
Proc. Indian Acad. Sci. (Math. Sci.)          (2023) 133:15 
https://doi.org/10.1007/s12044-023-00738-2

© Indian Academy of Sciences

Moduli spaces of vector bundles on a curve and opers

INDRANIL BISWAS1,∗, JACQUES HURTUBISE2

and VLADIMIR ROUBTSOV3

1School of Mathematics, Tata Institute of Fundamental Research,
1, Homi Bhabha Road, Mumbai 400005, India
2Department of Mathematics, McGill University, Burnside Hall, 805 Sherbrooke St.
W., Montreal, QC H3A 2K6, Canada
3UNAM, LAREMA UMR 6093 du CNRS, Université d’Angers,
49045 Angers Cedex 01, France∗Corresponding Author.
E-mail: indranil@math.tifr.res.in; jacques.hurtubise@mcgill.ca;
vladimir.roubtsov@univ-angers.fr

MS received 16 November 2022; accepted 16 March 2023

Abstract. Let X be a compact connected Riemann surface of genus g, with g ≥ 2,
and let ξ be a holomorphic line bundle on X with ξ⊗2 = OX . Fix a theta characteristic
L on X . Let MX (r, ξ) be the moduli space of stable vector bundles E on X of rank
r such that

∧r E = ξ and H0(X, E ⊗ L) = 0. Consider the quotient of MX (r, ξ)

by the involution given by E �−→ E∗. We construct an algebraic morphism from this
quotient to the moduli space of SL(r,C) opers on X . Since dim MX (r, ξ) coincides
with the dimension of the moduli space of SL(r,C) opers, it is natural to ask about the
injectivity and surjectivity of this map.
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1. Introduction

Opers were introduced by Beilinson and Drinfeld [2,3]. Our aim here is to construct
SL(n,C) opers from stable vector bundles of degree zero. While a stable vector bundle of
degree zero has a unique unitary flat connection, unitary connections are never an oper.

Take a compact connected Riemann surface of genus g, with g ≥ 2, and fix a theta
characteristic L on X . Let MX (r) be the moduli space of stable vector bundles E of rank
r and degree zero on X such that H0(X, E ⊗ L) = 0. For i = 1, 2, the projection
X × X −→ X to the i-th factor is denoted by pi . The diagonal divisor in X × X is
denoted by �; it is identified with X by pi . For any E ∈ MX (r), there is a unique section

AE ∈ H0(X × X, p∗
1(E ⊗ L) ⊗ p∗

2(E∗ ⊗ L) ⊗ OX×X (�))

whose restriction to � is IdE (using the identification of � with X ).
Using AE , we construct an SL(n,C) oper on X for every n ≥ 2; see Theorem 2 and

Proposition 3. Related construction of opers from vector bundles were carried out in [5].
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Let OpX (n) denote the moduli space of SL(n,C) opers on X . The above mentioned
map

MX (r) −→ OpX (n)

factors through the quotient of MX (r) by the involution I defined by E �−→ E∗.
Fix a holomorphic line bundle ξ on X such that ξ⊗2 = OX . Let

MX (r, ξ) ⊂ MX (r)

be the subvariety defined by the locus of all E such that
∧r E = ξ . We have

dim MX (r, ξ)/I = (r2 − 1)(g − 1) = dim OpX (r).

We end with a question (see Question (6)).

2. Vector bundles with trivial cohomology

Let X be a compact connected Riemann surface of genus g, with g ≥ 2. The holomorphic
cotangent bundle of X will be denoted by KX . Fix a theta characteristic L on X . So, L is a
holomorphic line bundle on X of degree g − 1, and L⊗L is holomorphically isomorphic
to KX .

For any r ≥ 1, let M̃X (r) denote the moduli space of stable vector bundles on X of
rank r and degree zero. It is an irreducible smooth complex quasiprojective variety of
dimension r2(g − 1) + 1. Let

MX (r) ⊂ M̃X (r) (1)

be the locus of all vector bundles E ∈ M̃X (r) such that H0(X, E ⊗ L) = 0. From the
semicontinuity theorem, [10, p. 288, Theorem 12.8], we know that MX (r) is a Zariski
open subset of M̃X (r). In fact, MX (r) is known to be the complement of a theta divisor
on M̃X (r) [11]. For any E ∈ M̃X (r), the Riemann–Roch theorem says

dim H0(X, E ⊗ L) − dim H1(X, E ⊗ L) = 0;
so H0(X, E ⊗ L) = 0 if and only if we have H1(X, E ⊗ L) = 0.

