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Abstract. In this paper, we are interested in the fractional Yamabe-type equation

Asu = u
n+2s
n−2s , u > 0 in � and u = 0 on ∂�. Here � is a regular bounded domain of

R
n, n ≥ 2 and As , s ∈ (0, 1) represents the fractional Laplacian operator in � with zero

Dirichlet boundary condition. Based on the theory of critical points at infinity of Bahri
and the localization technique of Caffarelli and Silvestre, we compute the difference of
topology induced by the critical points at infinity between the level sets of the variational
functional associated to the problem. Our result can be seen as a nonlocal analog of the
theorem of Bahri et al. (Cal. Var. Partial. Differ. Equ. 3 (1995) 67–94) on the classical
Yamabe-type equation.
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1. Introduction

In this paper, we consider the nonlinear fractional Yamabe-type problem
⎧
⎨

⎩

Asu = u p,

u > 0 in �,

u = 0 on ∂�,

(1.1)

where � ⊂ R
n, n ≥ 2 is a regular bounded domain, p = n+2s

n−2s , s ∈ (0, 1) and As

represents the fractional Dirichlet Laplacian operator (−�)s in � defined by using the
spectrum of the Laplacian −� in � with zero Dirichlet boundary condition. It can be
viewed as the nonlocal version of the Yamabe-type equation

⎧
⎨

⎩

−�u = u
n+2
n−2 ,

u > 0 in �,

u = 0 on ∂�.

(1.2)

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s12044-022-00669-4&domain=pdf


   30 Page 2 of 25 Proc. Indian Acad. Sci. (Math. Sci.)          (2022) 132:30 

Fractional equations involving (−�)s has attracted the attention of a lot of researchers
as it naturally appears in many fields in various scientific areas. The nonlocal character
of the fractional Laplacian makes it difficult to handle. After the paper of Caffarelli and
Silvestre [15] who provided a local interpretation to the fractional Laplacian in one more
dimension, a large number of studies have been developed. In [14], Cabré and Tan studied
the subcritical cases; that is, equation (1.1) with subcritical nonlinearities (p < n+2s

n−2s ) in
the particular case s = 1/2. They transform the equation in a local form as the Caffarelli-
Silvestre extension and established the existence of positive solutions. For similar exten-
sions, we refer to [13,16,28].

Motivated by the work of Pohozaev [22] on equation (1.2), Tan [27] proved that equa-
tion (1.1) has no solutions if � is a star-shaped domain and s = 1/2. The resemblance
between (1.1) and (1.2) led the authors in [1] to investigate the effect of the topology of �

on the existence of solutions of (1.1). Such a result can be seen as the fractional counterpart
of the famous result of Bahri and Coron [9]. For more recent results on (1.1) and related
problems, we refer to [2–10,18,23] and the references therein.

Problem (1.1) is delicate from the variational viewpoint because the failure of the Palais-
Smale condition (PS). This leads to the possibility of existence of non-compact gradient-
flow lines along which the associated variational functional J is bounded and its gradient
tends to zero, the so-called critical points at infinity, see [7].

Trying to prove the existence of solutions of (1.1) by studying the topological differences
between the level sets of J , it will be useful to compute the topological contributions of the
critical points at infinity between these level sets. The main purpose of the present paper
is to characterize the critical points at infinity of problem (1.1) and evaluate its topological
contributions. We shall prove a fractional analog of the theorem of Bahri et al. [11] on the
classical Yamabe-type equation.

2. General framework and statement of results

We start this section by recalling some preliminaries related to the fractional Laplacian. Let
(ek)k∈N be the basis of L2(�) such that for any k ∈ N, ‖ek‖L2(�) = 1, 〈ek, e�〉 = 0,∀k 
= �

and
{−�ek = λkek in �,

ek = 0 on ∂�.

So for any k ∈ N, λk > 0.
The fractional Laplacian As, s ∈ (0, 1) is defined by

Hs
0 (�) −→ H−s

0 (�) � Hs
0 (�),

u =
∞∑

k=1

bkek �−→ As(u) =
∞∑

k=1

bkλ
s
kek,

where Hs
0 (�) := {

u = ∑∞
k=1 bkek ∈ L2(�),

∑∞
k=1 b

2
kλ

s
k < ∞}

and H−s
0 (�) is the

dual space of the Hilbert fractional Sobolev space Hs
0 (�). Concerning the local equivalent

problem to (1.1), we follow the results of [15] for � = R
n , and [14] for bounded domain

�, see also [13,16,25,28]. Therefore, we consider the associated local problem on the half
cylinder with base �. Define

C = � × [0,∞) = {(x, t), s.t. x ∈ � and t ∈ [0,∞)}
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and

C∞
0L(C) = {v ∈ C∞(C̄), s.t. v = 0 on ∂LC},

where ∂LC denotes the lateral boundary of C , it is defined by ∂� × [0,∞). Let Hs
0L(C)

be the Hilbert Sobolev space defined by the closure of C∞
0L(C) with respect to

|v| =
(∫

C
t1−2s |∇v|2

) 1
2

,

and equipped by the following inner product:

〈v,w〉Hs
0L (C) =

∫

C
t1−2s∇v∇w, ∀ v,w ∈ Hs

0L(C).

Following [13,28], we associate to any u ∈ Hs
0 (�) the unique s-harmonic function denoted

s − h(u) in Hs
0L(C), the unique solution of the following problem:

⎧
⎨

⎩

div(t1−2s∇v) = 0 in C,

v = 0 on ∂LC,

v = u on � × {0}.
See [13,28] for the explicit expression of s − h(u). It follows that As is expressed by the
following map:

u =
∞∑

k=1

bkek �−→ As(u) = ∂sν (s − h(u))/�×{0},

where ν denotes the unit outward normal vector to C on � × {0} and for any v ∈ Hs
0L(C)

and any x ∈ �, we have

∂sν (v)(x, 0) = −cs lim
t→0+ t1−2s ∂v

∂t
(x, t), where cs := �(s)

21−2s�(1 − s)
.

In this way, problem (1.1) is equivalent to the following local problem
⎧
⎪⎪⎨

⎪⎪⎩

div(t1−2s∇v) = 0 in C,

v > 0 in C,

v = 0 on ∂LC,

∂sν (v) = v
n+2s
n−2s on � × {0}.

(2.1)

Therefore, if v satisfies (2.1), then u(x) = v(x, 0) := tr(v)(x),∀ x ∈ � is a solution of
(1.1). Notice that

Hs
0 (�) = {u = tr(v), v ∈ Hs

0L(C), with div(t1−2s∇v) = 0 in C}.
In order to present the variational structure associated to (1.1), we introduce the following
Hilbert space constructed by all s-harmonic functions in Hs

0L(C). More precisely, let

H = {v ∈ Hs
0L(C), s.t. div(t1−2s∇v) = 0 in C}.

For all v ∈ H, we denote

‖v‖2 := |v|2 =
∫

C
t1−2s |∇v|2dxdt = c−1

s

∫

�×{0}
∂sνv(x, 0) · v(x, 0)dx,

and for all v,w ∈ H, we denote

〈v,w〉 = 〈v,w〉Hs
0L (C) = c−1

s

∫

�×{0}
∂sνv(x, 0)w(x, 0)dx .
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As mentioned above, problem (2.1) has a variational structure. The Euler–Lagrange func-
tional is the following:

J (v) = cs
‖tr(v)‖2

(∫

�

|v(x, 0| 2n
n−2s dx

) n−2s
n

defined on

	 = {v ∈ H, ‖v‖ = c−1/2
s }.

Problem (2.1) is equivalent to finding the critical points of J subjected to the constraint
u ∈ 	+ := {u ∈ 	, u > 0}.

