
Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:28 
https://doi.org/10.1007/s12044-021-00625-8

© Indian Academy of Sciences

A family of tetravalent half-arc-transitive graphs
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Abstract. Alspach et al. (J. Austral. Math. Soc. 56(3) (1994) 391–402) constructed
an infinite family of tetravalent graphs M(a;m, n) and proved that if n ≥ 9 be odd and
a3 ≡ 1(mod n), then M(a; 3, n) is half-arc-transitive. In this paper, we show that if
a3 ≡ 1(mod n) , then M(a; 3, n) is an infinite family of tetravalent half-arc-transitive
Cayley graphs for all integers n except 7 and 14.
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1. Introduction

A graph G = (V, E) is said to be vertex-transitive, edge-transitive and arc-transitive if the
automorphism group of G, Aut(G), acts transitively on the vertices, on the edges and on
the arcs of G respectively. It is known that an arc-transitive graph is both vertex-transitive
and edge-transitive. However, a graph which is both vertex-transitive and edge-transitive
may not be arc-transitive, the smallest example being the Holt graph [10] on 27 vertices.
Such graphs are called half-arc-transitive graphs. For other definitions related to algebraic
graph theory, one is referred to [9].

The study of half-arc-transitive graphs was initiated by Tutte [13], who proved that
any half-arc-transitive graph is of even degree. Since any connected 2-regular is a cycle
and a cycle is arc-transitive, the first possibility of finding a half-arc-transitive graph is a
4-regular or tetravalent graph. The first examples of tetravalent half-arc-transitive graphs
were given by Bouwer [3] and the smallest example was given by Holt [10]. Though
numerous papers have been published in the last 50 years, the classification of tetravalent
half-arc-transitive graphs is not yet complete. In the absence of a complete classification,
two major approaches have been fruitful so far: the first is to characterize half-arc-transitive
graphs of some particular orders like p3, p4, p5, pq, 2pq, etc. [5–8], and the second is to
come up with infinite families of half-arc-transitive graphs [4,14].

In [1], Alspach et al. constructed an infinite family of tetravalent graphs M(a;m, n) and
proved as follows.
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Theorem 1.1 [1, Theorem 3.3]. Let n ≥ 9 be odd and a3 ≡ 1(mod n). Then M(a; 3, n)

is half-arc-transitive.

In this paper, we prove that M(a; 3, n) is half-arc-transitive for all integers n except 7 and
14. For this, we redefine M(a; 3, n) (as �(n, a) in Definition 1.1) in a different way which
helps us to prove the half-arc-transitivity of the entire family (not only when n is odd). It
turns out that �(n, a) is a family of Cayley graphs of order 3n and for (n, a) = (9, 4),
we get the Holt graph. In fact, our definition (Definition 1.1) is a generalization of an
alternative construction of the Holt graph (see the last paragraph of [10]).

DEFINITION 1.1

Let n be a positive integer such that 3 | ϕ(n), where ϕ denotes the Euler totient function.
Then Z

∗
n , the group of units of Zn , is a group of order a multiple of 3. Let a be an element

of order 3 in Z
∗
n and b ≡ a2(mod n). Define �(n, a) to be the graph with vertex-set

Zn × Z3 and the edge-set composed of edges of the form (i, j) ∼ (ai ± 1, j − 1) and
(i, j) ∼ (bi ± b, j + 1), where the operations in the first and second coordinates are done
modulo n and modulo 3, respectively.

It is obvious that �(n, a) is tetravalent. One can check that �(n, a) is a suitable redefini-
tion of M(a; 3, n) and �(9, 4) is the Holt graph. It is also to be noted that for a particular n,
we can have two graphs, �(n, a) and �(n, b). However, these two graphs are isomorphic
via the automorphism τ : �(n, a) → �(n, a2) defined by τ(i, j) = (ai,− j). So, without
loss of generality, we assume that a < b, where a, b ∈ {2, . . . , n − 2}.

On the other hand, let n be a positive integer such that a1, b1, a2, b2 are four elements of
order 3 in Z

∗
n with a1b1 ≡ 1(mod n) and a2b2 ≡ 1(mod n). Then, by the above argument,

�(n, a1) ∼= �(n, b1) and �(n, a2) ∼= �(n, b2). However, �(n, a1) may not be isomorphic
to �(n, a2). For example, if n = 63, we have 4 ·16 ≡ 1(mod 63) and 22 ·43 ≡ 1(mod 63),
but �(63, 4) is not isomorphic to �(63, 22), as the odd girth of �(63, 4) is 9, whereas that
of �(63, 22) is 21.

The definition of �(n, a) requires that 3|ϕ(n). We discuss the form of n for which this
holds. Let n = p1

α1 p2
α2 · · · pkαk , where the pi are primes. Then ϕ(n) = p1

α1−1 p2
α2−1

· · · pkαk−1 (p1 −1)(p2 −1) · · · (pk −1). As 3|ϕ(n), either 3|piαi−1 or 3|(pi −1) for some
i , i.e., 9|n or pi ≡ 1(mod 3) for some i . Thus n is either of the form 9t or pt , where p is
a prime of the form 1(mod 3) and t is a positive integer.

At this junction, it is important to note the difference between our proof and the proof
of [1].

(1) First, the proof techniques are entirely different: While their proof is built on semireg-
ular automorphisms and blocks, ours is based on 6-cycles present in the graph.

(2) Second and most importantly, we prove that �(n, a) is half-arc-transitive for all n
except 7 and 14, i.e., n is not necessarily odd, so that we prove the result for a larger
family of graphs.

In the next section, we prove the main results related to the automorphism group and
half-arc-transitivity of �(n, a). In the Appendix, we provide the SageMath [12] code for
computing the automorphism group of �(n, a).
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2. Automorphisms of �(n, a)

Let G = Aut(�(n, a)). We start by noting the following automorphisms of �(n, a):

α : (i, j) �→ (i + a− j , j); β : (i, j) �→ (i, j + 1); γ : (i, j) �→ (−i, j).

It can be shown that α, β, γ ∈ G and ◦(α) = n, ◦(β) = 3 and ◦(γ ) = 2. Moreover, we
have the following relations: αβ = βαa2

, αγ = γα−1 and βγ = γβ.

Theorem 2.1. �(n, a) is a Cayley graph.

Proof. Let H = 〈α, β〉. Clearly it forms a subgroup of G. Also, as ◦(α) = n, ◦(β) = 3
and αβ = βαa2

, we have

H = {αiβ j : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 2} and |H | = 3n = |�(n, a)|.

We will show that H acts regularly on �(n, a). As |H | = |�(n, a)|, it is enough to show
that H acts transitively on �(n, a). As i �→ i + a− j is a permutation of Zn order n and
j �→ j + 1 is a permutation of Z3 order 3, the action of H on �(n, a) is transitive. �

Note that H is a semidirect product of 〈α〉 and 〈β〉, as β−1αβ = αa2
and a2 and n

are coprime, and �(n, a) = Cay(H, S), where S = {β2α, β2α−1, βαb, βα−b}. We now
recall a result on Hamiltonicity of Cayley graphs.

Theorem 2.2 [11, Theorem 3.3]. Every connected Cayley graph of a semidirect product
of a cyclic group of prime order by an abelain group of odd order is Hamiltonian. �

COROLLARY 2.1

If n is odd, then �(n, a) is Hamiltonian .

Proof. By Theorem 2.1, we have �(n, a) is a Cayley graph on H and H is a semidirect
product of a cyclic group of order 3, namely 〈β〉, and another cyclic group of odd order n,
namely 〈α〉. Thus, by Theorem 2.2, �(n, a) is Hamiltonian. �

Theorem 2.3. �(n, a) is edge-transitive.

