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Abstract. Suppose Vν(·) is the pseudo-variance function of the Cauchy–Stieltjes
Kernel (CSK) family K−(ν) generated by a non degenerate probability measure ν on
the positive real line. Denote by �(ν) the law of large numbers for free multiplicative
convolution given in [17]. An explicit expression of �(ν) is given in [14] in terms of
the pseudo-variance function Vν(.). In this paper, we give explicitly in terms of the
pseudo-variance function Vν(.) the limiting distributions �(ν�t ), �((D1/s(ν

�s))�t ),

�((D1/r (ν�r ))�t ) and �((Br (ν))�t ) for s > 1, t > 1 and r > 0, where Br (ν) =
(ν�1+r )

� 1
1+r and Dc(ν) denotes the dilation of measure ν by a number c �= 0.

Some examples of calculations of �(ν�t ), �((D1/s(ν
�s))�t ), �((D1/r (ν�r ))�t ) and

�((Br (ν))�t ) are given for probability measures ν of importance in noncommutative
probability.
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1. Introduction

The law of large numbers is well-known as a result that a sample average of independent
identically distributed random variables with finite mean concentrates on the theoreti-
cal mean when a sample size is sufficiently large. As the analogous result on classical
probability, the law of large numbers for free random variables was also established (see
[18]). More precisely, for any probability measure μ on the real line, with mean a, we
have D1/n(μ

�n)
w−→ δa as n → +∞, where notation

w−→ means the weak convergence
of sequences of probability measures, Dc(μ) is the push-forward of a measure μ by the
mapping x �−→ cx for c ∈ R and μ�ν is called the free additive convolution. It represents
the probability distribution of addition of free random variables X and Y distributed as
probability measures μ and ν respectively. In particular, μ�n is the n-th power of free
additive convolution of μ.
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The law of large numbers for multiplication of (classically or freely) independent posi-
tive random variables are also considered. In classical probability, it is easy to formulate
and investigate the law of large numbers of multiplication by considering the exponential
mapping of those random variables. On the other hand, the non-commutativity of ran-
dom variables appears more clearly in the multiplicative law of large numbers. The limit
probability measure for the free multiplicative law of large numbers was proved by Tucci
[21] for probability measures with bounded support. Haagerup and Möller [17] extended
Tucci’s result to probability measures with unbounded support and at the same time they
gave a more elementary proof for the case of probability measures with bounded support.
In contrast to the classical multiplicative convolution case, the limit measure for the free
multiplicative law of large numbers is not a Dirac measure, unless the original measure is
a Dirac measure. More precisely we have the following (see [17, Theorem 2]).

Theorem 1.1. Let ν be a probability measure on [0,∞) and let φn : [0,∞) −→ [0,∞)

be the map φn(x) = x1/n. Set α = ν({0}). If we denote

μn = φn(ν � · · · � ν
︸ ︷︷ ︸

n times

),

then μn converge weakly to a probability measure denoted by �(ν) on [0,∞). If ν is
a Dirac measure on [0,∞), then �(ν) = ν. Otherwise, �(ν) is the unique probability
measure on [0,∞) characterized by

�(ν)

([

0,
1

Sν(x − 1)

])

= x (1.1)

for all x ∈ (α, 1) and �(ν)({0}) = α. The support of the measure �(ν) is the closure of
the interval

(a, b) =
(

(∫ ∞

0
x−1ν(dx)

)−1

,

∫ ∞

0
xν(dx)

)

,

where 0 ≤ a < b ≤ ∞.

Here, Sν is the S-transform of ν, and � is the free multiplicative convolution which will
be introduced in the next section (see [4] or [17] for more details).

On the other hand, in the framework of free probability and in analogy with the the-
ory of natural exponential families, a theory of Cauchy–Stieltjes Kernel (CSK) families
has been recently introduced. It is based on the Cauchy–Stieltjes kernel 1/(1 − θx). For
instance, the study of CSK families has been initiated in [5] for compactly supported prob-
ability measures. In [6], Bryc and Hassairi have extended the results established in [5] to
allow probability measures with unbounded support. Many properties and characteriza-
tions of CSK families are also given in [7–9,12,13,15,16]. The results in [14] indicates
the usefulness of CSK families for free probability. Theorem 3.1 given in [14] provides an
interesting description of the free multiplicative law of large numbers �(ν) in terms of the
pseudo-variance function Vν of the CSK family generated by ν (see the next section for
CSK families and the corresponding pseudo-variance functions). This description yields
a number of explicit examples.
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In this paper, we are interested in finding explicitly in terms of the pseudo-variance
function Vν(.) the limiting distributions �(ν�t ), �((D1/s(ν

�s))�t ), �((D1/r (ν
�r ))�t )

and �((Br (ν))�t ) for s > 1, t > 1 and r > 0, where Br (ν) = (ν�1+r )�
1

1+r , � is the
free additive convolution and � is the Boolean additive convolution (see the next section
for these convolutions). Some examples of calculations of �(ν�t ), �((D1/s(ν

�s))�t ),
�((D1/r (ν

�r ))�t ) and �((Br (ν))�t ) are given for probability measures ν of importance
in non-commutative probability. Section 2 describes CSK families and their associated
pseudo-variance function as a background, for the reader. Also some preliminaries about
free additive convolution, Boolean additive convolution and free multiplicative convolution
are given. Section 3 is devoted to the main result of the paper and Section 4 contains some
examples.