Since p + 1 is the critical Sobolev exponent of the Sobolev trace embedding v ∈ H �→
tr(v) ∈ L p+1(�) which is continuous but not compact for p = n+2s

n−2s , the functional J
does not satisfy the Palais–Smale condition. This means that there exist sequences along
which J is bounded, its gradient goes to zero and which do not converge.

For x, y ∈ �, t > 0, let G̃((x, t), y), x, y ∈ �, t > 0 be the s-harmonic extension of
the Green’s function of the fractional Dirichlet Laplacian As . It satisfies

⎧
⎪⎨

⎪⎩

div(t1−2s∇G̃(·, y)) = 0 in C,

G̃(·, y) = 0 on ∂LC,

∂sν G̃(·, y) = δy on � × {0}.
We have

G̃((x, t), y) = ĉ

‖(x − y, t)‖n−2s
Rn+1

− H̃((x, t), y),

where ĉ is a fixed constant and H̃ is the regular part of G̃ (see [19], page 6542). It satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

div(t1−2s∇ H̃(·, y)) = 0 in C,

H̃((x, t), y) = ĉ

‖(x − y, t)‖n−2s
Rn+1

on ∂LC,

∂sν H̃(·, y) = 0 on � × {0}.
For any a ∈ � and λ > 0, we set

δ(a,λ)(x) = λ
n−2s

2

(1 + λ2|x − a|2) n−2s
2

, x ∈ R
n .

Following the classification results of [17,20,21], δ(a,λ)(x), a ∈ �, λ > 0 are the only
solutions of

⎧
⎪⎪⎨

⎪⎪⎩

Asu = c0u
n+2s
n−2s in R

n,

u > 0 in R
n,

lim|x |→∞ u(x) = 0,

where c0 is a fixed positive constant which depends only on n and s. Notice that in the
case where � = R

n , the Sobolev space Hs(Rn) is defined by

Hs(Rn) = {u ∈ L2(Rn),

∫

Rn
(1 + |2πx |2s)|û(x)|2dx < ∞}.
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Here û denotes the Fourier transform of u. The fractional operator As : Hs(Rn) →
H−s(Rn) is defined by

Âs(u)(x) = |2πx |2s û(x).

Let δ̂(a,λ) be the s-harmonic extension of δ(a,λ) in R
n+1+ and let

γ̂ = c
−1
2
s ‖δ̂(a,λ)‖−1

Ds (Rn+1+ )
:=

(

cs

∫

Rn+1
t1−2s |∇ δ̂(a,λ)|2dxdt

)−1
2

. (2.2)

It is more convenient in the next to work with δ̃(a,λ), a ∈ � and λ > 0 defined by

δ̃(a,λ) = γ̂ δ̂(a,λ).

We have

‖δ̃(a,λ)‖Ds (Rn+1+ )
= c

−1
2
s , (2.3)

tr(δ̃(a,λ)) = γ̂ δ(a,λ) on R
n (2.4)

and
⎧
⎨

⎩

div(t1−2s∇ δ̃(a,λ)) = 0 in R
n+1+ ,

∂sν δ̃(a,y) = γ0δ̃
n+2s
n−2s
(a,y) on R

n × {0},
where γ0 = c0γ̂

−4s
n−2s .

For any a ∈ � and λ > 0, we define the almost solutions Pδ(a,λ) of (2.1) as the unique
solutions of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

div(t1−2s∇Pδ(a,λ)) = 0 in C,

Pδ(a,λ) = 0 on ∂LC,

∂sν Pδ(a,y) = ∂sν δ̃(a,y) = γ0δ̃
n+2s
n−2s
(a,y) on � × {0}.

Next, we introduce the best constant of Sobolev. Let

ı : Hs
0L(C) −→ L

2n
n−2s (�),

v �−→ tr(v)

be the Sobolev trace embedding. The best constant of Sobolev is given by

S =
‖tr δ̃(a,λ)‖

L
2n

n−2s (Rn)

‖δ̃(a,λ)‖Ds (Rn+1+ )

= c
1
2
s ‖tr δ̃(a,λ)‖

L
2n

n−2s (Rn)
,

since ‖δ̃(a,λ)‖Ds (Rn+1+ )
= c

−1
2
s . Notice that S is independent of a and λ (see [29]). Observe

that

inf
v∈	

J (v) = c
n

n−2s
s S

−2n
n−2s := S̃ = γ0.

Therefore,

S̃ = 1

‖tr δ̃(a,λ)‖
2n

n−2s

L
2n

n−2s (Rn)

= 1
∫

Rn
(tr δ̃(a,λ))

2n
n−2s dx

. (2.5)

Arguing as [26], the following proposition describes the Palais–Smale sequences of J .
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PROPOSITION 2.1

Assume that (2.1) has no solution. Let (vk)k be a sequence in 	+ := {v ∈ 	, v ≥ 0}
such that J (vk) → c and ∂ J (vk) → 0. There exists p ∈ N

∗ and a subsequence of (vk)k
denoted again (vk)k such that vk ∈ V (p, εk), where εk → 0 as k → +∞ and

V (p, ε) =
{

u ∈ 	+, s.t. ∃(a1, . . . , ap) ∈ �p, ∃(λ1, . . . , λp) ∈
[

1

ε
,∞

)p

and

(α1, . . . , αp) ∈ R
p
+, s.t.

∥
∥
∥
∥
∥
u − 1√

cs

∑p
i=1 αi Pδ(ai ,λi )

‖∑p
i=1 αi Pδ(ai ,λi )‖

∥
∥
∥
∥
∥

< ε

with (λi d(ai , ∂�) >
1

ε
and εi j < ε,∀ i 
= j

}

.

Here εi j = 1
(

λi
λ j

+ λ j
λi

+λiλ j |ai−a j |2
) n−2s

2
.

The following proposition gives suitable parameters for V (p, ε). The proof is similar to
([9], Proposition 7).

PROPOSITION 2.2

Let p ∈ N
∗. There exists εp > 0 such that for any 0 < ε < εp and u ∈ V (p, ε), the

following minimization problem:

inf
αi ,ai ,λi

∥
∥
∥
∥
∥
u −

p∑

i=1

αi Pδ(ai ,λi )

∥
∥
∥
∥
∥

admits a unique solution (ᾱ, ā, λ̄) modulo a permutation on the indices set. Let v =
u − ∑p

i=1 ᾱi Pδ(āi ,λ̄i ). It satisfies

(V0) : 〈v,ψ〉 = 0 for ψ ∈
{

Pδai ,λi ,
∂Pδai ,λi

∂λi
,
∂Pδai ,λi

∂ai
, i = 1, . . . , p

}

.

For q ∈ N
∗ and x = (x1, . . . , xq) ∈ �q , such that xi 
= x j for i 
= j , we denote

M(x) = (mi j )1≤i, j≤q the matrix defined by

mii = H((xi , 0), xi ), mi j = −G((xi , 0), x j ) ∀ j 
= i. (2.6)

Let ρ(x) be the least eigenvalue and by e(x) the eigenvector associated to ρ(x) whose
norm equals 1 and whose components are strictly positive.

Our main results are the following.

Theorem 2.3. Assume that zero is a regular value of ρ. For ε > 0 sufficiently small,
there exists a change of variables, such that for any u = ∑p

i=1 αi Pδ(ai ,λi ) ∈ V (p, ε),
(ai , λi , v) → (a′

i , λ
′
i , V ) where V belongs to a neighborhood of zero in a fixed Hilbert
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space so that

J

( p∑

i=1

αi Pδ(ai ,λi ) + v

)

= J

( p∑

i=1

αi Pδ(a′
i ,λ

′
i )

)

+ ‖V ‖2.