Proof. As �(n, a) is Cayley, it is vertex-transitive. Hence, it is enough to show that any two
edges incident with (0, 0) can be permuted by an automorphism. As �(n, a) is tetravalent,
the four vertices adjacent to (0, 0) are namely: (1, 2), (−1, 2), (b, 1) and (−b, 1). Let us
name the following edges as

e1 : (0, 0) ∼ (1, 2) e2 : (0, 0) ∼ (−1, 2)

e3 : (0, 0) ∼ (b, 1) e4 : (0, 0) ∼ (−b, 1).

It is to be noted that γ (e1) = e2, αβγ (e1) = ←
e3 and γαβγ (e1) = ←

e4. The reverse arrow
on top denotes that the orientation of the edge is changed. Hence, the theorem follows. �
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For n = 7, 14, SageMath [12] computation shows that �(n, a) is arc-transitive. Next,
we prove that �(n, a) is not arc-transitive if n �= 7, 14. For that, we show that there does
not exist any graph automorphism ϕ which maps the arc e3 to e1, i.e., ϕ((0, 0)) = (0, 0)

and ϕ((b, 1)) = (1, 2).
The next theorem shows that there can not be an automorphism ϕ for which ϕ((0, 0)) =

(0, 0) and ϕ((b, 1)) = (1, 2) because ϕ((1, 2)) should be one of {(b, 1), (−b, 1), (−1, 2)}.

Theorem 2.4. If ϕ is an automorphism of �(n, a) such that n �= 7, 14 and ϕ((0, 0) =
(0, 0) and ϕ((b, 1)) = (1, 2), then ϕ((1, 2)) /∈ {(b, 1), (−b, 1), (−1, 2)}. �

Thus, from Theorems 2.1, 2.3 and 2.4, we obtain the following result.

Theorem 2.5. �(n, a) is half-arc-transitive if n �= 7, 14. �

3. Proof of Theorem 2.4

To prove Theorem 2.4, we prove a lemma and three theorems. Throughout this section,
ϕ denotes an automorphism of �(n, a) and G denotes the full automorphsim group of
�(n, a).

Lemma 3.1. The following relations can not hold:
(1) 2a − 4b = 0,
(2) 2a + 4b = 0 except for n = 9,
(3) 4a − 2b = 0 except for n = 7, 14,
(4) 4a + 2b = 0 except for n = 18,
(5) 2a − 2b = 0,
(6) 2a + 2b = 0,
(7) 4a + 4 = 0,
(8) 2a + 6 = 0,
(9) 2(a + b − 1) = 0,

(10) 2(b − a + 1) = 0,
(11) 2(a − b + 1) = 0,
(12) 2(a + b + 2) = 0,
(13) 2(a − b − 2) = 0.

Proof.

(1) 2a − 4b = 0, i.e., 8 = 64, i.e., 56 = 0, i.e., n | 56 and hence n ∈ {7, 14, 28, 56}
and the possible values of b are 4, 11, 25, 25, respectively. In all these cases 2b �= 4,
which is a contradiction.

(2) 2a + 4b = 0, i.e., 8 = −64, i.e., 72 = 0, i.e., n | 72 and hence n ∈ {9, 18, 36, 72}
and the possible values of b are 7, 13, 25, 49. But the relation holds only if n = 9
and b = 7.

(3) 4a − 2b = 0, 8 = 64, i.e., 56 = 0, i.e., n | 56 and hence n ∈ {7, 14, 28, 56} and
the possible values of (a, b) are (2, 4), (9, 11), (9, 25), (9, 25), respectively. But the
relation holds only if n ∈ {7, 14}.
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(4) 4a + 2b = 0, i.e., 64 = −8, i.e., 72 = 0, i.e., n | 72 and hence n ∈ {9, 18, 36, 72}
and the possible values of (a, b) are (4, 7), (7, 13), (13, 25), (25, 49), respectively.
But the relation holds only if n = 18.

(5) 2a − 2b = 0, i.e., 2a ≡ 2(mod n). If n being odd, then a = 1, which is impossible.
Let n be even and n = 2m. Then we have m | a−1, i.e., a = mt +1, for some t ∈ Z.
As a �= 1, so a = m + 1, i.e., a3 − 1 = m(m2 + 3m + 3). Note that irrespective of
m is odd or even, (m2 + 3m + 3) is odd, say (2s + 1), for some s ∈ Z. So we have
a3 − 1 = m(2s + 1), i.e., a3 − 1 ≡ m(mod n), which is a contradiction.

(6) The proof is the same as (5)
(7) 4a + 4 = 0, i.e., 4a ≡ −4(mod n). If n is odd, then a = −1, which is impossible.

If n is even and n = 2m, then we have m | 2(a + 1), i.e., 2a = mt − 2, for some
t ∈ Z. As 2a �= −2, so 2a = m − 2, i.e., 8(a3 − 1) = m(m2 − 6m + 12) − 16.
If m is even, then (m2 − 6m + 12) is even, say 2u, for some u ∈ Z. So we have
8(a3 − 1) = 2mu − 16, i.e., 8(a3 − 1) ≡ −16(mod n), which is a contradiction.
If m is odd, then (m2 − 6m + 12) is odd, say 2v + 1, for some v ∈ Z. So we have
8(a3−1) = m(2v+1)−16, i.e., 8(a3−1) ≡ m−16(mod n), which is a contradiction
as m �= 16.

(8) 2a + 6 = 0, i.e., 8 = −216, i.e., 224 = 0, i.e., n | 224, i.e., n ∈
{7, 14, 28, 56, 112, 224}. However, in all these cases, the possible values of a does
not allow 2a + 6 = 0.

(9) 2(a + b − 1) = 0, i.e., 2(1 + a − b) = 0, i.e., 4a = 0, contradicting that a is a unit.
(10) The proof is the same as (9).
(11) 2(a − b+ 1) = 0, i.e., 2(1 − a + b) = 0, i.e., 2(a − b+ 1) + 2(1 − a + b) = 0, i.e.,

4 = 0, which is a contradiction.
(12) 2(a+b+2) = 0, i.e., 2(1+a+2b) = 0, i.e., 4(a+b+2)−2(1+a+2b) = 0, i.e., 2(a+

3) = 0, i.e., 8 = −216, i.e., 224 = 0, i.e., n | 224, i.e., n ∈ {7, 14, 28, 56, 112, 224}.
In all these cases, 2a + 6 �= 0, which is a contradiction.

(13) 2(a − b − 2) = 0, i.e., 2(1 − a − 2b) = 0, i.e., 2(a − b − 2) + 2(1 − a − 2b) = 0,
i.e., 6b + 2 = 0, i.e., 2a + 6 = 0. The rest of the proof is the same as (8). �

Theorem 3.1. If ϕ ∈ G and ϕ((0, 0)) = (0, 0), ϕ((b, 1)) = (1, 2), ϕ((1, 2)) = (−1, 2)

then n = 7 or 14.