2. Preliminaries and notations

2.1 Cauchy–Stieltjes kernel families

Here we recall a few features about CSK families. Our notations are the ones used in [10].
Let ν be a non-degenerate probability measure with support bounded from above. Then

Mν(θ) =
∫

1

1 − θx
ν(dx) (2.1)

is defined for all θ ∈ [0, θ+(ν)) with 1/θ+(ν) = max{0, sup supp(ν)}. For θ ∈ [0, θ+(ν)),
consider

P(θ,ν)(dx) = 1

Mν(θ)(1 − θx)
ν(dx).

The set of probability measures

K+(ν) = {P(θ,ν)(dx); θ ∈ (0, θ+(ν))}
is called the one-sided CSK family generated by ν.

Denote kν(θ) = ∫

x P(θ,ν)(dx) the mean of P(θ,ν). According to [6, pp. 579–580], the
map θ �→ kν(θ) is strictly increasing on (0, θ+(ν)). It is given by the formula

kν(θ) = Mν(θ) − 1

θ Mν(θ)
. (2.2)

The image of (0, θ+) by the function kν(.) is denoted by (m0(ν), m+(ν)) and it is called the
(one-sided) domain of means of the family K+(ν). This provides a new parametrization
of the family K+(ν) by the mean. In fact, let ψν be the inverse of kν , and writing for
m ∈ (m0(ν), m+(ν)), Q(m,ν)(dx) = P(ψν(m),ν)(dx), we obtain

K+(ν) = {Q(m,ν)(dx); m ∈ (m0(ν), m+(ν))}.
Now let

B = B(ν) = max{0, sup supp(ν)} = 1/θ+(ν) ∈ [0,∞). (2.3)

Then it is proved in [6] that the bounds m0(ν) and m+(ν) of the one-sided domain of
means (m0(ν), m+(ν)) are given by

m0(ν) = lim
θ→0+ kν(θ) and m+(ν) = B − lim

z→B+
1

Gν(z)
, (2.4)
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with B = B(ν), and Gν(z) is the Cauchy transform of ν given by

Gν(z) =
∫

1

z − x
ν(dx). (2.5)

for z ∈ C
+ = {x + iy ∈ C; y > 0}.

Note that one may define the one-sided CSK family for a measure ν with support bounded
from below. This family is usually denoted by K−(ν) and parameterized by θ such that
θ− < θ < 0, where θ− is either 1/A(ν) or −∞ with A = A(ν) = min{0, inf supp(ν)}. The
domain of means for K−(ν) is the interval (m−(ν), m0(ν)) with m−(ν) = A − 1/Gν(A).

If ν has compact support, the natural domain for the parameter θ of the two-sided CSK
family K(ν) = K+(ν) ∪ K−(ν) ∪ {ν} is θ− < θ < θ+.
We come now to the notions of variance and pseudo-variance functions. The variance
function

m �→ Vν(m) =
∫

(x − m)2 Q(m,ν)(dx) (2.6)

is a fundamental concept in the theory of CSK families as presented in [5]. Unfortunately,
if the measure ν does not have a first moment which is, for example, the case for a free
1/2-stable law, then all probability measures in the CSK family generated by ν have infinite
variance. This fact has led Bryc and Hassairi [6] to introduce a notion of pseudo-variance
function Vν(·) defined by

Vν(m) = m

(

1

ψν(m)
− m

)

. (2.7)

If m0(ν) = ∫

xdν is finite, then (see [6]) the pseudo-variance function is related to the
variance function by

Vν(m) = m

m − m0
Vν(m). (2.8)

In particular, Vν(.) = Vν(.) when m0(ν) = 0.
The generating measure ν is uniquely determined by the pseudo-variance function Vν .

In fact, if we set

z = z(m) = m + Vν(m)

m
, (2.9)

then the Cauchy transform satisfies

Gν(z) = m

Vν(m)
. (2.10)

We now recall the effect on a CSK family of applying an affine transformation to the
generating probability measure. Consider the affine transformation ϕ : x �−→ (x − ε)/σ ,
where σ �= 0 and ε ∈ R and let ϕ(ν) be the image of ν by ϕ. In other words, if X is a random
variable with law ν, then ϕ(ν) is the law of (X − ε)/σ , or ϕ(ν) = D1/σ (ν � δ−ε), where
Dr (μ) denotes the dilation of measure μ by a number r �= 0, that is, Dr (μ)(U ) = μ(U/r).
The point m0 is transformed to (m0 − ε)/σ . In particular, if σ < 0, the support of the
measure ϕ(ν) is bounded from below so that it generates the left-sided family K−(ϕ(ν)).
For m close enough to (m0 − ε)/σ , the pseudo-variance function is

Vϕ(ν)(m) = m

σ(mσ + ε)
Vν(σm + ε). (2.11)

In particular, if the variance function exists, then Vϕ(ν)(m) = 1
σ 2 Vν(σm + ε).
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2.2 Free additive convolution

Denote by M (respectively by M+) the set of Borel probability measures on R (respec-
tively on R+). For ν ∈ M, the free cumulant transform Rν is a function analytic in a
neighborhood of zero (see [3]) and it is defined by

1

Gν(z)
= z − Rν(Gν(z)). (2.12)

The free additive convolution of the probability measures μ, ν ∈ M is a uniquely
defined probability measure μ � ν such that

Rμ�ν(z) = Rμ(z) + Rν(z). (2.13)

A probability measure ν ∈ M is �-infinitely divisible, if for each n ∈ N, there exists
νn ∈ M such that

ν = νn � · · · � νn
︸ ︷︷ ︸

n times

.