Furthermore, if each ai belongs to a neighborhood of xi such that ρ(x1, . . . , xp) > 0 and
ρ′(x1, . . . , xp) = 0, there exists another change of variables (ai , λi ) → (a′

i , λ
′
i ) such that

J

( p∑

i=1

αi Pδ(ai ,λi )

)

= (S̃)2/n(
∑p

i=1 α2
i )

(
∑p

i=1 α
2n

n−2s
i )

n−2s
n

(

1 + ηρ(a′)
p∑

i=1

1

λ′n−2s
i

)

,

up to a multiplicative constant. Here a′ = (a′
1, . . . , a

′
p) and η is a fixed positive constant.

The characterisation of the critical points at infinity is given in the following theorem.

Theorem 2.4. Assume that zero is a regular value of ρ. Then we have

(i) For ε small enough, J does not have any critical point in V (p, ε).
(ii) The only critical points at infinity of J in V (p, ε) correspond to

∑p
i=1 Pδ(xi ,+∞),

where p ∈ N
∗ and the xi ’s satisfy

ρ(x1, . . . , xp) > 0 and ρ′(x1, . . . , xp) = 0.

(iii) There is p0 ∈ N
∗ such that J does not have any critical point at infinity in V (p, ε)

for each p ≥ p0.

The following result illustrates the usefulness of the above theorems. It computes the
difference of topology between the level sets of the functional J . More precisely, it evaluates
the contribution of the critical points at infinity to the relative homology between the sets
Wp and Wp−1, where

Wp = {u ∈ 	+, s.t, J (u) < ((p + 1)S̃)
2
n }.

Theorem 2.5. Assume that J has no critical point in 	+ and zero is a regular value of ρ.
Then the relative homology H∗(Wp,Wp−1) between the sets Wp and Wp−1 equals to

H∗(�p ×σp �p−1,�
p × ∂�p−1 ∪σp Ip × �p−1),

where Ip = {x ∈ �p, s.t. ρ(x) ≤ 0}, �p−1 = {(α1, . . . , αp), such that αi ≥
0,

∑p
i=1 αi = 1} and σp is the permutation group.

The remainder of the present paper is organized as follow. Section 3 will be devoted to
the expansion of J and its gradient. In Section 4, we will study the v-part of u. In Section 5,
we will construct a suitable pseudo-gradient to characterize the critical points associated
to problem (1.1). The proofs of Theorems 2.3, 2.4 and 2.5 are given in Section 6.
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3. Expansion of the functional and its gradient near potential critical points
at infinity

First, we deal with the asymptotic expansion of the functional J .

PROPOSITION 3.1

For ε > 0 small enough and u = ∑p
i=1 αi Pδ(ai ,λi ) + v ∈ V (p, ε), we have the following

expansion:

J (u) = (c−1
s )2/n(

∑p
i=1 α2

i )

(
∑p

i=1 α
2n

n−2s
i )

n−2s
n

⎡

⎢
⎣1 + c1

c−1
s

p∑

i=1

H((ai , 0), ai )

λn−2s
i

⎛

⎜
⎝

2α
2n

n−2s
i

∑p
j=1 α

2n
n−2s
j

− α2
i∑p

j=1 α2
j

⎞

⎟
⎠

− c1

c−1
s

∑

i 
= j≥1

(

εi j − H((ai , 0), a j )

(λiλ j )
n−2s

2

)
⎛

⎜
⎝

2α
n+2s
n−2s
i α j

∑p
j=1 α

2n
n−2s
j

− αiα j
∑p

j=1 α2
k

⎞

⎟
⎠

+ Q(v, v)

c−1
s

∑p
j=1 α2

j

− f (v)

+O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
p∑

k=1

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ + O(‖v‖inf(3, 2n
n−2s ))

⎤

⎦ ,

where c1 is a positive constant, and

Q(v, v) = ‖v‖2 − (n + 2s)

(n − 2s)

∑
j α

2
j

∑
j α

2n
n−2s
j

∫ (
∑

i

αi Pδi

) 4s
n−2s

v2,

f (v) = 2cs
∑

j α
2n

n−2s
j

∫ (
∑

i

αi Pδi

) n+2s
n−2s

v.

Proof. Let us recall that

J (u) = ‖u‖2

(∫

�

u
2n

n−2s

) n−2s
n

.

We need to estimate

N (u) = ‖u‖2 =
∥
∥
∥
∥
∥

p∑

i=1

αi Pδi + v

∥
∥
∥
∥
∥

2

and D
n

n−2s =
∫

�

u
2n

n−2s .

Using the fact that v satisfies (V0), we have

N (u) =
p∑

i=1

α2
i ‖Pδi‖2 +

∑

i 
= j

αiα j 〈Pδi , Pδ j 〉 + ‖v‖2. (3.1)
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A computation similar to the one performed in [1,7] shows that, for λi di large enough, we
have the following estimates:

‖Pδi‖2 = c−1
s − c1

H((ai , 0), ai )

λn−2s
i

+ O

(
log(λi di )

(λi di )n+2−2s

)

, (3.2)

〈Pδi , Pδ j 〉 = c1

(

εi j − H((ai , 0), a j )

(λiλ j )
n−2s

2

)

+O

⎛

⎝ε
n

n−2s
i j log ε−1

i j +
∑

k=i, j

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ . (3.3)

Using (3.1), (3.2) and (3.3), we derive that

N (u) =
p∑

i=1

α2
i

(

c−1
s − c1

H((ai , 0), ai )

λn−2s
i

)

+
∑

j 
=i

αiα j c1

(

εi j − H((ai , 0), a j )

(λiλ j )
n−2s

2

)

+‖v‖2 + R, (3.4)

where

R = O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
p∑

k=1

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ .

For the denominator, we have

D
n

n−2s =
∫

�

( p∑

i=1

αi Pδi + v

) 2n
n−2s

=
∫

�

( p∑

i=1

αi Pδi

) 2n
n−2s

+ 2n

n − 2s

∫

�

( p∑

i=1

αi Pδi

) n+2s
n−2s

v

+n(n + 2s)

(n − 2s)2

∫

�

( p∑

i=1

αi Pδi

) 4s
n−2s

v2 + O(‖v‖inf(3, 2n
n−2s )). (3.5)

Observe that

∫

�

( p∑

i=1

αi Pδi

) 2n
n−2s

= ∑p
i=1 α

2n
n−2s
i

∫

�
Pδ

2n
n−2s
i + 2n

n − 2s

∑

i 
= j

α
n+2s
n−2s
i α j

∫

�

Pδ
n+2s
n−2s
i Pδ j

+O

(
∑

i 
= j

∫
Pδ

4s
n−2s
i inf(Pδi , Pδ j )

2
)

.

(3.6)

A computation similar to the one performed in [1,7] shows that

∫

Pδ
4s

n−2s
i inf(Pδi , Pδ j )

2 = O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
∑

k=i, j

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ , (3.7)
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∫

Pδ
n+2s
n−2s
i Pδ j = c1

(

εi j − H((ai , 0), a j )

(λiλ j )
n−2s

2

)

+O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
∑

k=i, j

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ , (3.8)

∫

Pδ
2n

n−2s
i = c−1

s − c1
2n

n − 2s

H((ai , 0), ai )

λn−2s
i

+ O

(
log(λi di )

(λi di )n+2−2s

)

. (3.9)

Using (3.7), (3.8) and (3.9), we get

∫ ( p∑

i=1

αi Pδi

) 2n
n−2s

=
p∑

i=1

α
2n

n−2s
i

(

c−1
s − c1

2n

n − 2s

H((ai , 0), ai )

λn−2s
i

)

+ 2n

n − 2s
c1

∑

i 
= j

α
n+2s
n−2s
i α j

(

εi j − H((ai , 0), a j )

(λiλ j )
n−2s

2

)

+O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
∑

k=i, j

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ . (3.10)

Combining (3.4), (3.5) and (3.10) and the fact that J (u)
n

n−2s α
4s

n−2s
i = 1 + o(1), for each i ,

the result follows.

