.
Thus the exponent range is: –14 to +15. Remember that all 0s and
all 1s for the exponent are reserved to represent 0 and respec-
tively.

The maximum positive integer that can be stored is

+ 1.111..1 × 2 15 = 1 + (1 – 2– 11) × 2 15 = (2 – 2–11) × 2 15

65504.

The minimum positive number is

+ 1.000 … 0 × 2 –14 = 2 –14 = 0.61 × 10–4.

The minimum subnormal 16-bit floating point number is

2–24 5.96 × 10–8.

The definitions of ± 0, ± , NaN, and SNaN follow the same ideas
as in 32-bit format.

The 128-Bit Standard

With improvements in computer technology, using 128 bits to
represent floating point numbers has become feasible. This is
sometimes used in numeric-intensive computation, where large
rounding errors may occur. In this standard, besides a sign bit, 14
bits are used for the exponent, and 113 bits are used for the
significand. The representation is shown in Figure 4.

A number in this standard is

(–1)s × (1.f) × 2(exponent – 16384).

With improvements in
computer technology,

using 128 bits to
represent floating point
numbers has become

feasible. This is
sometimes used in
numeric-intensive

computation, where
large rounding errors

may occur.
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The largest positive number which can be represented in this
format is:

0 11111111111110 111………………………………………..111
Sign Exponent Significand
1 bit 14 bits 113 bits

which equals (1 – 2–113) × 216383 = 104932.

The smallest normalized positive number which can be repre-
sented is

2 1–16383 = 2 –16382 10 –4931.

A subnormal number is represented by

(– 1) s × 0.f × 2 –16382.

The smallest positive subnormal number is

2–16382–113 = 2–16485.

The definitions of ± 0, ± , andQNaN, and SNaN are the same as
in the 1985 standard except for the increase of bits in the exponent
and significand. There are other minor changes which we will not
discuss.

The Decimal Standard

The main motivation for introducing a decimal standard is the
fact that a terminating decimal fraction need not give a terminat-
ing binary fraction. For example, (0.1)10 = (0.00011 (0011)
recurring)2. If one computes 100000000 × 0.1 using binary arith-
metic and rounding the non-terminating binary fraction up to the
next larger number, the answer is: 10000001.490116 instead of
10000000. This is unacceptable in many situations, particularly
in financial transactions. There was a demand from professionals
carrying out financial transactions to introduce a standard for
representing decimal floating point numbers. Decimal floating
point numbers are not new. They were available in COBOL.
Therewas, however, no standard and this resulted in non-portable
programs. IEEE 754-2008 has thus introduced a standard for

Themainmotivation
for introducing a
decimal standard is
the fact that a
terminatingdecimal
fraction need not give
a terminating binary
fraction.

There was a demand
from professionals
carrying out financial
transactions to
introduce a standard
for representing
decimal floating point
numbers.
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Figure 6. Representation of
32-bit floating point numbers
in IEEE 2008 Standard.

decimal floating point numbers to facilitate portability of pro-
grams.

Decimal Representation

The idea of encoding decimal numbers using bits is simple. For
example, to represent 0.1 encoded (not converted) to binary, it is
written as 0.1 100. The exponent instead of being interpreted as
a power of 2 is now interpreted as a power of 10. Both the
significand and the exponent are now integers and their binary
representations have a finite number of bits. One method of
representing 0.1 100 using this idea in a 32-bit word is shown in
Figure 5.

We have assumed an 8-bit binary exponent in biased form. In this
representation, there is no hidden 1 in the significand. The
significand is an integer. (Fractions are represented by using an
appropriate power of 10 in the exponent field.) For example,
.000753658 will be written as 0.753658 10–3 and 753658, an
integer, will be converted to binary and stored as the significand.
The power of 10, namely –3, will be an integer in the exponent
part.

The IEEE Standard does not use this simple representation. This
is due to the fact that the largest decimal significand that may be
represented using this method is 0.8388607.

It is preferable to obtain 7 significant digits, i.e., significand up to
0.9999999. The IEEE Standard achieves this by borrowing some
bits from the exponent field and reducing the range of the
exponent. In other words, instead of maximum exponent of 128, it
is reduced to 96 and the bits saved are used to increase the significant
digits in the significand. The coding of bits is as shown in Figure 6.

Figure 5. Representation of
decimal floating point num-
bers.
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Observe the difference in terminology for exponent and significand
fields. In this coding, one part of the five combination bits is
interpreted as exponent and the other part as an extension of
significand bits using an ingenious method. This will be ex-
plained later in this section.

IEEE 2008 Standard defines two formats for representing deci-
mal floating point numbers. One of them converts the binary
significand field to a decimal integer between 0 and 10p–1 where
p is the number of significant bits in the significand. The other,
called densely packed decimal form, encodes the bits in the
significand field directly to decimal. Both methods represent
decimal floating point numbers as shown below.

Decimal floating point number = (–1)s × f × 10exp – bias, where s is
the sign bit, f is a decimal fraction (significand), exp and bias are
decimal numbers. The fraction need not be normalized but is
usually normalized with a non-zero most significant digit. There
is no hidden bit as in the binary standard. The standard defines
decimal floating point formats for 32-bit, 64-bit and 128-bit
numbers.