Proof. Consider the cycleC : (0, 0) ∼ (b, 1) ∼ (a+b, 2) ∼ (1+a+b, 0) ∼ (a+1, 1) ∼
(1, 2) ∼ (0, 0). Then ϕ(C) : (0, 0) ∼ (1, 2) ∼ ϕ((a + b, 2)) ∼ ϕ((1 + a + b, 0)) ∼
ϕ((a + 1, 1)) ∼ (−1, 2) ∼ (0, 0). As ϕ((a + b, 2)) ∼ (1, 2) and ϕ((0, 0)) = (0, 0), so
ϕ((a+b, 2)) ∈ {(2b, 0), (a±1, 1)}. Again, ϕ((a+1, 1)) ∼ (−1, 2) and ϕ((0, 0)) = (0, 0)

imply ϕ((a + 1, 1)) ∈ {(−2b, 0), (−a ± 1, 1)}. Also, ϕ((1 + a + b, 0)) ∼ ϕ((a + b, 2))

and ϕ((b, 1)) = (1, 2) imply

ϕ((1 + a + b, 0)) ∈ {(2a ± b, 1), (3, 2), (1 + 2b, 2), (b + a ± 1, 0),

(1 − 2b, 2), (b − a ± 1, 0)}. (1)

If ϕ((a + 1, 1)) = (−2b, 0), then ϕ((1 + a + b, 0)) ∼ ϕ((a + 1, 1)) and ϕ((1, 2)) =
(−1, 2)) imply

ϕ((1 + a + b, 0)) ∈ {(−3, 2), (−2a ± b, 1)}. (2)

From Equations (1) and (2), we have
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• either −3 = 3, i.e., 6 = 0, i.e., n = 6 which is impossible.
• or −3 = 1 + 2b, i.e., 2a + 4b = 0, which is possible only when n = 9 (by Lemma

3.1). However, direct SageMath computation for n = 9 shows that such ϕ does not
exist.

• or −3 = 1 − 2b, i.e., 2a − 4b = 0, which is impossible by Lemma 3.1.
• or −2a ± b = 2a ± b, i.e., 4a = 0 or 4a − 2b = 0 or 4a + 2b = 0. Though the

first one is impossible, the other two can hold only if n ∈ {7, 14, 18} (by Lemma 3.1).
However, direct SageMath computation for n = 7, 14 and 18 shows that such a ϕ does
not exist.

Hence ϕ((a + 1, 1)) �= (−2b, 0).
If ϕ((a + 1, 1)) = (−a + 1, 1), then ϕ((1 + a + b, 0)) ∼ ϕ((a + 1, 1)) and ϕ((1, 2)) =

(−1, 2) imply

ϕ((1 + a + b, 0)) ∈ {(−1 + 2b, 2), (−b + a ± 1, 0)}. (3)

From Equations (1) and (3), we have

• either −b+a±1 = b−a±1, i.e., 2(a−b) = 0 or 2(b−a+1) = 0 or 2(b−a−1) = 0,
all of which are impossible by Lemma 3.1.

• or −b + a ± 1 = b + a ± 1, i.e., 2b = 0 or2a − 2b = 0 or 2a + 2b = 0, all of which
are impossible by Lemma 3.1.

• or −1 + 2b = 3, i.e., 2a − 4b = 0, which is impossible by Lemma 3.1.
• or −1 + 2b = 1 + 2b, i.e., 2 = 0, which is a contradiction.
• or −1 + 2b = 1 − 2b, i.e., 4a − 2b = 0 which can hold only if n = 7 or 14. (by

Lemma 3.1.) However, direct SageMath computation for n = 7, 14 shows that such ϕ

does not exist.

Hence ϕ((a + 1, 1)) �= (−a + 1, 1).
If ϕ((a + 1, 1)) = (−a − 1, 1), then ϕ((1 + a + b, 0)) ∼ ϕ((a + 1, 1)) and ϕ((1, 2)) =

(−1, 2)) imply

ϕ((1 + a + b, 0)) ∈ {(−1 − 2b, 2), (−b − a ± 1, 0)} (4)

From Equations (1) and (4), we have

• either −1 − 2b = 3, i.e., 2a + 4b = 0, which can hold only if n = 9 (by Lemma 3.1).
However, direct SageMath computation rules out this possibility.

• or −1 − 2b = 1 + 2b, i.e., 4a + 2b = 0, which can hold only if n = 18. (by Lemma
3.1). However, direct SageMath computation rules out this possibility.

• or −1 − 2b = 1 − 2b, i.e., 2 = 0, which is a contradiction.
• or −b− a ± 1 = b− a ± 1, i.e., 2b = 0, or 2a + 2b = 0, or 2a − 2b = 0 all of which

are impossible by Lemma 3.1.
• or −b − a ± 1 = b + a ± 1, i.e., 2(b + a − 1) = 0 or 2(b + a) = 0 (which are

impossible by Lemma 3.1), but 2(1 + a + b) = 0 may hold.

Therefore we have ϕ((1 + a + b, 0)) = (1 + a + b, 0), ϕ((a + 1, 1)) = (−a − 1, 1),
ϕ((a + b, 2)) = (a + 1, 1) with 2(a + b + 1) = 0.

Consider the cycle C ′ : (1 + a + b, 0) ∼ (a + 1, 1) ∼ (1 + 2b, 2) ∼ (2a, 0) ∼
(b + 2, 1) ∼ (a + b, 2) ∼ (1 + a + b, 0). Then ϕ(C ′) : (1 + a + b, 0) ∼ (−a − 1, 1) ∼
ϕ((1 + 2b, 2)) ∼ ϕ((2a, 0)) ∼ ϕ((b + 2, 1)) ∼ (a + 1, 1) ∼ (1 + a + b, 0). Now
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ϕ((b + 2, 1)) ∼ (a + 1, 1), ϕ((1 + a + b, 0)) = (1 + a + b, 0) and ϕ((b, 1)) = (1, 2)

imply ϕ((b+ 2, 1)) ∈ {(1 + 2b, 2), (b + a − 1, 0)}. Again ϕ((1 + 2b, 2)) ∼ (−a − 1, 1),
ϕ((a + b + 1, 0)) = (a + b + 1, 0) = (−a − b − 1, 0) and ϕ((1, 2)) = (−1, 2) imply
ϕ((1 + 2b, 2)) ∈ {(−1 − 2b, 2), (−b − a + 1, 0)}. Also ϕ((2a, 0)) ∼ ϕ((b + 2, 1)) and
ϕ((a + b, 2)) = (a + 1, 1) imply

ϕ((2a, 0)) ∈ {(b + 2a ± b, 0), (a + 3, 1), (a + 1 − 2b, 1), (1 + b − a ± 1, 2)}.
(5)

Let ϕ((1+2b, 2)) = (−1−2b, 2). Then ϕ((2a, 0)) ∼ ϕ((1+2b, 2)) and ϕ((a+1, 1)) =
(−a − 1, 1) imply

ϕ((2a, 0)) ∈ {(−b − 2a ± b, 0), (−a − 3, 1). (6)

From Equations (5) and (6), we have

• either −b − 2a ± b = b + 2a ± b, i.e., 4a + 4 = 0 or 4a = 0 (which are impossible
by Lemma 3.1) or 4a + 2b = 0, which can hold only if n = 18. However, direct
SageMath computation rules out this possibility.

• or −a − 3 = a + 3, i.e., 2a + 6 = 0, which is impossible by Lemma 3.1.
• or −a − 3 = a + 1 − 2b, i.e., 2(a − b + 2) = 0. Also, we had 2(a + b + 1) = 0

previously. This yields 2a = 4, i.e., n = 7 or 14.

Hence ϕ((1 + 2b, 2)) = (−1 − 2b, 2) is possible only if n = 7 or 14. Moreover, direct
SageMath computation for n = 7 and 14 confirms the possibility.

Let ϕ((1 + 2b, 2)) = (−b − a + 1, 0). Then ϕ((2a, 0)) ∼ ϕ((1 + 2b, 2)) and ϕ((a +
1, 1)) = (−a − 1, 1) imply

ϕ((2a, 0)) ∈ {(−a − 1 + 2b, 1), (−1 − b + a ± 1, 2). (7)

From Equations (5) and (7), we have

• either −1 − b + a ± 1 = 1 + b − a ± 1, i.e., 2(b − a + 1) = 0 or 2(a − b) = 0 or
2(a − b − 2) = 0, all of which are impossible by Lemma 3.1.