We will now recall a construction from [6,7].
For i = 1, 2, let pi : X × X −→ X be the projection to the i-th factor. Let

� := {(x, x) ∈ X × X | x ∈ X} ⊂ X × X

be the reduced diagonal divisor. We will identify � with X using the map x �−→ (x, x).
Using this identification, the restriction of the line bundle OX×X (�) to � ⊂ X × X gets
identified with the holomorphic tangent bundle T X by the Poincaré adjunction formula
[9, p. 146].

Take any E ∈ MX (r). The restriction of the vector bundle

p∗
1(E ⊗ L) ⊗ p∗

2(E∗ ⊗ L) ⊗ OX×X (�)

to � is identified with the vector bundle End(E) on X . Indeed, this follows immediately
from the following facts:

• the restriction of (p∗
1E)⊗ (p∗

2E
∗) to � is identified with the vector bundle End(E) on

X , and
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• the above identification of OX×X (�)|� with T X produces an identification of
(p∗

1L) ⊗ (p∗
2L) ⊗ OX×X (�)|� with KX ⊗ T X = OX .

Consequently, we have the following short exact sequence of sheaves on X × X :

0 −→ p∗
1(E ⊗ L) ⊗ p∗

2(E∗ ⊗ L) −→ p∗
1(E ⊗ L)

⊗p∗
2(E∗ ⊗ L) ⊗ OX×X (�) −→ End(E) −→ 0, (2)

where End(E) is supported on �, using the identification of � with X . For k = 0, 1,
since Hk(X, E ⊗ L) = 0, the Serre duality implies that H1−k(X, E∗ ⊗ L) = 0. Using
Künneth formula,

H j (X × X, p∗
1(E ⊗ L) ⊗ p∗

2(E∗ ⊗ L)) = 0

for j = 0, 1, 2. Therefore, the long exact sequence of cohomologies for the short exact
sequence of sheaves in (2) gives

0 = H0(X × X, p∗
1(E ⊗ L) ⊗ p∗

2(E∗ ⊗ L)) −→
H0(X × X, p∗

1(E ⊗ L) ⊗ p∗
2(E∗ ⊗ L) ⊗ OX×X (�))

γ−→ H0(X, End(E)) −→
H1(X × X, p∗

1(E ⊗ L) ⊗ p∗
2(E∗ ⊗ L)) = 0. (3)

So the homomorphism γ in (3) is actually an isomorphism. For this isomorphism γ , let

AE := γ −1(IdE ) ∈ H0(X × X, p∗
1(E ⊗L)⊗ p∗

2(E∗ ⊗L)⊗OX×X (�)) (4)

be the section corresponding to the identity automorphism of E .

3. A section around the diagonal

Using the section AE in (4), we will construct a section of (p∗
1L) ⊗ (p∗

2L) ⊗ OX×X (�)

on an analytic neighborhood of the diagonal �. For that, we first recall a description of
the holomorphic differential operators on X .

3.1 Differential operators

Fix holomorphic vector bundles V, W on X , and also fix an integer d ≥ 1. The ranks of
V and W are denoted by r and r ′ respectively. Let DiffdX (V, W ) denote the holomorphic
vector bundle on X of rank rr ′(d + 1) corresponding to the sheaf of differential operators
of degree d from V to W . We recall that DiffdX (V, W ) = W ⊗ Jd(V )∗, where

Jd(V ) := p1∗
(
(p∗

2V )/((p∗
2V ) ⊗ OX×X (−(d + 1)�))

) −→ X

is the d-th order jet bundle for V .
We have a short exact sequence of coherent analytic sheaves on X × X as follows:

0 −→ (p∗
1W ) ⊗ p∗

2(V ∗ ⊗ KX ) −→ (p∗
1W ) ⊗ p∗

2(V ∗ ⊗ KX ) ⊗ OX×X ((d + 1)�)

−→ Qd (V, W ) := (p∗
1W ) ⊗ p∗

2(V ∗ ⊗ KX ) ⊗ OX×X ((d + 1)�)