PROPOSITION 3.2

For u = ∑p
i=1 αi Pδ(ai ,λi ) ∈ V (p, ε), we have the following expansion:

〈

∂ J (u), λi
∂Pδai ,λi

∂λi

〉

= 2c1 J (u)

[

−n − 2s

2
αi

H((ai , 0), ai )

λn−2s
i

(1 + o(1))

−
∑

j 
=i

α j

(

λi
∂εi j

∂λi
+ n − 2s

2

H((ai , 0), a j )

(λiλ j )
n−2s

2

)

(1+o(1))+R

⎤

⎦ .

Proof. For any h ∈ H, we have

〈∂ J (u), h〉 = 2J (u)

(

〈u, h〉 − J (u)
n

n−2s

∫

�

u
n+2s
n−2s h

)

. (3.11)

Thus

〈

∂ J (u), λi
∂Pδi

∂λi

〉

= 2J (u)

⎡

⎢
⎣

〈 p∑

j=1

α j Pδ j , λi
∂Pδi

∂λi

〉

−J (u)
n

n−2s

∫

�

⎛

⎝
p∑

j=1

α j Pδ j

⎞

⎠

n+2s
n−2s

λi
∂Pδi

∂λi

⎤

⎥
⎦ .
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Observe that

∫

�

⎛

⎝
p∑

j=1

α j Pδ j

⎞

⎠

n+2s
n−2s

λi
∂Pδi

∂λi
=

p∑

j=1

α
n+2s
n−2s
j

∫

�

Pδ
n+2s
n−2s
j λi

∂Pδi

∂λi

+n + 2s

n − 2s

∑

i 
= j

∫

�

(αi Pδi )
4s

n−2s λi
∂Pδi

∂λi
(α j Pδ j ) + O

⎛

⎝
∑

j 
=i

∫

�

Pδ
4s

n−2s
j inf(δ j , δi )

2

⎞

⎠ .

(3.12)

A computation similar to the one performed in [7], shows that
〈

Pδi , λi
∂Pδi

∂λi

〉

= n − 2s

2
c1

H((ai , 0), ai )

λn−2s
i

+ O

(
log(λi di )

(λi di )n+2−2s

)

, (3.13)

〈

Pδ j , λi
∂Pδi

∂λi

〉

= c1

(

λi
∂εi j

∂λi
+ n − 2s

n

H((ai , 0), a j )

(λiλ j )
n−2s

2

)

+O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
∑

k=i, j

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ , (3.14)

∫

�

Pδ
n+2s
n−2s
i λi

∂Pδi

∂λi
= (n − 2s)c1

H((ai , 0), ai )

λn−2s
i

+ O

(
log(λi di )

(λi di )n+2−2s

)

, (3.15)

∫

�

Pδ
n+2s
n−2s
j λi

∂Pδi

∂λi
=
〈

Pδ j , λi
∂Pδi

∂λi

〉

+O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
∑

k=i, j

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ ,

(3.16)
n + 2s

n − 2s

∫

�

Pδ j Pδ
4s

n−2s
i λi

∂Pδi

∂λi
=

〈

Pδ j , λi
∂Pδi

∂λi

〉

+O

⎛

⎝
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j +
∑

k=i, j

log(λkdk)

(λkdk)n+2−2s

⎞

⎠ .

(3.17)

Using (3.13)– (3.17) and the fact that J (u)
n

n−2s α
4s

n−2s
i = 1+o(1), for each i , Proposition 3.2

follows.

PROPOSITION 3.3

For u = ∑p
i=1 αi Pδ(ai ,λi ) ∈ V (p, ε), we have the following expansion:

〈

∂ J (u),
1

λi

∂Pδai ,λi

∂ai

〉

= J (u)c1

[
αi

λn+1−2s
i

∂H((ai , 0), ai )

∂ai
(1 + o(1))

+2
∑

j 
=i

α j

⎛

⎝
1

λi

∂εi j

∂ai
−

∂H((ai ,0),a j )

∂ai

λi (λiλ j )
n−2s

2

⎞

⎠
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×(1 − J (u)
n

n−2s (α
4s

n−2s
j + α

4s
n−2s
j ))

]

+R + O

⎛

⎝
∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

⎞

⎠ .

Proof. Using (3.11), we have

〈

∂ J (u),
1

λi

∂Pδi

∂ai

〉

= 2J (u)

⎡

⎢
⎣

〈 p∑

j=1

α j Pδ j ,
1

λi

∂Pδi

∂ai

〉

−J (u)
n

n−2s

∫

�

⎛

⎝
p∑

j=1

α j Pδ j

⎞

⎠

n+2s
n−2s

1

λi

∂Pδi

∂ai

⎤

⎥
⎦ .

Observe that

∫

�

( p∑

j=1

α j Pδ j

) n+2s
n−2s 1

λi

∂Pδi

∂ai
=

p∑

j=1

α
n+2s
n−2s
j

∫

�

Pδ
n+2s
n−2s
j

1

λi

∂Pδi

∂ai

+n+2s

n−2s

∑

i 
= j

∫

�

(αi Pδi )
4s
n−2s

1

λi

∂Pδi

∂ai
(α j Pδ j )

+O

(∑

j 
=i

∫

�

Pδ
4s

n−2s
j inf(δ j , δi )

2
)

.

(3.18)

A computation similar to the one performed in [7], shows that

〈

Pδi ,
1

λi

∂Pδi

∂ai

〉

= −1

2

c1

λn+1−2s
i

∂H((ai , 0), ai )

∂ai
+ O

(
1

(λi di )n+2−2s

)

, (3.19)

〈

Pδ j ,
1

λi

∂Pδi

∂ai

〉

= c1

λi

(
∂εi j

∂ai
− 1

(λiλ j )
n−2s

2

∂H((ai , 0), a j )

∂ai

)

+O

⎛

⎝
∑

k=i, j

1

(λkdk)n+2−2s +
∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

⎞

⎠ , (3.20)

∫

�

Pδ
n+2s
n−2s
i

1

λi

∂Pδi

∂ai
= − c1

λn+1−2s
i

∂H((ai , 0), ai )

∂ai
+ O

(
log(λi di )

(λi di )n+2−2s

)

, (3.21)

∫

�

Pδ
n+2s
n−2s
j

1

λi

∂Pδi

∂ai
=

〈

Pδ j ,
1

λi

∂Pδi

∂ai

〉

+ O

⎛

⎝
∑

k=i, j

1

(λkdk)n+2−2s +
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j

⎞

⎠ ,

(3.22)
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n + 2s

n − 2s

∫

�

Pδ j Pδ
4s

n−2s
i

1

λi

∂Pδi

∂ai
=

〈

Pδ j ,
1

λi

∂Pδi

∂ai

〉

+O

⎛

⎝
∑

k=i, j

1

(λkdk)n+2−2s +
∑

j 
=i

ε
n

n−2s
i j log ε−1

i j

⎞

⎠ . (3.23)

Using (3.18)–(3.23) and the fact that J (u)
n

n−2s α
4s

n−2s
i = 1+o(1), for each i , Proposition 3.3

follows.

4. The v-part of u

In this section, we deal with the v-part of u, in order to show that it is negligible with
respect to the concentration phenomenon.

PROPOSITION 4.1

There is a C1-map which to each (αi , ai , λi ) such that
∑p

i=1 αi Pδ(ai ,λi ) belongs to V (p, ε)
associates v̄ = v̄(α, a, λ) such that v̄ is unique and satisfies

J

( p∑

i=1

αi Pδ(ai ,λi ) + v̄

)

= min
v∈(V0)

{

J

( p∑

i=1

αi Pδ(ai ,λi ) + v

)}

.