Let ν�t denote the t-fold free additive convolution of ν with itself. In contrast to classical
convolution, this operation is well-defined for all real t ≥ 1 (see [19]), and we have

Rν�t (z) = tRν(z). (2.14)

The probability measure ν is �-infinitely divisible if its free additive convolution power
ν�t is well-defined for all real t > 0.

Our interest in the free additive convolution power stems for two important properties:
its effect on the pseudo-variance function and the subordination function. The action of the
free additive convolution power on the pseudo-variance function is given in [6, Proposition
3.10]. More precisely, it was shown that for t > 0 such that ν�t is defined and for m close
enough to m0(ν

�t ) = tm0(ν),

Vν�t (m) = tVν(m/t). (2.15)

Concerning subordination function, Belinschi and Bercovici [2] used subordination results
in order to show that ν�t has no continuous singular part if t > 1, and that the density of
its absolutely continuous part is locally analytic. In fact, there exists an injective analytic
map (called subordination) wt : C+ −→ C

+ such that Gν�t (z) = Gν(wt (z)) for z ∈ C
+.

Furthermore, we have

wt (z) = z/t + (1 − 1/t)

Gν�t (z)
(2.16)

and Ht (wt (z)) = z, where

Ht (z) = t z + (1 − t)

Gν(z)
. (2.17)

For more details about subordination function, see [2, Theorem 2.5].

2.3 Boolean additive convolution

The definition of Boolean additive convolution is based on the notion of K -transform (see
[20]). For ν ∈ M, the K -transform of ν is defined by

Kν(z) = z − 1

Gν(z)
, for z ∈ C

+. (2.18)
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For probability measures μ, ν ∈ M their Boolean additive convolution is the probability
measure μ � ν defined by

Kμ�ν(z) = Kμ(z) + Kν(z), for z ∈ C
+. (2.19)

A probability measure ν ∈ M is infinitely divisible in the Boolean sense if for each n ∈ N,
there exists νn ∈ M such that

ν = νn � · · · � νn
︸ ︷︷ ︸

n times

.

Note that all probability measure ν on R are �-infinitely divisible, see [20, Theorem 3.6].
The action of the Boolean additive convolution power on the pseudo-variance function

is given in [11, Theorem 2.3], that is, for t > 0 and for m > m0(ν
�t ) = tm0(ν) close

enough to m0(ν
�t ), it was shown that

Vν�t (m) = tVν(m/t) + m2(1/t − 1). (2.20)

Note that Belinschi and Nica [1] have defined for t ≥ 0, the mapping

Bt : M → M
ν �→ (ν�(1+t))�

1
1+t .

The pseudo-variance function of the CSK family generated by Bt (ν) is given in [11].
More precisely, it was shown that if ν ∈ M is a probability measure with support bounded
from above, then for m > m0(ν) = m0(Bt (ν)) close enough to m0(ν), we have

VBt (ν)(m) = Vν(m) + tm2. (2.21)

2.4 Free multiplicative convolution

Let ν ∈ M+ such that α = ν({0}) < 1 and consider the function

�ν(z) =
∫ +∞

0

zx

1 − zx
ν(dx), z ∈ C \ R+ (2.22)

The function �ν is univalent in the left half-plane iC+ and its image �ν(iC+) is contained
in the disc with diameter (ν({0}) − 1, 0). Moreover, �ν(iC+) ∩ R = (ν({0}) − 1, 0). Let
χν : �ν(iC+) −→ iC+ be the inverse function of �ν . Then the S-transform of ν is the
function

Sν(z) = χν(z)
1 + z

z
. (2.23)

The product of S-transforms is an S-transform. For ν1 and ν2 ∈ M+, their free multiplica-
tive convolution is the probability measure ν1 � ν2 which is defined by

Sν1�ν2(z) = Sν1(z)Sν2(z).

We say that the probability measure ν ∈ M+ is infinitely divisible with respect to � if
for each n ∈ N, there exists νn ∈ M+ such that

ν = νn � · · · � νn
︸ ︷︷ ︸

n times

.

The multiplicative free convolution power ν�t is defined at least for t ≥ 1 by Sν�t (z) =
Sν(z)t . For more details about the S-transform, see [4].

The action of the free multiplicative convolution power on the pseudo-variance function
is given in [16]. That is, for ν ∈ M+ and t > 0 such that ν�t is well defined and for
m ∈ (m−(ν�t ), m0(ν

�t )) = ((m−(ν))t , (m0(ν))t ), we have



Proc. Indian Acad. Sci. (Math. Sci.)          (2024) 134:10 Page 7 of 21    10 

Vν�t (m) = m2−2/t
Vν(m

1/t ). (2.24)

3. Main result

Let ν ∈ M+ be a non degenerate probability measure. We determine explicitly in terms
of the pseudo-variance function Vν(.), the expressions of �(ν�t ), �((D1/s(ν

�s))�t ),
�((D1/r (ν

�r ))�t ) and �((Br (ν))�t ) for s > 1, t > 1 and r > 0.

Theorem 3.1. Let Vν(·) be the pseudo-variance function of the CSK family K−(ν) gener-
ated by a non degenerate probability measure ν ∈ M+. Set α = ν({0}). With the notations
introduced above, for all s > 1, t > 1 and r > 0 we have

(i)
�(ν�t )(dm) = αδ0 +

(

m2/t

Vν(m1/t )

)′
1((m−(ν))t , (m0(ν))t)(m)dm. (3.1)

(ii)
�((D1/s(ν

�s))�t )(dm) = (sα − (s − 1))+δ0

+
(

sm2/t

Vν(m1/t )

)′
1(

(

− ws (0)
s−1

)t
, (m0(ν))t

)(m)dm. (3.2)

(iii)
�((D1/r (ν

�r ))�t )(dm) = α

r − α(r − 1)
δ0

+
(

rm2/t

Vν(m1/t ) + (1 − r)m2/t

)′
1((m−(ν))t , (m0(ν))t)(m)dm. (3.3)

(iv)
�((Br (ν))�t )(dm) = (1 + r)((1 + r)α − r)+

1 + r((1 + r)α − r)+
δ0

+
(

m2/t

Vν(m1/t ) + rm2/t

)′
1(

(

− w1+r (0)

r

)t
, (m0(ν))t

)(m)dm. (3.4)

Proof.