Densely Packed Decimal Significand Representation

Normally, when decimal numbers are coded to binary, 4 bits are
required to represent each digit, as 3 bits give only 8 combinations
that are not sufficient to represent 10 digits. Four bits give 16
combinations out of which we need only 10 combinations to
represent decimal numbers from 0 to 9. Thus, we waste 6 combi-
nations out of 16. For a 32-bit number, if 1 bit is used for sign, 8
bits for the exponent and 23 bits for the significand, the maximum
positive value of the significand will be +0.799999. The expo-
nent range will be 00 to 99. With a bias of 50, the maximum
positive decimal number will be 0.799999 × 1049.

The number of significand digits in the above coding is not
sufficient. A clever coding scheme for decimal encoding of
binary numbers was discovered by Cowlinshaw. This method
encodes 10 bits as 3 decimal digits (remember that 210 = 1024 and

IEEE 2008 Standard
defines two formats
for representing
decimal floating point
numbers. One of
them converts the
binarysignificand
field to a decimal
integer between 0
and 10p–1 where p is
the number of
significant bits in the
significand. The
other, called densely
packed decimal form,
encodes the bits in
the significand field
directly to decimal.
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Table 3. Use of combination
bits in IEEE Decimal Stan-
dard.

one can encode 000 to 999 using the available 1024 combinations
of 10 bits). IEEE 754 Standard uses this coding scheme. We will
now describe the standard using this coding method for 32-bit
numbers.

The standard defines the following:

1. A sign bit 0 for + and 1 for – .
2. A combination field of 5 bits. It is called a combination field as
one part of it is used for the exponent and another part for the
significand.

3. An exponent continuation field that is used for the exponent.
4. A coefficient field that encodes strings of 10 bits as 3 digits.
Thus, 20 bits are encoded as 6 digits. This is part of the
significand field.

For 32-bit IEEE word, the distribution of bits was given in Figure
6 which is reproduced below for ready reference.

Sign Combination field Exponent continuation field Coefficient field
1 bit 5 bits 6 bits 20 bits

The 5 bits of the combination field are used to increase the
coefficient field by 1 digit. It uses the first ten 4-bit combinations
of 16 possible 4-bit combinations to represent this. As there are
32 combinations of 5 bits, out of which only 10 are needed to extend
the coefficient digits, the remaining 22-bit combinations are avail-
able to increase the exponent rangeand also encode andNaN. This
is done by an ingenious method explained in Table 3.

Combination bits Type

Most
significant
bits of
exponent

Most
significant
digit of
coefficient

b1 b2 b3 b4 b5
x y a b c
1 1 a b c
1 1 1 1 0
1 1 1 1 1

Finite
Finite

NaN

x y
a b
–
–

0 a b c
1 0 0 c

–
–
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Table 4. Decimal represen-
tation for 64-bit and 128-bit
numbers.

Sign bit 1 1
Combination field (bits) 5 5
Exponent continuation field (bits) 8 12
Coefficient field (bits) 50 110
Number of bits in number 64 128
Significant digits 16 34
Exponent range (decimal) 768 12288
Exponent bias (decimal) 384 6144

Thus, the most significant 2 bits of the exponent are constrained
to take on values 00, 01, 10. Using the 6 bits of exponent
combination bits, we get an exponent range of 3 × 26 = 192. The
exponent bias is 96. (Remember that the exponent is an integer
that can be exactly represented in binary.) With the addition of 1
significant digit to the 6 digits of the coefficient bits, the decimal
representation of 32-bit numbers has 7 significant digits. The
largest number that can be stored is 0.9999999 × 1096. A similar
method is used to represent 64- and 128-bit floating point num-
bers. This is shown in Table 4.

In the IEEE 2008 Decimal Standard, the combination bits along
with exponent bits are used to represent NaN, signaling NaN and
± as shown in Table 5.

Quantity Sign bit Combination bits

b0 b1 b2 b3 b4 b5 b6
SNaN 0 or 1 1 1 1 1 1 1
QNaN 0 or 1 1 1 1 1 1 0
+ 0 1 1 1 1 0 x
– 1 1 1 1 1 0 x
+ 0 0 0 0 0 0 0 x
– 0 1 0 0 0 0 0 x

(x is 0 or 1)
Table 5. Representation of
NaNs, ± , and ± 0.
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Binary Integer Representation of Significand

In this method, as we stated earlier, if there are p bits in the
extended coefficient field constituting the significand, they are
converted as a decimal integer. This representation also uses the
bits of the combination field to increase the number of significant
digits. The idea is similar and we will not repeat it. The represen-
tation of NaNs and ± is the same as in the densely packed
format. The major advantage of this representation is the simplic-
ity of performing arithmetic using hardware arithmetic units
designed to perform arithmetic using binary numbers. The disad-
vantage is the time taken for conversion from integer to decimal.
The densely packed decimal format allows simple encoding of
binary to decimal but needs a specially designed decimal arith-
metic unit.
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