• or −a − 1 + 2b = a + 1 − 2b, i.e., 2(a + 1 − 2b) = 0, i.e., 2(a + b − 2) = 0.
Hence combining 2(a + b + 1) = 0 and 2(a + b − 2) = 0, we have 6 = 0, which is
impossible.

• or −a − 1 + 2b = a + 3, i.e., 2(a − b + 2) = 0. Therefore, from 2(a + b + 1) = 0
and 2(a − b + 2) = 0, we have 2a = 4, i.e., n = 7 or 14.

Hence ϕ((1 + 2b, 2)) = (−b− a + 1, 0) may be possible if n = 7 or 14. Moreover, direct
SageMath computation for n = 7 and 14 confirms the possibility.

Therefore, for ϕ ∈ G, we can have ϕ((0, 0)) = (0, 0), ϕ((b, 1)) = (1, 2), ϕ((1, 2)) =
(−1, 2) only if n = 7 or 14. �

Theorem 3.2. If ϕ ∈ G and ϕ((0, 0)) = (0, 0), ϕ((b, 1)) = (1, 2), then ϕ((1, 2)) �=
(−b, 1).

Proof. Suppose that ϕ ∈ G and ϕ((0, 0)) = (0, 0), ϕ((b, 1)) = (1, 2) and ϕ((1, 2)) =
(−b, 1). Consider the cycleC : (0, 0) ∼ (b, 1) ∼ (a+b, 2) ∼ (1+a+b, 0) ∼ (a+1, 1) ∼
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(1, 2) ∼ (0, 0). Then ϕ(C) : (0, 0) ∼ (1, 2) ∼ ϕ((a + b, 2)) ∼ ϕ((1 + a + b, 0)) ∼
ϕ((a + 1, 1)) ∼ (−b, 1) ∼ (0, 0). As ϕ((a + b, 2)) ∼ (1, 2) and ϕ((0, 0)) = (0, 0), then
ϕ((a+b, 2)) ∈ {(2b, 0), (a±1, 1)}. Again, ϕ((a+1, 1)) ∼ (−b, 1) and ϕ((0, 0)) = (0, 0)

imply ϕ((a + 1, 1)) ∈ {(−2, 0), (−a ± b, 2)}. Now as ϕ((1 + a + b, 0)) ∼ ϕ((a + b, 2))

and ϕ((b, 1)) = (1, 2), we have

ϕ((1 + a + b, 0)) ∈ {(2a ± b, 1), (3, 2), (1 + 2b, 2), (b + a ± 1, 0),

(1 − 2b, 2), (b − a ± 1, 0)}. (8)

Depending upon the value of ϕ((a + 1, 1)), one of the following three cases must hold,
namely:

Case A: ϕ((a + 1, 1)) = (−2, 0)),
Case B: ϕ((a + 1, 1)) = (−a − b, 2)) or
Case C: ϕ((a + 1, 1)) = (−a + b, 2)).

However, before resolving these three cases, we prove a claim which will be crucial in
the following proof.

Claim. ϕ((−1 − a − b, 0)) ∈ {(−2a ± b, 1), (−3, 2), (−1 + 2b, 2), (−b + a ± 1, 0),

(−1 − 2b, 2), (−b − a ± 1, 0), (2a ± 1, 2), (3b, 1), (b + 2, 1), (1 + a ± b, 0), (b −
2, 1), (1 − a ± b, 0)}.
Proof of Claim. As (−b, 1) ∼ (0, 0) and (−1, 2) ∼ (0, 0), we have ϕ((−b, 1)), ϕ((−1, 2))

∈ {(b, 1), (−1, 2)}.
Case 1: Let ϕ((−b, 1)) = (−1, 2) and ϕ((−1, 2)) = (b, 1). Consider the cycle C ′ :
(0, 0) ∼ (−b, 1) ∼ (−a − b, 2) ∼ (−1 − a − b, 0) ∼ (−a − 1, 1) ∼ (−1, 2) ∼ (0, 0),
then ϕ(C ′) : (0, 0) ∼ (−1, 2) ∼ ϕ((−a − b, 2)) ∼ ϕ((−1 − a − b, 0)) ∼ ϕ((−a −
1, 1)) ∼ (b, 1) ∼ (0, 0). As ϕ((−a − b, 2)) ∼ (−1, 2) and ϕ((0, 0)) = (0, 0) then
ϕ((−a−b, 2)) ∈ {(−2b, 0), (−a±1, 1)}. ϕ((−a−1, 1)) ∼ (b, 1) and ϕ((0, 0)) = (0, 0)

imply ϕ((−a − 1, 1)) ∈ {(2, 0), (a ± b, 2)}. Now ϕ((−1 − a − b, 0)) ∼ ϕ((−a − b, 2))

and ϕ((−b, 1)) = (−1, 2) imply

ϕ((−1−a−b, 0)) ∈ {(−2a ± b, 1), (−3, 2), (−1+2b, 2), (−b + a ± 1, 0),

(−1 − 2b, 2), (−b − a ± 1, 0)}. (9)

Case 2: Let ϕ((−b, 1)) = (b, 1) and ϕ((−1, 2)) = (−1, 2). Consider the cycle C ′ :
(0, 0) ∼ (−b, 1) ∼ (−a − b, 2) ∼ (−1 − a − b, 0) ∼ (−a − 1, 1) ∼ (−1, 2) ∼ (0, 0).
Then ϕ(C ′) : (0, 0) ∼ (b, 1) ∼ ϕ((−a − b, 2)) ∼ ϕ((−1 − a − b, 0)) ∼ ϕ((−a −
1, 1)) ∼ (b, 1) ∼ (0, 0). As ϕ((−a − b, 2)) ∼ (b, 1) and ϕ((0, 0)) = (0, 0), then
ϕ((−a − b, 2)) ∈ {(−2, 0), (a ± b, 2)}. ϕ((−a − 1, 1)) ∼ (−1, 2) and ϕ((0, 0)) = (0, 0)

imply ϕ((−a−1, 1)) ∈ {(−2b, 0), (−a±1, 1)}. Now ϕ((−1−a−b, 0)) ∼ ϕ((−a−b, 2))

and ϕ((−b, 1)) = (b, 1) imply

ϕ((−1 − a − b, 0)) ∈ {(2a ± 1, 2), (3b, 1), (b + 2, 1), (1 + a ± b, 0),

(b − 2, 1), (1 − a ± b, 0)}. (10)

Combining Cases (1) and (2), the claim follows.
We now turn towards the three cases mentioned earlier.
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Case A: If ϕ((a+1, 1)) = (−2, 0), then ϕ((1+a+b, 0)) ∼ ϕ((a+1, 1)) and ϕ((1, 2)) =
(−b, 1) imply

ϕ((1 + a + b, 0)) ∈ {(−3b, 1), (−2a ± 1, 2)}. (11)

From Equations (8) and (11), we have

• either −3b = 2a ± b, i.e., −2b = 2a or 2b = −4. By Lemma 3.1, this can hold only
if n = 9. However, direct SageMath computation for n = 9 shows that such a ϕ does
not exist.

• or −2a ± 1 = 3, i.e., −2a = 4 or −2a = 2, i.e., 4a + 2b = 0 or 2a + 2b = 0. By
Lemma 3.1, 2a + 2b = 0 can not hold and 4a + 2b = 0 can hold only if n = 18.
However, direct SageMath computation for n = 18 shows that such a ϕ does not exist.