Furthermore, we have the following estimate:

‖v̄‖ ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p∑

i=1

log(λi di )

(λi di )
n+2s

2

+
∑

j 
=i

ε
n+2s

2(n−2s)
i j (log ε−1

i j )
n+2s

2n , if n ≥ 6

p∑

i=1

1

(λi di )n−2s +
∑

j 
=i

εi j (log ε−1
i j )

n−2s
n , if n ≤ 5

Proof. Since αi
α j

= 1 + o(1), then the quadratic form Q(v, v) defined in Proposition 3.1
is close to

‖v‖2 − (n + 2s)

(n − 2s)

∑

i

∫

Pδ
4s

n−2s
i v2. (4.1)

Arguing as in [7], the existence of v̄ follows, since Q(v, v) is definitive and positive. Thus

∃ α > 0, s.t. α‖v̄‖2 ≤ |( f, v̄)| ≤ α| f |‖v̄‖, (4.2)

where f is the linear form defined in Proposition 3.1. Thus, it is sufficient to estimate | f |.
We have

f (v) = 2cs
∑

j α
2n

n−2s
j

p∑

i=1

α
n+2s
n−2s
i

∫

Pδ
n+2s
n−2s
i v + O

(∑

j 
=i

∫

Pδ j≤Pδi

Pδ
4s

n−2s
i Pδ j |v|

)

. (4.3)
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Observe that

∫

Pδ
n+2s
n−2s
i v =

∫

δ
n+2s
n−2s
i v + O

(∫

Bi∪Bc
i

δ
4s

n−2s
i θi |v|

)

, (4.4)

where Bi = {x, |x − ai | < di } and θi = δi − Pδi . Then, using the Holder’s inequality, we
need to estimate

∫

Bc
i

(
δ

4s
n−2s
i θi

) 2n
n−2s ≤

∫

Bc
i

δ
2n

n−2s
i = O

(
1

(λi di )n+2−2s

)

, (4.5)

|θi |∞
∫

Bi

(
δ

8n
(n+2s)(n−2s)
i

) n+2s
2n

= O

(
1

(λi di )
n+2s

2

+ (if n = 6)
log(λi di )

(λi di )4 + (if n ≤ 5)
1

(λi di )n−2s

)

. (4.6)

Also, we have

∫

Pδ j≤Pδi

Pδ
4s

n−2s
i Pδ j |v| ≤ |v|

[ ∫

Pδ j≤Pδi

(
Pδ

4s
n−2s
i Pδ j

) 2n
n+2s

] n+2s
2n

. (4.7)

If n ≥ 6, then 2n
n+2s ≥ n

n−2s . Therefore,

∫

Pδ j≤Pδi

(
Pδ

4s
n−2s
i Pδ j

) 2n
n+2s ≤

∫

(δiδ j )
n

n−2s = O

(

ε
n

n−2s
i j log ε−1

i j

)

. (4.8)

If n ≤ 5, then 1 < 4s
n−2s . In this case,

∫

Pδ j≤Pδi

(
Pδ

4s
n−2s
i Pδ j

) 2n
n+2s ≤

[ ∫

(δiδ j )
n

n−2s

] 2(n−2s)
n+2s = O

(

ε
2n

n+2s
i j (log ε−1

i j )
2(n−2s)
n+2s

)

.

(4.9)

This concludes the proof.

5. Construction of the pseudo-gradient

This section is devoted to the construction of a suitable pseudo-gradient of J for which the
Palais–Smale condition is satisfied along the decreasing flow lines as long as these flow
lines do not enter in some neighborhood of

∑p
i=1 Pδ(xi ,+∞), p ∈ N

∗ such that

ρ(x1, . . . , xp) > 0 and ρ′(x1, . . . , xp) = 0.

Such a construction allows us to identify the critical points at infinity of the variational
structure associated to (1.1).

Theorem 5.1. Assume that zero is a regular value of ρ. For any p ≥ 1 and ε > 0 small
enough, there exists a pseudo-gradient W in V (p, ε) satisfying the following:
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There exists a constant c > 0 such that for any u = ∑p
i=1 αi Pδai ,λi ∈ V (p, ε), we have

(i) 〈∂ J (u),W (u)〉 ≤ −c

( p∑

i=1

( 1

(λi di )n+1−2s

)
+

∑

j 
=i

ε
n+1−2s
n−2s

i j

)

,

(i i)

〈

∂ J (u+v̄),W (u)+ ∂v̄

∂(α, a, λ)
(W (u))

〉

≤ − c

( p∑

i=1

(
1

(λi di )n+1−2s

)

+
∑

j 
=i

ε
n+1−2s
n−2s

i j

)

.

|W | is bounded, the minimal distance to the boundary only increases if it is small enough
and the only case where λi (s), i = 1, . . . , p, s ≥ 0, tend to ∞ is when ρ(X) > 0 and
ρ′(X) = 0, where X = (a1, . . . , ap).

In order to construct the required pseudo-gradient, we need to introduce the following
notations: For each i ∈ {1, . . . , p}, let

I1 =
{

i, s.t.
1

2p+1

∑

k 
=i

εki ≤
p∑

j=1

H(ai , 0), a j )

(λiλ j )
n−2s

2

}

,

I2 =
{

i, s.t.
1

2p+1

∑

k 
=i

εki >

p∑

j=1

H(ai , 0), a j )

(λiλ j )
n−2s

2

}

.

Without loss of generality, we can assume that λi di : λ1d1 ≤ λ2d2 ≤ · · · ≤ λpdp. Let us
define

I = {1} ∪ {i, s.t. ∀ k ≤ i, c2λkdk ≤ λk−1dk−1 ≤ λkdk},
where c2 is a constant chosen small enough.

Case 1: I ∩ I2 
= ∅ and I 
= {1, . . . , p}. We order all the concentrations λi , i ∈ I2. Assume
that

λi1 ≤ λi2 ≤ · · · ≤ λir .

Let

W1 = −
r∑

k=1

2kαikλik
∂Pδik

∂λik
.

We claim that

〈∂ J (u),W1(u)〉 ≤ −c
∑

i∈I2

(
1

(λi di )n−2s +
∑

j 
=i

εi j

)

+ R. (5.1)

Indeed, using Proposition (3.2), we derive that

〈∂ J (u),W1(u)〉 = 2c1 J (u)

r∑

k=1

[

−
∑

j 
=ik

2kα jαikλik
∂ε j ik

∂λik
(1 + o(1))

−n − 2s

2

p∑

j=1

2kα jαik
H((a j , 0), aik )

(λ jλik )
n−2s

2

(1 + o(1)) + R

]

. (5.2)

Observe that

− λi
∂εi j

∂λi
= n − 2s

2
εi j

(

1 − 2
λ j

λi
ε

2
n−2s
i j

)

. (5.3)
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Thus for λi ≥ λ j ,

− 2λi
∂εi j

∂λi
− λ j

∂εi j

∂λ j
≥ −λi

∂εi j

∂λi
= n − 2s

2
εi j + O

(
ε

n+2−2s
n−2s

i j

)
. (5.4)

Furthermore, arguing as in [7,24] and using the maximum principle, the regular part of
the Green’s function satisfies

H((ai , 0), a j ) ≤ max(di , d j )
2s−n . (5.5)

For j ∈ I1 and i 
= j , if d j/2 ≤ di ≤ 2d j , using (5.5), we obtain

λ j

λi
ε

2
n−2s
i j = o(1). (5.6)