(i) According to [14, Theorem 3.1], the free multiplicative law of large numbers �(ν)

is given in terms of the pseudo-variance function Vν(·) by

�(ν)(dm) = αδ0 +
(

m2

Vν(m)

)′
1(m−(ν), m0(ν))(m)dm. (3.5)

Furthermore, according to [4, Lemma 6.9], if μ1 and μ2 are probability measures on
[0,+∞) and μ = μ1 � μ2, we have μ({0}) = max{μ1({0}), μ2({0})}. This implies that

ν�t ({0}) = ν({0}) = α. (3.6)

Combining (2.24), (3.5) and (3.6), we get for all t > 1,

�(ν�t )(dm) = ν�t ({0})δ0 +
(

m2

Vν�t (m)

)′
1(m−(ν�t ), m0(ν�t ))(m)dm
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= αδ0 +
(

m2/t

Vν(m1/t )

)′
1((m−(ν))t , (m0(ν))t)(m)dm. (3.7)

(ii) According to [2, Theorem 3.1], ν�s has an atom at 0 for s > 1 if and only if ν({0}) =
α > 1 − 1/s. In this case, we have

ν�s({0}) = sα − (s − 1). (3.8)

Then

(D1/s(ν
�s))�t ({0}) = D1/s(ν

�s)({0}) = ν�s({0}) = (sα − (s − 1))+.

(3.9)

Since ν is a non degenerate probability measure on [0,∞), this is the same for ν�s .
Then A = A(ν�s) = min{0, inf supp(ν�t )} = 0. Thus,

m−(ν�s) = A − 1/Gν�s (A) = −1/Gν�s (0). (3.10)

Equation (3.10) together with (2.16) implies that for all s > 1,

m−(ν�s) = − sws(0)

s − 1
. (3.11)

Then

m−((D1/s(ν
�s))�t ) = (m−(D1/s(ν

�s)))t =
(

−ws(0)

s − 1

)t

. (3.12)

Furthermore,

m0((D1/s(ν
�s))�t ) = (m0(D1/s(ν

�s)))t = (m0(ν))t . (3.13)

From (2.24), (2.15) and (2.11), we have for all s > 1 and t > 1,

V((D1/s (ν�s ))�t )(m) = m2−2/t

s
Vν(m

1/t ). (3.14)

Combining (3.5), (3.9), (3.12), (3.13) and (3.14), we obtain for all s > 1 and t > 1,

�((D1/s(ν
�s))�t )(dm) = (sα − (s − 1))+δ0

+
(

sm2/t

Vν(m1/t )

)′
1(

(

− ws (0)
s−1

)t
, (m0(ν))t

)(m)dm. (3.15)

(iii) From [22, Corollary 2.3], it is well known that ν�r has an atom at 0 if and only if ν

has an atom at 0. In this case, we have

ν�r ({0}) = α

r − α(r − 1)
, r > 0. (3.16)
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Then for all r > 0 and t > 1, we have

(D1/t (ν
�t ))�t ({0}) = D1/r (ν

�r )({0}) = ν�r ({0}) = α

r − α(r − 1)
. (3.17)

Since ν is a non degenerate probability measure on [0,∞), this is the same for ν�r . Then
A(ν�r ) = min{0, inf supp(ν�r )} = 0. Thus,

m−(ν�r ) = −1/Gν�r (0) = −r/Gν(0) = rm−(ν). (3.18)

Then, for all r > 0 and t > 1,

m−((D1/r (ν
�r ))�t ) = (m−(D1/r (ν

�r )))t = (m−(ν))t . (3.19)

Furthermore,

m0((D1/r (ν
�r ))�t ) = (m0(D1/r (ν

�r )))t = (m0(ν))t . (3.20)

From (2.24), (2.20) and (2.11), we have for all r > 0 and t > 1,

V((D1/r (ν�r ))�t )(m) = m2−2/t

r
Vν(m

1/t ) + m2(1/r − 1). (3.21)

Combining (3.5), (3.17), (3.19), (3.20) and (3.21), we get for all r > 0 and t > 1,

�((D1/r (ν
�r ))�t )(dm) = α

r − α(r − 1)
δ0

+
(

rm2/t

Vν(m1/t ) + (1 − r)m2/t

)′
1((m−(ν))t , (m0(ν))t)(m)dm. (3.22)

(iv) Using (3.8) and (3.16), we get for all r > 0 and t > 1,

(Br (ν))�t {0} = (Br (ν)){0} =
(

ν�1+r
)� 1

1+r {0} = ν�1+r {0}
1

1+r −
(

1
1+r − 1

)

ν�1+r {0}

= ((1 + r)α − r)+
1

1+r −
(

1
1+r − 1

)

((1 + r)α − r)+
= (1 + r)((1 + r)α − r)+

1 + r((1 + r)α − r)+
. (3.23)

Furthermore, from (3.11) and (3.18), one see that

m−(Br (ν)) = m−
(

ν�1+r
)� 1

1+r = 1

1 + r
m−(ν�1+r ) = −w1+r (0)

r
. (3.24)