• or −2a ± 1 = 1 − 2b, i.e., 2a = 2b, 2(b − a − 1) = 0, both of which are impossible
by Lemma 3.1.

• or −2a ± 1 = 1 + 2b, i.e., 2a + 2b = 0 (which is impossible by Lemma 3.1) but

2a + 2b + 2 = 0 may hold. (12)

When ϕ((a+1, 1)) = (−2, 0), ϕ((1+a+b, 0)) = (1+2b, 2), ϕ((a+b, 2)) = (a+1, 1),
then we have Equation (12). As 2a + 2b + 2 = 0, i.e., a + b + 1 = −a − b − 1, then
ϕ((−1 − a − b, 0)) = (1 + 2b, 2). But from Equations (9) and (10), we have ϕ((−1 −
a − b, 0)) �= (1 + 2b, 2), which is a contradiction. Hence ϕ((a + 1, 1)) �= (−2, 0) and
Case A can not hold.

Case B: If ϕ((a + 1, 1)) = (−a − b, 2), then ϕ((1 + a + b, 0)) ∼ ϕ((a + 1, 1)) and
ϕ((1, 2)) = (−b, 1)) imply

ϕ((1 + a + b, 0)) ∈ {(−b − 2, 1), (−1 − a ± b, 0)}. (13)

From Equations (8) and (13), we have as follows:

Case B(1): −b− 2 = 2a± b, i.e., 2a+ 2b = 0, which is impossible by the Lemma 3.1, or

2a + 2b + 2 = 0 may hold. (14)

Case B(2): −1 − a ± b = b + a ± 1, i.e., 2a + 2b = 0 or 2a = 0 (which are impossible
by Lemma 3.1), but −1 − a − b = b + a + 1, i.e.,

2a + 2b + 2 = 0 may hold. (15)

Case B(3): −1−a±b = b−a±1. This gives rise to four equations, out of which three are
impossible by Lemma 3.1, namely 2 = 0, 2b = 0 and 2a + 2b = 0. The only possibility
which remains is −1 − a + b = b − a − 1 and it is an identity.

So assuming this identity, we have ϕ((a + 1, 1)) = (−a − b, 2), ϕ((a + b + 1, 0)) =
(b−a−1, 0) and ϕ((a+b, 2)) = (a−1, 1). Similarly, we can show that ϕ((a−1, 1)) =
(−a + b, 2), ϕ((b − a + 1, 0)) = (b + a − 1, 0) and ϕ((a − b, 2)) = (a + 1, 1). Now
ϕ((a+b, 2)) = (a−1, 1), ϕ(((a−b, 2)) = (a+1, 1) and ϕ((2, 0)) ∼ ϕ((b, 1)) = (1, 2)

imply ϕ((2, 0)) = (2b, 0).
Now, consider the cycle C2 : (a + b + 1, 0) ∼ (a + 1, 1) ∼ (1, 2) ∼ (2b, 0) ∼

(2a+b, 1) ∼ (a+b+ 2, 2) ∼ (a+b+ 1, 0). So ϕ(C2) : (b−a− 1, 0) ∼ (−a−b, 2) ∼
(−b, 1) ∼ ϕ((2b, 0)) ∼ ϕ((2a + b, 1)) ∼ ϕ((a + b + 2, 2)) ∼ (b − a − 1, 0).
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Again ϕ((0, 0)) = (0, 0), ϕ((a + 1, 1)) = (−a − b, 2) and ϕ((2b, 0)) ∼ (−b, 1) imply
ϕ((2b, 0)) ∈ {(−a + b, 2), (−2, 0)} and ϕ(((a + b, 2)) = (a − 1, 1), ϕ((a + 1, 1)) =
(−a − b, 2) and ϕ((a + b + 2, 2)) ∼ (b − a − 1, 0) imply ϕ((a + b + 2, 2)) ∈ {(−b −
a + 2, 2), (−1 − 2b+ a, 1)}. ϕ((1, 2)) = (−b, 1) and ϕ((2a + b, 1)) ∼ ϕ((2b, 0)) imply

ϕ((2a + b, 1))∈{(−1 + a ± b, 0), (−b + 2, 1), (−3b, 1), (−2a ± 1, 2). (16)

Case B(3)(a): If ϕ((a+b+2, 2)) = (−b−a+2, 2), then ϕ((a+b+1, 0)) = (b−a−1, 0)

and ϕ((2a + b, 1)) ∼ ϕ((a + b + 2, 2)) imply

ϕ((2a + b, 1)) ∈ {(a − 1 + 3b, 0), (−1 − b + 2a ± 1, 1)}. (17)

From Equations (16) and (17), we have

• either −1−b+2a±1 = −b+2, which implies either 2a−2b = 0 which is impossible
by Lemma 3.1 or 4a− 2b = 0 which is possible only for n = 7 or 14. However, direct
SageMath computation for n = 7 and 14 shows that such a ϕ does not exist.

• or a − 1 + 3b = −1 − a ± b, i.e., 2a + 4b = 0 which is possible only for n = 9
or 2a + 2b = 0, which is impossible by Lemma 3.1. And finally direct SageMath
computation for n = 9 shows that such ϕ does not exist.

• or −1 − b + 2a ± 1 = −3b, i.e., 2a + 2b = 0 or 2a + 2b − 2 = 0, both of which are
impossible by Lemma 3.1.

Hence ϕ((a + b + 2, 2)) �= (−b − a + 2, 2).

Case B(3)(b): If ϕ((a+b+2, 2)) = (a−1−2b, 1), then ϕ((a+b+1, 0) = (b−a−1, 0)

and ϕ((2a + b, 1)) ∼ ϕ((a + b + 2, 2)) imply

ϕ((2a + b, 1)) ∈ {(b − a − 3, 0), (1 − b − 2a ± b, 2)}. (18)

From Equations (16) and (18), we have

• either b − a − 3 = −1 + a ± b, i.e., 2a + 2b = 0 or 2a − 2b + 2 = 0, both of which
are impossible by Lemma 3.1.

• or 1 − b − 2a ± b = −2a ± 1. These give rise to four equations, out of which three
are impossible, by Lemma 3.1, namely 2 = 0, 2b = 0 and 2a − 2b = 0. The only
possibility which remains is 1 − b − 2a + b = −2a + 1 and it is an identity.

So assuming this to be the case, we have ϕ((2b, 0)) = (−2, 0), ϕ((a + b + 2, 2)) =
(a − 1 − 2b, 1) and ϕ((2a + b, 1)) = (−2a + 1, 2).

Now consider the cycle C3 : (2b, 0) ∼ (2a + b, 1) ∼ (a + b + 2, 2) ∼ (1 + a +
3b, 0) ∼ (3a + 1, 1) ∼ (3, 2) ∼ (2b, 0). So ϕ(C3) : (−2, 0) ∼ (−2a + 1, 2) ∼
(a − 1 − 2b, 1) ∼ ϕ((1 + a + 3b, 0)) ∼ ϕ((3a + 1, 1)) ∼ ϕ((3, 2)) ∼ (−2, 0). Then
ϕ((2b, 0)) = (−2, 0), ϕ((2a + b, 1)) = (−2a + 1, 2) and ϕ((3, 2)) ∼ (−2, 0) imply
ϕ((3, 2)) ∈ {(−3b, 1), (−2a − 1, 2)}. Again ϕ((2a + b, 1)) = (−2a + 1, 2), ϕ((a +
b + 1, 0)) = (b − a − 1, 0) and ϕ((1 + a + 3b, 0)) ∼ (a − 1 − 2b, 1) imply ϕ((1 +
a + 3b, 0)) ∈ {(1 − 2a − 2b, 2), (b − a − 3, 0)}. Finally ϕ((2b, 0)) = (−2, 0) and
ϕ((3a + 1, 1)) ∼ ϕ((3, 2)) imply

ϕ((3a + 1, 1)) ∈ {(−4, 0), (−3a ± b, 2), (−2 − 2b, 0), (−2b − a ± 1, 1)}.
(19)



Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:28 Page 11 of 17    28 

Case B(3)(b)(1): If ϕ((1 + a + 3b, 0)) = (1 − 2a − 2b, 2), then ϕ((3a + 1, 1)) ∼
ϕ((1 + a + 3b, 0)) implies

ϕ((3a + 1, 1)) ∈ {(b − 2a − 2 ± b, 0), (a − 2 − 2b ± 1, 1)}. (20)

From Equations (19) and (20), we have

• either b − 2a − 2 ± b = −4, i.e., 2a − 2b = 0 or 2a − 2b − 2 = 0, both of which are
impossible by Lemma 3.1.