(p∗
1W ) ⊗ p∗

2(V ∗ ⊗ KX )
−→ 0 ; (5)
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the support of the quotient sheaf Qd(V, W ) in (5) is (d + 1)�. The direct image

Kd(V, W ) := p1∗Qd(V, W ) −→ X (6)

is a holomorphic vector bundle on X of rank rr ′(d + 1). It is known that

Kd(V, W ) = Hom(Jd(V ), W ) = DiffdX (V, W ) , (7)

where Kd(V, W ) is the vector bundle constructed in (6) (see [4, Section 2.1]).
Note that R1 p1∗Qd(V, W ) = 0, because Qd(V, W ) is supported on (d + 1)�. We

have H0(X, p1∗Qd(V, W )) = H0(X × X, Qd(V, W )). So from (6) and (7), it follows
that

H0(X, DiffdX (V, W )) = H0(X × X, Qd(V, W )) . (8)

The restriction of the vector bundle (p∗
1W ) ⊗ p∗

2(V ∗ ⊗ KX ) ⊗ OX×X ((d + 1)�) to
� ⊂ X × X is Hom(V, W ) ⊗ (T X)⊗d , because the restriction of OX×X (�) to � is T X .
Therefore, we get a surjective homomorphism

Kd(V, W ) −→ p1∗
(

(p∗
1W ) ⊗ p∗

2(V ∗ ⊗ KX ) ⊗ OX×X ((d + 1)�)

(p∗
1W ) ⊗ p∗

2(V ∗ ⊗ KX ) ⊗ OX×X (d�)

)

= Hom(V, W ) ⊗ (T X)⊗d ,

where Kd(V, W ) is constructed in (6). Using (7), this gives a surjective homomorphism

DiffdX (V, W ) −→ Hom(V, W ) ⊗ (T X)⊗d . (9)

The homomorphism in (9) is known as the symbol map.

3.2 Construction of a connection

Consider the de Rham differential operator d : OX −→ KX . Using the isomorphism in
(8), this d produces a section

d1 ∈ H0(X × X, Q1(OX , KX )).

From (5), we conclude that d1 is a section of (p∗
1KX ) ⊗ (p∗

2KX ) ⊗ OX×X (2�) over 2�.
The restriction of d1 to � ⊂ 2� is the section of OX given by the constant function 1 (see
(9)); note that the symbol of the differential operator d is the constant function 1.

As before, L is a theta characteristic on X . There is a unique section

δ ∈ H0(2�, (p∗
1L) ⊗ (p∗

2L) ⊗ OX×X (�)) (10)

such that

(1) δ ⊗ δ = d1, and
(2) the restriction of δ to � ⊂ 2� is the constant function 1 (note that since the restriction

of OX×X (�) to � is T X , the restriction of (p∗
1L) ⊗ (p∗

2L) ⊗ OX×X (�) to � is
KX ⊗ T X = OX ).



Proc. Indian Acad. Sci. (Math. Sci.)          (2023) 133:15 Page 5 of 11    15 

See [8, p. 754, Theorem 2.1(b)] for an alternative construction of δ.
There is a unique section

�E ∈ H0(2�, (p∗
1E) ⊗ (p∗

2E
∗)) (11)

such that (AE )|2� = �E⊗δ, whereAE and δ are the sections in (4) and (10) respectively.
Indeed, this follows immediately from the fact that the section δ is nowhere zero, so δ−1

is a holomorphic section of ((p∗
1L) ⊗ (p∗

2L) ⊗ OX×X (�))∗|2�. Now set

�E = ((AE )
∣
∣
2�

) ⊗ δ−1

and consider it as a section of ((p∗
1E) ⊗ (p∗

2E
∗))

∣
∣
2�

using the natural duality pairing

((p∗
1L) ⊗ (p∗

2L) ⊗ OX×X (�))|2� ⊗ ((p∗
1L) ⊗ (p∗

2L) ⊗ OX×X (�))∗|2� −→ O2�.