Thus, for all r > 0 and t > 1, we have

m−((Br (ν))�t ) = (m−(Br (ν)))t =
(

−w1+r (0)

r

)t

. (3.25)
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We also have

m0((Br (ν))�t ) = (m0(Br (ν)))t = (m0(ν))t . (3.26)

In addition, one sees from (2.24) and (2.21) that for all r > 0, t > 1 and for m < (m0(ν))t

close enough to (m0(ν))t , we have

V((Br (ν))�t )(m) = m2−2/t
Vν(m

1/t ) + rm2. (3.27)

Combining (3.5), (3.23), (3.25), (3.26) and (3.27), we get for all r > 0 and t > 1,

�((Br (ν))�t )(dm) = (1 + r)((1 + r)α − r)+

1 + r((1 + r)α − r)+
δ0 +

(

m2/t

Vν(m1/t ) + rm2/t

)′

1(
(

− w1+r (0)

r

)t
, (m0(ν))t

)(m)dm. (3.28)

�

4. Examples

The following examples illustrate the usefulness of Theorem 3.1 and provide exam-
ples of the limiting distributions �(ν�t ), �((D1/s(ν

�s))�t ), �((D1/r (ν
�r ))�t ) and

�((Br (ν))�t ) (with s > 1, t > 1 and r > 0) for probability measures ν of impor-
tance in non-commutative probability. However probability measures ν presented in the
following examples generates CSK families having quadratic and cubic pseudo-variance
functions. The quadratic CSK families are described in [5] and cubic CSK families are
described in [6].

Example 4.1. Let γ = 1
2δ−1 + 1

2δ1 be the symmetric Bernoulli distribution. It generates
the CSK family with variance function Vγ (m) = 1 − m2 = Vγ (m) and m0(γ ) = 0. By
the translation f : x �−→ x +1, the probability measure ν = f (γ ) = 1

2δ0 + 1
2δ2 generates

the CSK family with m0(ν) = 1 and pseudo-variance function

Vν(m) = m2(2 − m)

m − 1
.

The Cauchy-transform of ν is given by

Gν(z) = z − 1

z(z − 2)
.

We have that m−(ν) = − 1
Gν (0)

= 0 and the one-sided domain of means of the family
K−(ν) is (m−(ν), m0(ν)) = (0, 1).

From (2.17), we get

Ht (z) = t z − (t − 1)
z(z − 2)

z − 1
= z2 + z(t − 2)

z − 1
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and therefore,

wt (y) = 1

2

(

2 + y − t −
√

y2 − 2t y + (t − 2)2
)

,

for y ∈ C\(t − 2
√

t − 1, t + 2
√

t − 1). Then

wt (0) = 2 − t − |t − 2|
2

.

In this case, for all s > 1, t > 1 and r > 0, we have

(i)
�(ν�t )(dm) = 1

2
δ0 + m1/t−1

t (2 − m1/t )2 1(0, 1)(m)dm.

(ii)
�((D1/s(ν

�s))�t )(dm) = (1 − s/2)+δ0

+ s

t

m1/t−1

(2 − m1/t )2 1
(

(

s−2+|s−2|
2(s−1)

)t
, 1

)(m)dm.

(iii)
�((D1/r (ν

�r ))�t )(dm) = 1

1 + r
δ0 + r

t

m1/t−1

(1 + r − rm1/t )2 1(0, 1)(m)dm.

(iv)
�((Br (ν))�t )(dm) = (1 + r)(1 − r/2)+

1 + r(1 − r/2)+
δ0

+1

t

m1/t−1

((r − 1)m1/t + 2 − r)2 1
(

(

r−1+|r−1|
2r

)t
, 1

)(m)dm.

Example 4.2. The Wigner’s semicircle (free Gaussian) distribution

γ (dx) =
√

4 − x2

2π
1(−2,2)(x)dx,

generates the CSK family with variance function Vγ (m) = 1 = Vγ (m). The Cauchy
transform of γ is given by

Gγ (z) = 1

2

(

z −
√

z2 − 4
)

.

The one- sided domain of means of the family K−(γ ) is (m−(γ ), m0(γ )) = (−1, 0).
By the translation f : x �−→ x + 2, the probability measure

ν(dx) = f (γ )(dx) =
√

x(4 − x)

2π
1(0, 4)(x)dx,

generates the CSK family with m0(ν) = 2 and pseudo-variance function

Vν(m) = m

m − 2
.
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The Cauchy transform of ν is given by

Gν(z) = Gγ (z − 2) = 1

2

(

z − 2 − √

z(z − 4)
)

.

We have that Gν(0) = −1 and the domain of means of the family K−(ν) is
(m−(ν), m0(ν)) = (1, 2). From (2.17), we have that

Ht (z) = t z − (t − 1)

Gν(z)
= t z − 2(t − 1)

z − 2 − √
z(z − 4)

and consequently

wt (y) = 2t − 2t2 + y + t y − (t − 1)
√

4t (t − 1) − 4t y + y2

2t

for all y ∈ C\(2t − 2
√

t, 2t + 2
√

t). Then

wt (0) = (t − 1)

(

−1 −
√

t − 1

t

)

.

In this case, for all s > 1, t > 1 and r > 0, we have

(i)
�(ν�t )(dm) = 2

t
(m2/t−1 − m1/t−1)1(1, 2t)(m)dm.

(ii)
�((D1/s(ν

�s))�t )(dm) = 2s

t
(m2/t−1 − m1/t−1)1(

(

1+
√

s−1
s

)t

, 2t

)(m)dm.