In the other case (i.e. di ≤ d j/2 or di ≥ 2d j ), we use the inequality |ai − a j | ≥
1
2 max(di , d j ) to obtain (5.6). Thus

〈∂ J (u),W1(u)〉 ≤ −(n − 2s)c1 J (u)

∑

i∈I2

[∑

i 
= j

εi j (1 + o(1))−2p
p∑

j=1

H((ai , 0), a j )

(λiλ j )
n−2s

2

]

+R. (5.7)

Since i ∈ I2, we obtain

〈∂ J (u),W1(u)〉 ≤ −c
∑

i∈I2

[∑

i 
= j

εi j + 2p
p∑

j=1

H((ai , 0), a j )

(λiλ j )
n−2s

2

]

+ R. (5.8)

A similar computation as in the proof of (2.8) of [24] shows that

H((ai , 0), ai ) = (2di )
2s−n + o(d2s−n

i ), (5.9)

for each point ai near the boundary. From another part, for each ai in a compact set K of
�, we have H((ai , 0)ai ) ≥ c. Thus

H((ai , 0), ai ) ≥ c(di )
2s−n, (5.10)

for each ai ∈ �. Using (5.10) and (5.8), claim (5.1) follows.
Since λ1d1 ≤ λ2d2 ≤ · · · ≤ λpdp, we can make appear the term (λi di )−(n−2s) in the

upper bound of (5.1). Therefore,

〈∂ J (u),W1(u)〉 ≤ −c
( p∑

i=1

1

(λi di )n−2s +
∑

i∈I2, j 
=i

εi j

)
+ R. (5.11)

For i ∈ I1, we have

1

2p+1

∑

k 
=i

εki ≤
p∑

j=1

H(ai , 0), a j )

(λiλ j )
n−2s

2

≤ p

(λ1d1)n−2s . (5.12)

Therefore, from (λ1d1)
−(n−2s) we can make appear the term

∑
i∈I1, j 
=i εi j in the upper

bound of (5.11). Hence the estimates (i) of Theorem 5.1 follows in this case.

Case 2: I ∩ I2 
= ∅ and I = {1, . . . , p}. Let i1 = min{i, s.t. i ∈ I2} and Ii1 = { j /∈
I2, s.t. λi1di1 ≤ 2c2λ j d j }. Let

W2 = −
∑

i∈I2∪Ii1

λi
∂Pδi

∂λi
.
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Using Proposition 3.2, we have

〈∂ J (u),W2(u)〉 = 2c1 J (u)
∑

i∈I2∪Ii1

[

−
∑

j 
=i

2iα jαiλi
∂ε j i

∂λi
(1 + o(1))

−n − 2s

2

p∑

j=1

2iα jαi
H((a j , 0), ai )

(λ jλi )
n−2s

2

(1 + o(1))

]

+ R. (5.13)

Since I = {1, . . . , p}, we have for each i 
= j ,

εi j =
(

1

λiλ j |ai − a j |2
) n−2s

2
(

1 + O

(
1

λ2
i |ai − a j |2

+ 1

λ2
j |a j − a j |2

))

=
(

1

λiλ j |ai − a j |2
) n−2s

2

+ O

(
1

(λ1d1)n+2−2s + ε
n

n−2s
i j

)

. (5.14)

Indeed, if di ≤ d j/2 or di ≥ 2d j , we have |ai − a j | ≥ 1
2 max(di , d j ) and the result

follows. In the other case, if d j/2 ≤ di ≤ 2d j , using that i, j ∈ I , we derive that λi
λ j

and

λ j
λi

are bounded. Therefore, (λk |ai − a j |)−2 = O(ε
2

n−2s
i j ) for k = i, j . Thus, for i ∈ Ii1 ,

using (5.3) and (5.14), we get

∑

j 
=i

(

− λi
∂ε j i

∂λi
− n − 2s

2

H((ai , 0), a j )

(λiλ j )
n−2s

2

)

= n − 2s

2

∑

j 
=i

G((ai , 0), a j )

(λiλ j )
n−2s

2

+ O

(
1

(λ1d1)n+2−2s + ε
n

n−2s
i j

)

. (5.15)

Furthermore, for i ∈ Ii1 ,

H((ai , 0), ai )

(λi )n−2s = O

(
1

(λi di )n−2s

)

= O

(
2c2

(λi1di1)
n−2s

)

= o

(
1

(λi1di1)
n−2s

)

.

For i ∈ I2, using (5.3) and (5.14), we get

∑

j 
=i

λi
∂ε j i

∂λi
+ n − 2s

2

p∑

j=1

H((ai , 0), a j )

(λiλ j )
n−2s

2

≤ −c

(∑

j 
=i

εi j + 1

(λi di )
n

n−2s

)

. (5.16)

Therefore, using the fact that the Green’s function is positive, we derive

〈∂ J (u),W2(u)〉 ≤ −c
∑

i∈I2

(∑

j 
=i

ε j i + 1

(λi di )n−2s

)

+ R. (5.17)

Using the fact that I ∩ I2 
= ∅ and arguing as in the Case1, estimate (5.11) is valid.
Therefore, we can make appear the term

∑
i∈I1, j 
=i εi j in the upper bound of (5.11). Thus

estimate (i) of Theorem 5.1 follows in this case.
For c3 a fixed small constant, let us define

L = { j ∈ I1, s.t. ∃ i ∈ I1, s.t. c3 max(di , d j ) ≥ |ai − a j |}.
For i ∈ L , let i0 the index such that

c3 max(di , di0) ≥ |ai − ai0 |. (5.18)
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Case 3: I ∩ I2 = ∅ and there exists i, i0 ∈ I satisfying (5.18). Let

W3 = −αiλi
∂Pδi

∂λi
.

We have

〈∂ J (u),W3(u)〉 = 2c1 J (u)

[

−
∑

j 
=i

α jαiλi
∂ε j i

∂λi
(1 + o(1))

−n − 2s

2

p∑

j=1

α jαi
H((a j , 0), ai )

(λ jλi )
n−2s

2

(1 + o(1))

]

+ R. (5.19)

Arguing as in Case 1, the terms with j ∈ I2 can be seen like O(εi j ). Next, we interest
with the indices j ∈ I1. Observe that for i, k ∈ I1, we have (5.14). Indeed, if di ≤ dk/2 or
di ≥ 2dk), we have |ai − ak | ≥ 1

2 max(di , dk) and the result follows. In the other case, if
dk/2 ≤ di ≤ 2dk , using that i, k ∈ I1, we have as in (5.6)

εi j = o

((
λi

λk

) n−2s
2

+
(

λk

λi

) n−2s
2

)

. (5.20)

Therefore,
1

λ2
r |ai − ak |2 = λi

λk

1

λiλk |ai − ak |2 ≤ c
λi

λk
ε

2
n−2s
i j ≤ c

λi

λk

1

(λi di )(λ1d1)

= O

(
1

(λ1d1)2

)

,∀ r = i, k.

Thus we obtain (5.15) with the indices j ∈ I1. Using (5.10), and the fact that the Green’s
function is positive, we derive that

〈∂ J (u),W3(u)〉 ≤ −c

(
1

(λi di )n−2s + G((ai , 0), ai0)

(λiλi0)
n−2s

2

)

+ R + O

( ∑

j 
=i, j∈I2
εi j

)

.

(5.21)

Since i, i0 ∈ I satisfying (5.18), we can assume that λi ≥ λi0 and thus

1

(λi di )n−2s + H((ai , 0), ai0)

(λiλi0)
n−2s

2

≤
(

c2
3

λiλi0 |ai − ai0 |2
) n−2s

2

. (5.22)

Using (5.14), we derive that

〈∂ J (u),W3(u)〉 ≤ −c

(

εi i0 + 1

(λi di )n−2s

)

+ R + O

( ∑

j 
=i, j∈I2
εi j

)

. (5.23)

Since i ∈ I and the term (λi di )2s−n appears in the upper-bound of the above estimate,
we argue as in the Case 1, we can make appear all the (λkdk)2s−n and

∑
k 
= j,k∈I1 εk j in

this upper-bound. For m1, a fixed large constant, the pseudo-gradient W3 +m1W1 satisfies
estimate (i) of Theorem 5.1.