Since the restriction of AE to � is IdE (see (4)), and the restriction of δ to � is the
constant function 1, it follows that the restriction of the section �E in (11) to � is IdE .
Therefore, �E defines a holomorphic connection on U , which will be denoted by DE . To
describe the connection DE explicitly, take an open subset U ⊂ X and a holomorphic
section s ∈ H0(U, E

∣
∣
U ). Consider the section �E ⊗ p∗

2s over U := (2�)
⋂

(U ×U ).
Using the natural pairing E∗⊗E −→ OX , it produces a section of ((p∗

1E)⊗(p∗
2OX ))|U =

(p∗
1E)|U; denote this section of (p∗

1E)|U by s̃. Since �E |� = IdE , we know that s̃ and
p∗

1s coincide on �
⋂

(U ×U ). So

s̃ − (p∗
1s)|2� ∈ H0(U, E ⊗ KX );

the Poincaré adjunction formula identifies KX with the restriction of the line bundle
OX×X (−�) to �. Then we have

DE (s) = s̃ − (p∗
1s)|2� ∈ H0(U, E ⊗ KX ) . (12)

It is straightforward to check that DE satisfies the Leibniz identity thus making it a holo-
morphic connection on E .

4. Opers from vector bundles

We will construct an SL(n,C)-oper on X , for every n ≥ 2, from the section AE in (4).
We will use that any holomorphic connection on a holomorphic bundle over X is inte-

grable (same as flat) because �2
X = 0.

As before, take any E ∈ MX (r). Consider the holomorphic connection DE on E
in (12). Let U ⊂ X be a simply connected open subset, and let x0 ∈ U be a point.
Since the connection DE is integrable, using parallel translations, for DE , along paths
emanating from x0, we get a holomorphic isomorphism of E |U with the trivial vector
bundle U × Ex0 −→ U . This isomorphism takes the connection DE |U on E |U to the
trivial connection on the trivial bundle. Let

� ⊂ U ⊂ X × X

be an open neighborhood of � that admits a deformation retraction to �. For i = 1, 2,
the restriction of the projection pi : X × X −→ X to the open subset U ⊂ X × X will
be denoted by qi . There is a unique holomorphic isomorphism over U,

f : q∗
1 E −→ q∗

2 E (13)
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that satisfies the following two conditions:

(1) the restriction of f to � is the identity map of E , and
(2) f takes the connection q∗

1 D
E on q∗

1 E to the connection q∗
2 D

E on q∗
2 E .

Since the inclusion map � ↪→ U is a homotopy equivalence, the flat vector bundle
(E, DE ) on X = � has a unique extension to a flat vector bundle on U. On the other
hand, both (q∗

1 E, q∗
1 D

E ) and (q∗
2 E, q∗

2 D
E ) are extensions of (E, DE ). Therefore, there

is a unique holomorphic isomorphism f as in (13) satisfying the above two conditions.
Using the isomorphism f in (13), the section AE in (4) produces a holomorphic section

A′
E ∈ H0(U, p∗

1(E ⊗ E∗ ⊗ L) ⊗ (p∗
2L) ⊗ OX×X (�)) . (14)

Consider the trace pairing

tr : E ⊗ E∗ = End(E) −→ OX , B �−→ 1

r
trace(B);

recall that r = rank(E). Note that r · tr is the natural pairing E ⊗ E∗ −→ OX . Using
tr , the section A′

E in (14) produces a section

β̂E ∈ H0(U, (p∗
1L) ⊗ (p∗

2L) ⊗ OX×X (�)) . (15)

The following lemma is straightforward to prove.

Lemma 1. The restriction of the section β̂E (in (15)) to 2� ⊂ U coincides with the sec-
tion δ in (10).

Proof. This follows from the constructions of �E (in (11)) and β̂E . �

For any integer k ≥ 1, the holomorphic line bundles L⊗k and (L⊗k)∗ will be denoted
by L

k and L
−k respectively.

Theorem 2. Take any integer n ≥ 2. The section β̂E in (15) produces a holomorphic
connection D(E) on the holomorphic vector bundle Jn−1(L(1−n)).