• or b − 2a − 2 ± b = −2 − 2b, i.e., 2a − 2b = 0 or 2a − 4b = 0, both of which are
impossible by Lemma 3.1.

• or a − 2 − 2b ± 1 = −2b − a ± 1, i.e. 2a − 2b = 0 or 2a = 0 or 4a − 2b = 0. By
Lemma 3.1, the first two are impossible and the third one may hold only for n = 7 or
14. However, direct SageMath computation for n = 7 and 14 shows that such a ϕ does
not exist.

So we have ϕ((1 + a + 3b, 0)) �= (1 − 2b − 2a, 2).

Case B(3)(b)(2): If ϕ((1 + a + 3b, 0)) = (b − a − 3, 0), then ϕ((3a + 1, 1)) ∼ ϕ((1 +
a + 3b, 0)) implies

ϕ((3a + 1, 1)) ∈ {(a − 1 − 3b ± b, 1), (b − 1 − 3a ± 1, 2)}. (21)

From Equations (19) and (21), we have

• either a− 1 − 3b± b = −2b−a± 1, i.e., 2a = 0 or 2a− 2b = 0 or 2a− 2b− 2 = 0,
all of which are impossible by Lemma 3.1.

• or 1 − b − 3a ± 1 = −3a ± b. Out of the four relations that we get, three of them
(namely, 2 = 0, 2a − 2b = 0 and 2b = 0) are invalid, by Lemma 3.1 and the fourth is
an identity, i.e., 1 − b − 3a − 1 = −3a − b.

So we have ϕ((3a+1, 1)) = (−3a−b, 2), ϕ((3, 2)) = (−3b, 1), ϕ((a+1+3b, 0)) =
(b − a − 3, 0). Similarly we can show that ϕ((3a − 1, 1)) = (−3a + b, 2) and ϕ((−a +
1 + 3b, 0)) = (a + b − 3, 0).

Now ϕ((2b, 0)) = (−2, 0), ϕ((3a + 1, 1)) = (−3a − b, 2), ϕ((3a − 1, 1)) = (−3a +
b, 2) and ϕ((4b, 0)) ∼ ϕ((3, 2)) = (−3b, 1) imply ϕ((4b, 0)) = (−4, 0).

Proceeding in this way, we can show that ϕ((2kb, 0)) = (−2k, 0) for all k ∈ Z. So
we have ϕ((2, 0)) = (−2a, 0), where k = a, which is a contradiction as we have shown
earlier thatϕ((2, 0)) = (2b, 0) and 2b �= −2a. Therefore, ϕ((a+b+1, 0)) �= (b−a−1, 0).

Case B(1): When ϕ((a + 1, 1)) = (−a − b, 2), ϕ((1 + a + b, 0)) = (2a + b, 1),
ϕ((a + b, 2)) = (2b, 0), we have Equation (14). As 2a + 2b + 2 = 0, i.e., a + b + 1 =
−a − b − 1, then ϕ((−1 − a − b, 0)) = (2a + b, 1). But from Equations (9) and
(10), we have ϕ((−1 − a − b, 0)) �= (2a + b, 1), which is a contradiction. Hence
ϕ((1 + a + b, 0)) �= (2a + b, 1).

Case B(2): Now when ϕ((a + 1, 1)) = (−a − b, 2), ϕ((a + b + 1, 0)) = (a + b + 1, 0),
ϕ((a + b, 2)) = (a + 1, 1), then we have Equation (15). Consider the cycle C1 : (a + b+
1, 0) ∼ (a+1, 1) ∼ (1+2b, 2) ∼ (2a, 0) ∼ (b+2, 1) ∼ (a+b, 2) ∼ (a+b+1, 0). Then
ϕ(C1) : (a + b + 1, 0) ∼ (−a − b, 2) ∼ ϕ((1 + 2b, 2)) ∼ ϕ((2a, 0)) ∼ ϕ((b + 2, 1)) ∼
(a + 1, 1) ∼ (a + b + 1, 0). Now ϕ((a + b + 1, 0)) = (a + b + 1, 0) = (−a − b − 1, 0),
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ϕ((1, 2)) = (−b, 1) and ϕ((1 + 2b, 2)) ∼ (−a − b, 2) imply ϕ((1 + 2b, 2)) ∈ {(−1 −
a + b, 0), (−b− 2, 1)}. Again, ϕ((b, 1)) = (1, 2), ϕ((a + b+ 1, 0)) = (a + b+ 1, 0) and
ϕ((b + 2, 1)) ∼ ϕ((a + 1, 1)) imply ϕ((b + 2, 1)) ∈ {(b + a − 1, 0), (1 + 2b, 2)}. Also,
ϕ((a + 1, 1)) = (−a − b, 2) and ϕ((2a, 0)) ∼ ϕ((1 + 2b, 2)) imply

ϕ((2a, 0)) ∈ {(−b − 1 + a ± b, 1), (−a − b + 2, 2), (−1 − 2a ± 1, 0),

(−a − 3b, 2)}. (22)

Case B(2)(a): Now if ϕ((b+ 2, 1)) = (b+ a − 1, 0), then ϕ((a + b, 2)) = (a + 1, 1) and
ϕ((2a, 0)) ∼ ϕ((b + 2, 1)) imply

ϕ((2a, 0)) ∈ {(a + 1 − 2b, 1), (1 + b − a ± 1, 2)}. (23)

From Equations (22) and (23), we have

• either 1 + b − a ± 1 = −a − b + 2, i.e., 2b = 0 or 2a − 2b = 0, both of which are
impossible by Lemma 3.1.

• or 1+b−a±1 = −a−3b, i.e., 4b = 0 which is impossible or 4a+2b = 0, which, by
Lemma 3.1, holds only if n = 18. However, direct SageMath computation for n = 18
shows that such a ϕ does not exist.

• or a + 1 − 2b = −b − 1 + a ± b, i.e., 2 = 0 or 2a − 2b = 0, both of which are
impossible by Lemma 3.1.

Hence ϕ((b + 2, 1)) �= (b + a − 1, 0).

Case B(2)(b): Now if ϕ((b + 2, 1)) = (1 + 2b, 2), then ϕ((a + b, 2)) = (a + 1, 1) and
ϕ((2a, 0)) ∼ ϕ((b + 2, 1)) imply

ϕ((2a, 0)) ∈ {(a + 3, 1), (b + 2a ± b, 0)}. (24)

From Equations (22) and (24), we have

• either a + 3 = −b − 1 + a ± b, i.e., 4 = 0 or 2a + 4b = 0, which, by Lemma 3.1,
can hold only if n = 9. However, direct SageMath computation for n = 9 shows that
such a ϕ does not exist.