Case 4: I ∩ I2 = ∅ and ∀i, i0 ∈ I , c3 max(di , di0) < |ai − ai0 |. Let d0 be a fixed small
positive constant. We introduce the following sets:

I ′ = {i ∈ I, di < d0}
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and

Li = { j ∈ L , s.t. i and j satisfy (5.18)}.
Case 4.1: If I ′ 
= ∅, let

W4 =
∑

i∈I ′
αi

∂Pδi

∂ai

(

− ηi

λ j0

)

,

where λ j0 = max{λi , i ∈ I ′} and ηi is the outward normal to ∂�di = {x ∈
�, s.t. d(x, ∂�) = di } at ai .

Using Proposition 3.3, we have

〈∂ J (u),W4〉
= J (u)c1

λ j0

∑

i∈I ′

[
α2
i

λn−2s
i

∂H((ai , 0), ai )

∂ηi
(1 + o(1)) + O

(

λi
∑

i 
= j, j∈I2∪Li

εi j

)

+2
∑

j 
=i

αiα j

(
∂εi j

∂ηi
−

∂H((ai ,0),a j )

∂ηi

(λiλ j )
n−2s

2

)(

1 − J (u)
n

n−2s (α
4s

n−2s
j + α

4s
n−2s
j )

)]

+O

(

λi

(∑

i 
= j

ε
n

n−2s
i j log ε−1

i j +
∑

k

log(λkdk)

(λkdk)n+2−2s

))

+O

(∑

i 
= j

λ2
i |ai − a j |ε

n+3−2s
n−2s

i j

)

.

Observe that for i ∈ I ′ and j ∈ I1 \ (I ∪ Li ), using (5.5), we have
∂H((ai ,0),a j )

∂ηi

(λiλ j )
n−2s

2

≤ cH((ai , 0), a j )

(λiλ j )
n−2s

2 di
≤ c

di (λi diλ j d j )
n−2s

2

= o
( 1

di (λi di )n−2s

)
.

For i and j ∈ I ′, if di
d j

,
d j
di

and
|ai−a j |

di
are bounded and arguing as in the Appendix of [11],

we derive that ∂H
∂ηi

((ai , 0), a j ) > 0. In the other case, we have

∂H

∂ηi
((ai , 0), a j ) ≤ H((ai , 0), a j )

di
≤ 1

di max(di , d j , |ai − a j |)n−2s

= o

(
1

(did j )
n+1−2s

2

)

. (5.24)

Thus

1

(λiλ j )
n−2s

2

∂H

∂ηi
((ai , 0), a j ) = o

(
1

di (λi di )n−2s + 1

d j (λ j d j )n−2s

)

. (5.25)

Observe that for each i ∈ I ′, using (5.9) and arguing as [7,24], we have

∂H

∂ηi

((
ai , 0

)
, ai

) = n − 2s

2n−2s

1

dn+1−2s
i

(
1 + o

(
1
))

. (5.26)

Moreover, for i, j ∈ I ′, we have ηi − η j = O(|ai − a j |). Therefore,

∂εi j

∂ai
ηi + ∂εi j

∂a j
η j = n − 2s

2
λiλ j (ai − a j )ε

n+2−2s
n−2s

i j (η j − ηi ) = O(εi j ). (5.27)
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Using the fact that c3 max(di , d j ) ≤ |ai − a j |, for i ∈ I ′ and j ∈ I1 \ (I ∪ Li ), we get
∣
∣
∣
∂εi j

∂ai

∣
∣
∣ = (

n − 2s
)
λiλ j |ai − a j |ε

n+2−2s
n−2s

i j ≤ c
(
λiλ j

) n−2s
2

1

|ai − a j |n+1−2s

= O

(
1

cn+1−2s
3 (λi diλ j d j )

n−2s
2 di

)

= O

(
c
n−2s

2
2

cn+1−2s
3 (λi di )n−2sdi

)

= o

(
1

(λi di )n−2sdi

)

, (5.28)

for c2 and c3 chosen such that c
n−2s

2
2 = o(cn+1−2s

3 ). For i ∈ I ′ and j ∈ I \ I ′, we claim
that

∂H

∂ηi
((ai , 0), a j )

1

(λiλ j )
n−2s

2

− ∂εi j

∂ai
ηi = −∂G((ai , 0), a j )

∂ηi

1

(λiλ j )
n−2s

2

+o

(
λi

(λ1d1)n+3−2s

)

. (5.29)

Indeed, since I ∩ I2 = ∅ then i and j belong to I1. Using (5.14) and the fact that (5.18) is
not satisfied, we derive

∂εi j

∂ai
= (n − 2s)λiλ j (ai − a j )ε

n+2−2s
n−2s

i j

= (n − 2s)(ai − a j )

(λiλ j )
n−2s

2 |ai − a j |n+2−2s

(

1 + O

(
1

(λ1d1)2

))

.

Therefore,

∂εi j

∂ai
= 1

(λiλ j )
n−2s

2

∂

∂ai

( 1

|ai − a j |n−2s

)
+ O

( λi

cn+1−2s
3 (λ1d1)n+3−2s

)
.

and our claim follows. Thus

〈∂ J (u),W4(u)〉 ≤ − c

λ j0

∑

i∈I ′

[
1

(λi di )n−2sdi
−

∑

j∈I\I ′

1

(λiλ j )
n−2s

2

∂G((ai , 0), a j )

∂ηi

+O

( ∑

i 
= j, j∈I ′
εi j

)

+ O

( ∑

i 
= j, j∈I2∪Li

εi j

)

+O

(∑

i 
= j

ε
n

n−2s
i j log ε−1

i j +
∑

k

log(λkdk)

(λkdk)n+2−2s

)

+O

(∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

)]

.

Observe that di ≤ d j for i ∈ I ′ and j ∈ I \ I ′. Therefore, − ∂G((ai ,0),a j )

∂ηi
> 0, see [7] and

[24]. Now for i, j ∈ I ′, we have

εi j = O
( 1

(λi di )n−2s + 1

(λ j d j )n−2s

)
.
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Using the fact that di and d j are small enough, we get

εi j = o
( 1

di (λi di )n−2s + 1

d j (λ j d j )n−2s

)
.

Observe that j0 ∈ I ′ and λ j0d j0 and λ1d1 are of the same order. Thus, we can make all the
(λi di )n+1−2s for i ∈ I1 appear in the upper bound of the last inequality. It follows that,

〈∂ J (u),W4(u)〉 ≤ −c
p∑

i=1

1

(λi di )n+1−2s + O

( ∑

i 
= j, j∈I2∪Li

εi j

)

+O

(∑

i 
= j

ε
n

n−2s
i j log ε−1

i j +
∑

k

log(λkdk)

(λkdk)n+2−2s

)

+ O

(∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

)

.

(5.30)

Let

W5(u) = −
∑

i∈I ′
αiλi

∂Pδi

∂λi
−

∑

j∈Li

α jλ j
∂Pδ j

∂λ j
.