Proof. Consider the (n + 1)-th tensor power of β̂E :

(β̂E )⊗(n+1) ∈ H0(U, (p∗
1L

(n+1)) ⊗ (p∗
2L

(n+1)) ⊗ OX×X ((n + 1)�)),

and restrict it to (n + 1)� ⊂ U. From (8), we have

βn
E := (β̂E )⊗(n+1)|(n+1)� ∈ H0(X, DiffnX (L(1−n), L(n+1))) . (16)

The symbol of the differential operator βn
E in (16) is the section ofOX given by the constant

function 1. Indeed, this follows immediately from the fact that the restriction of β̂E to �

is the constant function 1 (see Lemma 1).
We recall that there is a natural injective homomorphism Jm+n(V ) −→ Jm(Jn(V ))

for allm, n ≥ 0 and every holomorphic vector bundle V . We have following commutative
diagram of vector bundles on X :
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0 −→ L
(1−n) ⊗ K⊗n

X = L
(n+1) ι1−→ Jn(L(1−n))

ψ1−→ Jn−1(L(1−n)) −→ 0⏐
⏐
�

⏐
⏐
�h

∥
∥
∥

0 −→ Jn−1(L(1−n)) ⊗ KX
ι2−→ J 1(Jn−1(L(1−n)))

ψ2−→ Jn−1(L(1−n)) −→ 0

,

(17)

where the rows are exact. From (7), we know that the differential operator βn
E in (16)

produces a homomorphism

ρ : Jn(L(1−n)) −→ L
(n+1).

Since the symbol of βn
E is the constant function 1, we have

ρ ◦ ι1 = Id
L(n+1) , (18)

where ι1 is the homomorphism in (17). From (18), it follows immediately that ρ gives a
holomorphic splitting of the top exact sequence in (17). Let

D1 : Jn−1(L(1−n)) −→ Jn(L(1−n))

be the unique holomorphic homomorphism such that

• ρ ◦ D1 = 0, and
• ψ1 ◦ D1 = IdJn−1(L(1−n)), where ψ1 is the projection in (17).

Now consider the homomorphism

D2 := h ◦ D1 : Jn−1(L(1−n)) −→ J 1(Jn−1(L(1−n))) , (19)

where h is the homomorphism in (17). Since ψ1 ◦D1 = IdJn−1(L(1−n)), from the commu-
tativity of (17), it follows that

ψ2 ◦ D2 = ψ2 ◦ h ◦ D1 = IdJn−1(L(1−n)) ◦ ψ1 ◦ D1 = IdJn−1(L(1−n)),

where ψ2 is the projection in (17). This implies that D2 in (19) gives a holomorphic
splitting of the bottom exact sequence in (17). Let

D(E) : J 1(Jn−1(L(1−n))) −→ Jn−1(L(1−n)) ⊗ KX

be the unique holomorphic homomorphism such that

• D(E) ◦ D2 = 0, and
• D(E) ◦ ι2 = IdJn−1(L(1−n))⊗KX

, where ι2 is the homomorphism in (17).

Using (7), we know that

D(E) ∈ H0(X, Diff1
X (Jn−1(L(1−n)), Jn−1(L(1−n)) ⊗ KX )) . (20)

From the homomorphism in (9) and the above equality D(E) ◦ ι2 = IdJn−1(L(1−n))⊗KX
,

it follows that the symbol of the differential operator D(E) in (20) is IdJn−1(L(1−n)). This
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implies that D(E) satisfies the Leibniz rule. Consequently, D(E) is a holomorphic con-
nection on the holomorphic vector bundle Jn−1(L(1−n)). �

For 1 ≤ i ≤ n − 1, consider the short exact sequence

0 −→ L
(1−n) ⊗ K⊗i

X −→ J i (L(1−n)) −→ J i−1(L(1−n)) −→ 0.

Using these together with the fact that L ⊗ L = KX , it is deduced that

det J i (L(1−n)) :=
∧i+1

J i (L(1−n)) = L
(i+1)(i+1−n).

In particular, we have

det Jn−1(L(1−n)) :=
∧n

J n−1(L(1−n)) = OX .

So det Jn−1(L(1−n)) has a unique holomorphic connection whose monodromy is trivial;
it will be called the trivial connection on det Jn−1(L(1−n)).

PROPOSITION 3

The holomorphic connection on det Jn−1(L(1−n)) induced by the connection D(E) on
Jn−1(L(1−n)) (see Theorem 2) is the trivial connection.