(iii)
�((D1/r (ν

�r ))�t )(dm)

= 2r

t

(m2/t−1 − m1/t−1)
(

1 + (1 − r)
(

m2/t−1 − m1/t−1
))2 1(1, 2t)(m)dm.

(iv)
�((Br (ν))�t )(dm) = 2

t

m2/t−1 − m1/t−1

(1 + r(m2/t − 2m1/t ))2 1
(

(

1+√ r
1+r

)t
, 2t

)(m)dm.

Example 4.3. For 0 < a2 < 1, the (absolutely continuous) centered Marchenko–Pastur
distribution

γ (dx) =
√

4 − (x − a)2

2π(1 + ax)
1(a−2,a+2)(x)dx

generates the CSK family with variance function V(m) = 1 + am = V(m). The Cauchy
transform of γ is given by

Gγ (z) =
(

a + z − √

(a − z)2 − 4
)

2(1 + az)
.
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The one-sided domain of means of the family K−(γ ) is (m−(γ ), m0(γ )) = (−1, 0). This
with the affine transformation f : x �−→ ax + 1 leads to the distribution given by

ν(dx) = f (γ )(dx) =
√

(

(a + 1)2 − x
) (

x − (a − 1)2
)

2πa2x
1((a−1)2,(a+1)2)(x)dx .

It generates the CSK family with m0(ν) = 1, and pseudo-variance function of the form

Vν(m) = a2m2

m − 1
.

The Cauchy transform of ν is given by

Gν(z) = 1

a
Gγ

(

z − 1

a

)

= 1

2za

⎛

⎝a + (z − 1)

a
−

√

(

a − (z − 1)

a

)2

− 4

⎞

⎠ . (4.1)

Solving z(m) = m + Vν(m)/m = 0 for m > 0, we obtain that m = 1 − a2. Using the
relation (2.10), we get Gν(0) = − 1

1−a2 . The domain of means of the family K−(ν) is

(m−(ν), m0(ν)) = (1 − a2, 1).

We have that

Ht (z) = t z − 2za(t − 1)
(

a + (z−1)
a −

√

(

a − (z−1)
a

)2 − 4

) (4.2)

and

wt (y) = −a2 + t + a2t − t2 + y + t y − (t − 1)
√

(t − a2)2 − 2y(a2 + t) + y2

2t
,

(4.3)

for all y ∈ C\(a2 + t − 2
√

ta2, a2 + t + 2
√

ta2). Then

wt (0) = − (t − 1)(t − a2)

t
.

In this case, for all s > 1, t > 1 and r > 0, we have

(i)
�(ν�t )(dm) = 1

a2t
m1/t−11((1−a2)t , 1)(m)dm.

(ii)
�((D1/s(ν

�s))�t )(dm) = s

a2t
m1/t−11(

(

s−a2
s

)t
, 2t

)(m)dm.

(iii)
�((D1/r (ν

�r ))�t )(dm) = ra2

t

m1/t−1

(

a2 + (1 − r)
(

m1/t − 1
))2 1((1−a2)t , 1)(m)dm.
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(iv)
�((Br (ν))�t )(dm) = a2

t

m1/t−1

(a2 + r(m1/t − 1))2 1
(

(

1+r−a2
1+r

)t
, 2t

)(m)dm.

Example 4.4. For a2 > 1, the Marchenko–Pastur distribution is given by

γ (dx) =
√

4 − (x − a)2

2π(1 + ax)
1(a−2,a+2)(x)dx + (1 − 1/a2)δ−1/a(dx).

It generates the CSK family with m0(γ ) = 0 and pseudo-variance function Vγ (m) =
1 + am = Vγ (m). By the affine transformation f : x �−→ ax + 1, the probability
distribution is given by

ν(dx) = f (γ )(dx)

=
√

(

(a + 1)2 − x
) (

x − (a − 1)2
)

2πa2x
1((a−1)2,(a+1)2)(x)dx + (1 − 1/a2)δ0

which generates the CSK family with m0(ν) = 1, and pseudo-variance function of the
form

Vν(m) = a2m2

m − 1
.

The Cauchy transform of ν is given by (4.1). The probability measure ν has a Dirac mass
at 0. This implies that

∫ ∞
0 x−1ν(dx) = +∞ and so m−(ν) = −1/Gν(0) = 0.

The functions Ht (·) and wt (·) are given respectively by (4.2) and (4.3). We have that

wt (0) = (t − 1)(a2 − t − |t − a2|)
2t

.

In this case, for all s > 1, t > 1 and r > 0, we have

(i) �(ν�t )(dm) = (1 − 1/a2)δ0 + 1

a2t
m1/t−11(0, 1)(m)dm.

(ii) �((D1/s(ν
�s))�t )(dm) = (1 − s/a2)+δ0

+ s

a2t
m1/t−11(

(

s−a2+|s−a2 |
2s

)t
, 1

)(m)dm.

(iii)
�((D1/r (ν

�r ))�t )(dm) =
(

a2 − 1

a2 + r − 1

)

δ0

+a2r

t

m1/t−1

(a2 + (1 − r)(m1/t − 1))2 1(0, 1)(m)dm.