• or b + 2a ± b = −1 − 2a ± 1, i.e., 2(a + b + 2) = 0 or 4a = 0 or 2a + 4b = 0 or
4a + 2b = 0. By Lemma 3.1, the first two are impossible and the next two can hold
only if n = 9 or 18. But those are also ruled out by SageMath computation.

Hence ϕ((b + 2, 1)) �= (1 + 2b, 2) and hence ϕ((a + 1, 1)) �= (−a − b, 2), i.e., Case B
can not hold.

Case C: If ϕ((a+1, 1)) = (−a+b, 2), then ϕ((1, 2)) = (−b, 1) and ϕ((a+b+1, 0)) ∼
ϕ((a + 1, 1)) imply

ϕ((1 + a + b, 0)) ∈ {(−b + 2, 1), (−1 + a ± b, 0)}. (25)

From Equations (8) and (25), we have

• either −b + 2 = 2a ± b, i.e., 2a − 2b = 0 or 2(a + b − 1) = 0, both of which are
impossible by Lemma 3.1.
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• or −1 + a ± b = b − a ± 1, i.e., 2a = 0 or 2a − 2b = 0 or 2(a − b − 1) = 0 and all
of them are ruled out by Lemma 3.1.

• or −1 + a ± b = b + a ± 1. This gives rise two four conditions, out of which three
(namely, 2 = 0, 2a + 2b = 0 and 2b = 0) are ruled out by Lemma 3.1 and the fourth
one is the identity −1 + a + b = b + a − 1.

So we have ϕ((a + b + 1, 0)) = (a − 1 + b, 0), ϕ(((a + b, 2)) = (a + 1, 1) and
ϕ((a + 1, 1)) = (−a + b, 2).

Similarly we can show that ϕ((−a + b + 1, 0)) = (−a − 1 + b, 0), ϕ(((a − b, 2)) =
(a − 1, 1) and ϕ((a − 1, 1)) = (−a − b, 2).

Now ϕ((a+b, 2)) = (a+1, 1), ϕ(((a−b, 2)) = (a−1, 1) and ϕ((2, 0)) ∼ ϕ((b, 1)) =
(1, 2) imply ϕ((2, 0)) = (2b, 0).

Consider the cycle C2 : (a+b+1, 0) ∼ (a+1, 1) ∼ (1, 2) ∼ (2b, 0) ∼ (2a+b, 1) ∼
(a + b + 2, 2) ∼ (a + b + 1, 0). So ϕ(C2) : (a − 1 + b, 0) ∼ (−a + b, 2) ∼ (−b, 1) ∼
ϕ((2b, 0)) ∼ ϕ((2a+b, 1)) ∼ ϕ((a+b+2, 2)) ∼ (a−1+b, 0). Then ϕ((0, 0)) = (0, 0),
ϕ((a + 1, 0)) = (−a + b, 2) and ϕ((2b, 0)) ∼ (−b, 1) imply ϕ((2b, 0)) ∈ {(−a −
b, 2), (−2, 0)}. Again, ϕ(((a + b, 2)) = (a + 1, 1), ϕ((a + 1, 1)) = (−a + b, 2) and
ϕ((a+b+2, 2)) ∼ (a−1+b, 0) imply ϕ((a+b+2, 2)) ∈ {(b−a+2, 2), (1−2b+a, 1)}.
Also, ϕ((1, 2)) = (−b, 1) and ϕ((2a + b, 1)) ∼ ϕ((2b, 0)) imply

ϕ((2a + b, 1)) ∈ {(−1 − a ± b, 0), (−b − 2, 1), (−3b, 1), (−2a ± 1, 2)}.
(26)

Case C(1): If ϕ((a + b+ 2, 2)) = (b− a + 2, 2), then ϕ((a + b+ 1, 0)) = (a + b− 1, 0)

and ϕ((2a + b, 1)) ∼ ϕ((a + b + 2, 2)) imply

ϕ((2a + b, 1)) ∈ {(a − 1 + 3b, 0), (1 − b + 2a ± 1, 1)}. (27)

From Equations (26) and (27), we have

• either 1 − b + 2a ± 1 = −b − 2, i.e., 2a + 2b = 0 or 4a + 2b = 0. By Lemma 3.1,
the first is an impossibility and the second one can hold only if n = 18. However, that
is also ruled out by SageMath computation for n = 18.

• or a − 1 + 3b = −1 − a ± b, i.e., 2a + 2b = 0 or 2a + 4b = 0. By Lemma 3.1, the
first is an impossibility and the second one can hold only if n = 9. However, that is
also ruled out by SageMath computation for n = 9.

• or 1 − b + 2a ± 1 = −3b, i.e., 2a + 2b = 0, which is impossible by Lemma 3.1 but,

2a + 2b + 2 = 0 may hold. (28)

When ϕ((a + b + 1, 0)) = (a − 1 + b, 0), ϕ(((a + b, 2)) = (a + 1, 1) and
ϕ((a + 1, 1)) = (−a + b, 2), then we have Equation (28). As 2a + 2b + 2 = 0, i.e.,
a+b+1 = −a−b−1, then ϕ((−1−a−b, 0)) = (a−1+b, 0). But from Equations (9)
and (10), we have ϕ((−1 − a − b, 0)) �= (a − 1 + b, 0), which is a contradiction. Hence
ϕ((a + b + 2, 2)) �= (b − a + 2, 2).

Case C(2): If ϕ((a + b+ 2, 2)) = (a + 1 − 2b, 1), then ϕ((a + b+ 1, 0) = (a − 1 + b, 0)

and ϕ((2a + b, 1)) ∼ ϕ((a + b + 2, 2)) imply

ϕ((2a + b, 1)) ∈ {(b + a − 3, 0), (1 + b − 2a ± b, 2)}. (29)

From Equations (26) and (29), we have
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• either b + a − 3 = −1 − a ± b, i.e., 2a − 2b = 0 or 2a + 2b − 2 = 0, both of which
are impossible by Lemma 3.1.

• or 1 + b − 2a ± b = −2a ± 1. This gives rise to four conditions, out of which three,
namely 2b = 0, 2 − 0 and 2a + 2b = 0, are ruled out, by Lemma 3.1 and the fourth
one is the identity 1 + b − 2a − b = −2a + 1.

So we have ϕ((2a+b, 1)) = (−2a+1, 2). Also previously, we had ϕ((2b, 0)) = (−2, 0)

and ϕ((a + b + 2, 2)) = (1 − 2b + a, 1).
Now consider the cycle C3 : (2b, 0) ∼ (2a + b, 1) ∼ (a + b + 2, 2) ∼ (1 + a +

3b, 0) ∼ (3a + 1, 1) ∼ (3, 2) ∼ (2b, 0). So ϕ(C3) : (−2, 0) ∼ (−2a + 1, 2) ∼
(1 + a − 2b, 1) ∼ ϕ((1 + a + 3b, 0)) ∼ ϕ((3a + 1, 1)) ∼ ϕ((3, 2)) ∼ (−2, 0). Now,
ϕ((2b, 0)) = (−2, 0), ϕ((2a + b, 1)) = (−2a + 1, 2) and ϕ((3, 2)) ∼ (−2, 0) imply
ϕ((3, 2)) ∈ {(−3b, 1), (−2a − 1, 2)}. Again ϕ((2a + b, 1)) = (−2a + 1, 2), ϕ((a + b +
1, 0)) = (a+b−1, 0) and ϕ((1+a+3b, 0)) ∼ (1+a−2b, 1) imply ϕ((1+a+3b, 0)) ∈
{(2b+1−2a, 2), (a+b−3, 0)}. Also, ϕ((2b, 0)) = (−2, 0) and ϕ((3a+1, 1)) ∼ ϕ((3, 2))

imply

ϕ((3a + 1, 1)) ∈ {(−4, 0), (−3a ± b, 2), (−2 − 2b, 0), (−2b − a ± 1, 1)}.
(30)

Case C(2)(a): If ϕ((1 + a + 3b, 0)) = (2b + 1 − 2a, 2), then ϕ((3a + 1, 1)) ∼ ϕ((1 +
a + 3b, 0)) implies

ϕ((3a + 1, 1)) ∈ {(2a + b − 2 ± b, 0), (2 + a − 2b ± 1, 1)}. (31)

From Equations (30) and (31), we have

• either 2+a−2b±1 = −2b−a±1, i.e. 2a+2b = 0 or 2a = 0 (which are impossible
by Lemma 3.1) or 4a + 2b = 0 which can hold only if n = 18. But direct SageMath
computation for n = 18 ruled out this case.