Proof. Any holomorphic connection D on det Jn−1(L(1−n)) = OX can be uniquely
expressed as

D = D0 + ω,

where D0 is the trivial connection on det Jn−1(L(1−n)) and ω ∈ H0(X, KX ). Let D1

be the holomorphic connection on det Jn−1(L(1−n)) induced by the connection D(E) on
Jn−1(L(1−n)). Decompose it as

D1 = D0 + ω1,

where ω1 ∈ H0(X, KX ). Then

ω1 = (n − 1) · ((β̂E )|2� − δ),

where β̂E and δ are the sections in (15) and (10) respectively. Note that two sections
of ((p∗

1L) ⊗ (p∗
2L) ⊗ OX×X (�))|2� that coincide on � ⊂ 2� differ by an element of

H0(�, ((p∗
1L)⊗(p∗

2L))|�) = H0(X, KX ). Now from Lemma 1, it follows that ω1 = 0.
�

Let OpX (n) denote the moduli space of SL(n,C) opers on X [3]. It is a complex
affine space of dimension (n2 − 1)(g − 1). We recall a description of OpX (n). Let
Cn(X) denote the space of all holomorphic connections D′ on Jn−1(L(1−n)) such that
the holomorphic connection on det Jn−1(L(1−n)) induced by D′ is the trivial connection
on det Jn−1(L(1−n)) = OX . Then

OpX (n) = Cn(X)/Aut(Jn−1(L(1−n))),
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where Aut(Jn−1(L(1−n))) denotes the group of all holomorphic automorphisms of the
vector bundle Jn−1(L(1−n)); note that Aut(Jn−1(L(1−n))) has a natural action on Cn(X).

The moduli space OpX (n) also coincides with the space of all holomorphic differential
operators

B ∈ H0(X, DiffnX (L(1−n), L(n+1)))

such that

(1) the symbol of B is the section of OX given by the constant function 1, and
(2) the sub-leading term of B vanishes.

From Theorem 2 and and Proposition 3, we get an algebraic morphism

�̃ : MX (r) −→ OpX (n) (21)

that sends any E ∈ MX (r) to the image in OpX (n) of the holomorphic connection D(E)

(see Theorem 2).
Since Hi (X, E ⊗ L) = H1−i (X, E∗ ⊗ L) (Serre duality), we have an involution

I : MX (r) −→ MX (r) , F �−→ F∗ . (22)

Let

τ : X × X −→ X × X , (x1, x2) �−→ (x2, x1) (23)

be the involution.

PROPOSITION 4

For any E ∈ MX (r), the sections

AE ∈ H0(X × X, p∗
1(E ⊗ L) ⊗ p∗

2(E∗ ⊗ L) ⊗ OX×X (�))

and

AI(E) ∈ H0(X × X, p∗
1(E∗ ⊗ L) ⊗ p∗

2(E ⊗ L) ⊗ OX×X (�))

(see (4) for AE and (22) for I) satisfy the equation

τ ∗AE = AI(E),

where τ is the involution in (23).

Proof. We recall that AE is the unique section of p∗
1(E∗ ⊗L) ⊗ p∗

2(E ⊗L) ⊗OX×X (�)

over X × X whose restriction to � coincides with IdE using the identification of � with
X . Now the restriction of τ ∗AI(E) to � is also IdE . So, τ ∗AI(E) = AE , which implies
that τ ∗AE = AI(E). �
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COROLLARY 5

The map �̃ in (21) descends to a map

�̃0 : MX (r)/I −→ OpX (n),

where I is the involution in (22).

Let ξ be a holomorphic line bundle on X such that ξ ⊗ ξ = OX ; for example, ξ can be
OX . Let

MX (r, ξ) ⊂ MX (r)

be the sub-variety consisting of all E ∈ MX (r) such that
∧r E = ξ . Since ξ⊗2 = OX ,

it follows that

I(MX (r, ξ)) = MX (r, ξ),

where I is defined in (22). So restricting the map �̃0 in Corollary 5 to MX (r, ξ)/I, we
get morphism

� : MX (r, ξ)/I −→ OpX (n) . (24)

We note that when n = r ,

dim MX (r, ξ)/I = (r2 − 1)(g − 1) = dim OpX (r).

So it is natural to ask the following question.

Question 6. When n = r , how close is the map � (constructed in (24)) to being injective
or surjective?
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