(iv)

�((Br (ν))�t )(dm) =
⎛

⎜

⎝

(1 + r)
(

1 − 1+r
a2

)+

1 + r
(

1 − 1+r
a2

)+

⎞

⎟

⎠ δ0

+a2

t

m1/t−1

(a2 + r(m1/t − 1))2 1
(

(

r+1−a2+|r+1−a2 |
2(r+1)

)t
, 1

)(m)dm.
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Example 4.5. If ν is the standard free gamma distribution,

γ (dx) =
√

4(1 + a2) − (x − 2a)2

2π(a2x2 + 2ax + 1)
1
(2a−2

√
1+a2,2a+2

√
1+a2)

(x),

for a �= 0, it generates the CSK family with m0(γ ) = 0, and pseudo-variance function will
be equal to the variance function Vγ (m) = Vγ (m) = (1 + am)2. The Cauchy transform
of γ is given by

Gγ (z) = 2a + z + 2a2z − √

(2a − z)2 − 4(1 + a2)

2(1 + az)2 .

By the affine transformation f : x �−→ ax + 1, the probability distribution

ν(dx) = f (γ )(dx) =
√

((
√

a2 + 1 + a)2 − x)(x − (
√

a2 + 1 − a)2)

2πa2x2

1
((

√
a2+1−|a|)2,(

√
a2+1+|a|)2)

(x)dx

generates the CSK family with m0(ν) = 1, and pseudo-variance function of the form
becomes

Vν(m) = a2m3

m − 1
.

The Cauchy transform of ν is given by

Gν(z) = 1

a
Gγ

(

z − 1

a

)

=
z−1

a + 2az −
√

(2a − z−1
a )2 − 4(1 + a2)

2az2 .

Solving z(m) = m + Vν(m)/m = 0 for m > 0, we obtain that m = 1
1+a2 . Using the

relation (2.10), we get Gν(0) = −(1 + a2). The one-sided domain of means of the family

K−(ν) is (m−(ν), m0(ν)) =
(

1
1+a2 , 1

)

. We have that

Ht (z) = t z − (t − 1)

Gν(z)
= t z − 2(t − 1)az2

z−1
a + 2az −

√

(2a − z−1
a )2 − 4(1 + a2)

and

wt (y) = t − t2 + y(1 + 2a2 + t) − (t − 1)
√

t2 − (4a2 + 2t)y + y2

2(a2 + t)

for all y ∈ C\(2a2 + t − √

(2a2 + t)2 − 1, 2a2 + t + √

(2a2 + t)2 − 1). Then

wt (0) = − t (t − 1)

a2 + t
.

In this case, for all s > 1, t > 1 and r > 0, we have
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(i)
�(ν�t )(dm) = 1

a2t

m1/t−1

m2/t
1(

(

1
1+a2

)t
, 1

)(m)dm.

(ii)
�((D1/s(ν

�s))�t )(dm) = s

a2t

m1/t−1

m2/t
1(

(

s
s+a2

)t
, 1

)(m)dm.

(iii)
�((D1/r (ν

�r ))�t )(dm)

= a2r

t

m1/t−1

(a2m1/t + (1 − r)(m1/t − 1))2 1
(

(

1
1+a2

)t
, 1

)(m)dm.

(iv)
�((Br (ν))�t )(dm) = a2

t

m1/t−1

((a2 + r)m1/t − r)2 1
(

(

r+1
r+1+a2

)t
, 1

)(m)dm.

Example 4.6. The inverse semicircle distribution

γ (dx) =
√−1 − 4x

2πx2 1(

−∞,− 1
4

)(x)dx,

generates the CSK family with pseudo-variance function Vγ (m) = m3, and with domain
of means (m0(γ ), m+(γ )) = (−∞,−1). By the transformation f : x �−→ −x , the
probability distribution

ν(dx) = f (γ )(dx) =
√−1 + 4x

2πx2 1(

1
4 ,+∞

)(x)dx

generates the CSK family K−(ν) with pseudo-variance function Vν(m) = −m3 and the
domain of means is (m−(ν), m0(ν)) = (1,+∞). According to [6, Section 4], the Cauchy
transform of ν is given by

Gν(z) = 2z − 1 + √
1 − 4z

2z2 .

We have that

Ht (z) = t z − (t − 1)

Gν(z)
= t z − 2(t − 1)z2

2z − 1 + √
1 − 4z

and

wt (y) = 1

2

(

(t − 1)(−t −
√

t2 − 4y) + 2y
)

for all y ∈ C\(t2/4, +∞). Then

wt (0) = −t (t − 1).

In this case, for all s > 1, t > 1 and r > 0, we have
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(i)

�(ν�t )(dm) = 1

tm1/t+1 1(1, +∞)(m)dm.

(ii)

�((D1/s(ν
�s))�t )(dm) = s

tm1/t+1 1(st , +∞)(m)dm.

(iii)

�((D1/r (ν
�r ))�t )(dm) = r

t

m1/t−1

((1 − r) − m1/t )2 1(1, +∞)(m)dm.

(iv)

�((Br (ν))�t )(dm) = 1

t

m1/t−1

(r − m1/t )2 1((r+1)t , +∞)(m)dm.

Example 4.7. The free Ressel (or free Kendall) distribution

γ (dx) = −1

πx
√−1 − x

1(−∞,−1)(x)dx

generates the CSK family with domain of means (m0(γ ), m+(γ )) = (−∞,−2) and
pseudo-variance function Vγ (m) = m2(m + 1). With the transformation f : x �−→ −x ,
the probability distribution

ν(dx) = f (γ )(dx) = 1

πx
√

x − 1
1(1,+∞)(x)dx .

generates the CSK familyK−(ν) with pseudo-variance functionVν(m) = m2(1−m), and
domain of means (m−(ν), m0(ν)) = (2,+∞). According to [6, Section 4], the Cauchy
transform of ν is given by

Gν(z) = 1 − z − √
1 − z

z(1 − z)
.