Using Case 3, we get

〈∂ J (u),W5(u)〉 ≤ −c

( ∑

i∈I ′, j∈Li

εi j

)

+ O

( ∑

j 
=i,i∈I ′, j∈I2
εi j

)

+ R. (5.31)

For m1 and m2 two fixed large constants, using (5.11) (5.30) and (5.31), we get

〈∂ J (u),W4 + m1W1 + m2W5〉 ≤ −c

( p∑

i=1

1

(λi di )n+1−2s +
∑

i 
= j, j∈I2
εi j

)

+ R

+O

(∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

)

. (5.32)

As in the Case 1, we can make appear the term
∑

i∈I1, j 
=i εi j in the upper bound of (5.11).
Hence the estimates (i) of Theorem 5.1 follows in this case.

Case 4.2: If I ′ = ∅, then di ≥ d0 for any i ∈ I . Let M = (mi j )i, j∈I be the matrix defined
in (2.6). Let ρ its least eigenvalue and e is the eigenvector associated to ρ. Fix η > 0. We
set

C(e, η) =
{
y ∈ (R∗+)r , r = card I, s.t.

∣
∣
∣
y

|y| − e
∣
∣
∣ < η

}
.

For any x ∈ C(e, η), η small, we have

tx Mx − ρ|x |2 ≤ 1

2
|ρ||x |2 (5.33)

and

tx
∂M

∂ai
x =

( ∂ρ

∂ai
+ o(1)

)
|x |2. (5.34)

For any x ∈ C(e, η)c, we have

tx Mx − ρ|x |2 > c|x |2.
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Denote I = { j1, . . . , jr } and � = t(
1

λ

n−2s
2

j1

,..., 1

λ

n−2s
2

jr

).

If � belongs to the set C(e, η)c, then we move the vector � to C(e, η) as in [12] along

�(t) = |�| (1 − t)� + t |�|e
|(1 − t)� + t |�|e| .

Using Proposition (3.2), we derive that there exists a pseudo-gradient W6 such that

〈∂ J (u),W6〉 = c

[
d

dt
(t�(t)M�(t)) + o

( ∑

j 
=i,i, j∈I
εi j +

∑

i∈I

1

λn−2s
i

)

+O

( ∑

i 
= j,i∈I, j∈I2∪I1\I
εi j

)

+ R

]

. (5.35)

As in [12], we have

d

dt
(t�(t)M�(t)) < −c|�|2 = −c

∑

i∈I

1

λn−2s
i

and

εi j = O

((
1

(λ1d1)(λ j d j )

) n−2s
2

)

= O

(
c
n−2s

2
2

dn−2s
0 λn−2s

1

)

= o

(
1

λn−2s
1

)

, (5.36)

for i ∈ I, j ∈ I1 \ I . Thus

〈∂ J (u),W6(u)〉 ≤ −c
∑

i∈I

1

λn−2s
i

+ o

( ∑

j 
=i,i, j∈I
εi j +

∑

i∈I

1

λn−2s
i

)

+ R. (5.37)

If � belongs to C(e, η), the construction of the vector-field W6 depends on the value of
ρ and |ρ′|. Since zero is a regular value of ρ then there exists a constant ρ0 > 0 such that
either |ρ| > ρ0 or |ρ′| > ρ0.

If ρ < −ρ0, we decrease all the λi ’s for i ∈ I . If we assume that c
n−2s

2
2 = o(ρ0d

n−2s
0 )

then using Proposition 3.2, (5.3) (5.5) and (5.36), we obtain (5.37) in this case.
If |ρ′| > ρ0 and ρ > −ρ0, then we move the points ai ’s along λ j0 ȧi = − ∂ρ

∂ai
for each

ai ∈ I and λ j0 = max{λi , i ∈ I }. Using Proposition 3.3, we derive

〈∂ J (u),W6〉 = 1

λ j0

∑

i∈I

〈

∂ J (u),
∂Pδai ,λi

∂ai

〉(

− ∂ρ

∂ai

)

= − 1

λ j0

∑

i∈I

[

c

(
∂ρ

∂ai

)(

t�
∂M

∂ai
�

)

+ O

( ∑

j∈I2∪Li

λiεi j

)

+O

( ∑

j∈I1\(I∪Li )

∂H((ai , 0), a j )

∂ai

1

(λiλ j )
n−2s

2

+ ∂εi j

∂ai

)

+O

(∑

i 
= j

ε
n

n−2s
i j log ε−1

i j +
∑

k

log(λkdk)

(λkdk)n+2−2s

)

+O

(∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

)]

. (5.38)
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Observe that for i ∈ I and j ∈ I1\(I ∪ Li ), (5.18) is not satisfied. Thus

∂H((ai , 0), a j )

∂ai

1

(λiλ j )
n−2s

2

≤ 1

dn+1−2s
i

1

(λiλ j )
n−2s

2

≤ (c2D)
n−2s

2

λn−2s
1 d

3n+2−6s
2

0

, (5.39)

where D is the diameter of �. Arguing as in (5.28), we obtain
∣
∣
∣
∂εi j

∂ai

∣
∣
∣ ≤ c

(λiλ j )
n−2s

2

1

|ai − a j |n+1−2s

≤ (c2D)
n−2s

2

cn+1−2s
3 λn−2s

1 d
3n+2−6s

2
0

. (5.40)

We can chose c2 and c3 such that

∂H((ai , 0), a j )

∂ai

1

(λiλ j )
n−2s

2

+
∣
∣
∣
∂εi j

∂ai

∣
∣
∣ = o

( 1

λn−2s
1

)
. (5.41)

Since � ∈ C(e, η), then using (5.33), (5.34), (5.38) and (5.41), we obtain

〈∂ J (u),W6〉 ≤ − c

2λ j0
|ρ′|2|�|2 + O

( ∑

i∈I, j∈I2∪Li

λiεi j

)

+R + O
(∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

)

≤ − c

2λ j0
ρ2

0 |�|2 + O
( ∑

i∈I, j∈I2∪Li

λiεi j

)

+R + O
(∑

i 
= j

λi |ai − a j |ε
n+3−2s
n−2s

i j

)
. (5.42)

Thus in both cases, the pseudo-gradient W6 + m1W1 + m2W5 where m1 and m2 are two
positive constants large enough, satisfies (5.32) and then the estimate (i) of Theorem 5.1
follows in this case.

The required vector field W required in Theorem 5.1 will be defined by a convex com-
bination of Wi , i = 1, . . . , 6. It satisfies Claim (i) of Theorem 5.1. Moreover, by the
argument of Corollary B.3 of [12], it satisfies Claim (ii). This completes the proof.

COROLLARY 5.2

Under the assumption of Theorem 5.1, the only critical points at infinity for J are∑p
i=1 Pδ(ai ,∞), p ≥ 1, where ρ(a1, . . . , ap) > 0 and ρ′(a1, . . . , ap) = 0. Moreover,

all concentration points of any critical point at infinity lie in a compact set K of �.

6. Proof of the results

Proof of Theorem 2.3. It follows from the result of Theorem 5.1 and similar arguments of
Appendix 2 of [8] (see also [12]).

Proof of Theorem 2.4. Claim (i) follows from the inequalities of Theorem 5.1. Claim (ii)
corresponds to the result of Corollary 5.2. Concerning Claim (iii), we know that for a
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large integer p0, there exists at least two points ai and a j in K , (where K is defined in
Corollary 5.2), such that |ai − a j | is very small. Therefore, any related p0 × p0-matrix,
M(a1, . . . , ap0) is not positive definite. Claim (iii) follows from Corollary 5.2.

Proof of Theorem 2.5. Using the result of Corollary 5.2, the only critical points at infinity
for J are

∑p
i=1 Pδ(ai ,∞) with ρ(a1, . . . , ap) > 0 and ρ′(a1, . . . , ap) = 0. Near each

critical point at infinity, the normal form of the expansion of J presented by Theorem 2.3,
shows that the relative homology between Wp and Wp−1 is given by the product of the
homologies defined by each variables. This conclude the proof.
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