We have that

Ht (z) = t z − (t − 1)

Gν(z)
= t z − (t − 1)z(1 − z)

1 − z − √
1 − z

and

wt (y) = 1

2

(

1 − t2 − (t − 1)

√

(1 + t)2 − 4y + 2y
)

for all y ∈ C\((1 + t2)/4, +∞). Then

wt (0) = −(t − 1)(1 + t).

In this case, for all s > 1, t > 1 and r > 0, we have
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(i)

�(ν�t )(dm) = 1

t

m1/t−1

(1 − m1/t )2 1(2t , +∞)(m)dm.

(ii)

�((D1/s(ν
�s))�t )(dm) = s

t

m1/t−1

(1 − m1/t )2 1((1+s)t , +∞)(m)dm.

(iii)

�((D1/r (ν
�r ))�t )(dm) = r

t

m1/t−1

(2 − r − m1/t )2 1(2t , +∞)(m)dm.

(iv)

�((Br (ν))�t )(dm) = 1

t

m1/t−1

(1 + r − m1/t )2 1((r+2)t , +∞)(m)dm.

Example 4.8. The free Abel (or free Borel–Tanner) distribution

γ (dx) = 1

π(1 − x)
√−x

1(−∞,0)(x)dx

generates the CSK family with domain of means (m0(γ ), m+(γ )) = (−∞, 0) and pseudo-
variance function Vγ (m) = m2(m − 1). By the transformation f : x �−→ −x , the
probability distribution

ν(dx) = f (γ )(dx) = 1

π(1 + x)
√

x
1(0,+∞)(x)dx

generates the CSK family K−(ν) with pseudo-variance function Vν(m) = −m2(1 + m)

and domain of means (m−(ν), m0(ν)) = (0,+∞). The Cauchy transform of ν is given
by

Gν(z) = z + √−z

z(1 + z)
.

We have that

Ht (z) = t z − (t − 1)

Gν(z)
= t z − (t − 1)z(1 + z)

z + √−z

and

wt (y) = 1

2

( − (t − 1)2 − (t − 1)

√

(t − 1)2 − 4y + 2y
)

for all y ∈ C\((t − 1)2/4, +∞). Then

wt (0) = −(t − 1)2.

In this case, for all s > 1, t > 1 and r > 0, we have



Proc. Indian Acad. Sci. (Math. Sci.)          (2024) 134:10 Page 19 of 21    10 

(i)

�(ν�t )(dm) = 1

t

m1/t−1

(1 + m1/t )2 1(0, +∞)(m)dm.

(ii)

�((D1/s(ν
�s))�t )(dm) = s

t

m1/t−1

(1 + m1/t )2 1((s−1)t , +∞)(m)dm.

(iii)

�((D1/r (ν
�r ))�t )(dm) = r

t

m1/t−1

(r + m1/t )2 1(0, +∞)(m)dm.

(iv)

�((Br (ν))�t )(dm) = 1

t

m1/t−1

(r − 1 − m1/t )2 1(r t , +∞)(m)dm.

Example 4.9. The free strict arcsine distribution

γ (dx) =
√

3 − 4x

2π(1 + x2)
1(−∞,3/4)(x)dx

generates the CSK family with domain of means (m0(γ ), m+(γ )) = (−∞,−1/2) and
pseudo-variance function Vγ (m) = m(1 + m2). By the affine transformation f : x �−→
−x + 3/4, the probability distribution

ν(dx) = f (γ )(dx) =
√

x

π(1 + (3/4 − x)2)
1(0,+∞)(x)dx

generates the CSK familyK−(ν) with pseudo-variance functionVν(m) = −m(m2− 3
2 m+

25
16 ). The Cauchy transform of ν is given by

Gν(z) =
5
4 − z − √−z

− 25
16 + 3

2 z − z2
.

We have that Gν(0) = − 4
5 . The domain of means of K−(ν) is (m−(ν), m0(ν)) =

(5/4,+∞). We have

Ht (z) = t z − (t − 1)

Gν(z)
= t z − (t − 1)(− 25

16 + 3
2 z − z2)

5
4 − z − √−z

and

wt (y) = 1

4

( − (t − 1)(2t + 3) − 2(t − 1)
√

(t − 1)(t + 4) − 4y + 4y
)

for all y ∈ C\((t − 1)(t + 4)/4, +∞). Then

wt (0) = 1

4
(t − 1)

[ − (2t + 3) − 2
√

(t − 1)(t + 4)
]

.
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In this case, for all s > 1, t > 1 and r > 0, we have

(i)
�(ν�t )(dm) = 1

t

m3/t−1 − 25
16 m1/t−1

(m2/t − 3
2 m1/t + 25

16 )2
1((5/4)t , +∞)(m)dm.

(ii)
�((D1/s(ν

�s))�t )(dm)

= s

t

m3/t−1 − 25
16 m1/t−1

(m2/t − 3
2 m1/t + 25

16 )2
1(

(

2s+3+2
√

(s−1)(s+4)
4

)t
, +∞

)(m)dm.

(iii)
�((D1/r (ν

�r ))�t )(dm)

= r

t

m3/t−1 − 25
16 m1/t−1

((1 − r)m1/t − (m2/t − 3
2 m1/t + 25

16 ))2
1((5/4)t , +∞)(m)dm.

(iv)
�((Br (ν))�t )(dm)

= 1

t

m3/t−1 − 25
16 m1/t−1

(rm1/t − (m2/t − 3
2 m1/t + 25

16 ))2
1(

(

2r+5+2
√

r(r+5)
4

)t
, +∞

)(m)dm.
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