• or 2a + b − 2 ± b = −2 − 2b, i.e., 2a + 2b = 0 (impossible by Lemma 3.1) or
2a + 4b = 0, which can hold only if n = 9. But direct SageMath computation ruled
out this possibility.

• or 2a + b − 2 ± b = −4, i.e., 2a + 2b = 0, which is impossible by Lemma 3.1 but

2a + 2b + 2 = 0 may hold. (32)

Thus, if ϕ((a + b + 1, 0)) = (a − 1 + b, 0), ϕ(((a + b, 2)) = (a + 1, 1) and ϕ((a +
1, 1)) = (−a + b, 2) holds, then we have 2a + 2b + 2 = 0. As 2a + 2b + 2 = 0, i.e.,
a + b + 1 = −a − b − 1, then ϕ((−1 − a − b, 0)) = (a − 1 + b, 0). But from Equations
(9) and (10), we have ϕ((−1−a−b, 0)) �= (a−1+b, 0), which is a contradiction. Thus,
Equation (32) does not hold.

So we have ϕ((1 + a + 3b, 0)) �= (2b + 1 − 2a, 2).

CaseC(2)(b): If ϕ((1+a+3b, 0)) = (a+b−3, 0), then ϕ((3a+1, 1)) ∼ ϕ((1+a+3b, 0))

implies

ϕ((3a + 1, 1)) ∈ {(1 + a − 3b ± b, 1), (b + 1 − 3a ± 1, 2)}. (33)

From Equations (30) and (33), we have
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• either 1 + a − 3b ± b = −2b − a ± 1, i.e., 2a = 0 or 2a + 2b = 0 or 2a − 2b = 0 or
2a − 2b + 2 = 0, all of which are impossible by Lemma 3.1.

• or b + 1 − 3a ± 1 = −3a ± b. This gives rise to four conditions, out of which three,
namely 2 = 0, 2a + 2b = 0 and 2b = 0, are ruled out, by Lemma 3.1 and fourth one
is the identity b + 1 − 3a − 1 = −3a + b.

So we have ϕ((3a+1, 1)) = (−3a+b, 2), ϕ((3, 2)) = (−3b, 1), ϕ((a+1+3b, 0)) =
(a + b − 3, 0).

Similarly we can show that ϕ((3a − 1, 1)) = (−3a − b, 2) and ϕ((−a + 1 + 3b, 0)) =
(−a + b − 3, 0).

Now ϕ((2b, 0)) = (−2, 0), ϕ((3a + 1, 1)) = (−3a + b, 2), ϕ((3a − 1, 1)) = (−3a −
b, 2) and ϕ((4b, 0)) ∼ ϕ((3, 2)) = (−3b, 1) imply ϕ((4b, 0)) = (−4, 0).

Proceeding this way, we can show that ϕ((2kb, 0)) = (−2k, 0), for all k ∈ Z. So we
have ϕ((2, 0)) = (−2a, 0), where k = a, which is a contradiction as we have shown that
ϕ((2, 0)) = (2b, 0) and 2b �= −2a. Therefore, we have ϕ((a + 1, 1)) �= (−a + b, 2) and
Case C can not hold.

As none of the cases A, B and C hold, the assumption that ϕ((1, 2)) = (−b, 1) is wrong.
Hence the lemma follows. �

Theorem 3.3. If ϕ ∈ G and ϕ((0, 0)) = (0, 0), ϕ((b, 1)) = (1, 2), ϕ((1, 2)) = (b, 1),
then n = 7 or 14.

Proof. The proof follows as in the proof of Theorem 3.1. For a detailed proof, one can see
the proof of Theorem 4.3 [2]. �

Now, the proof of Theorem 2.4 follows from Theorems 3.1, 3.2 and 3.3.

4. Open issues

In this paper, we proved the half-arc-transitivity of an infinite family of tetravalent Cayley
graphs. However, a few issues are still pending and can be topics for further research.

(1) Full Automorphism Group. It was shown that 〈α, β, γ 〉 is a subgroup of the full auto-
morphism group. It remains to be shown (as observed in SageMath) that G = 〈α, β, γ 〉
for n �= 7, 14.

(2) Structural Properties of�(n, a). We have shown that �(n, a) is Hamiltonian if n is odd.
However, the Hamiltonicity for even values of n is still unresolved. Similarly, other
structural properties like girth, diameter, domination number are few open issues.
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Appendix

Appendix A: Sage Code for �(n, a) for n = 7, a = 2:

n=7
a=2
b=mod(aˆ2,n)
A=list(var(’A_%d’ % i) for i in range(n))
B=list(var(’B_%d’ % i) for i in range(3))
C = cartesian_product([A, B])
V=C.list()
E=[]
Gamma=Graph()
Gamma.add_vertices(V)
for i in range(n):

for j in range(3):
E.append(((A[i],B[j]),(A[mod(a*i+1,n)],B[mod(j-1,3)])))
E.append(((A[i],B[j]),(A[mod(a*i-1,n)],B[mod(j-1,3)])))
E.append(((A[i],B[j]),(A[mod(b*i+b,n)],B[mod(j+1,3)])))
E.append(((A[i],B[j]),(A[mod(b*i-b,n)],B[mod(j+1,3)])))

Gamma.add_edges(E)
G=Gamma.automorphism_group()
for f in G:

if f((A[0],B[0]))==(A[0],B[0]) and f((A[b],B[1]))==(A[1],
B[2]) and
f((A[1],B[2]))==(A[n-1],B[2]):
print "sucess"

References

[1] Alspach B, Marusic D and Nowitz L, Constructing graphs which are 1/2-transitive, J. Austral.
Math. Soc. 56(3) (1994) 391–402

[2] Biswas S and Das A, A Family of Tetravalent Half-transitive Graphs, available at
arXiv:2008.07525

[3] Bouwer I Z, Vertex and edge-transitive but not 1-transitive graphs, Canad. Math. Bull. 13
(1970) 231–237

[4] Chen J, Li C H and Seress Á, A family of half-transitive graphs, Electronic J. Combinatorics
20(1) (2013) 56

[5] Cheng H and Cui L, Tetravalent half-arc-transitive graphs of order p5, Appl. Math. Computat.
332 (2018) 506–518

[6] Feng Y Q, Kwak J H, Wang X and Zhou J X, Tetravalent half-arc-transitive graphs of order
2pq , J. Algebraic Combinat. 33 (2011) 543–553

[7] Feng Y Q, Kwak J H, Xu M Y and Zhou J X, Tetravalent half-arc-transitive graphs of order
p4, European J. Combinat. 29(3) (2008) 555–567

[8] Feng Y Q, Wang K and Zhou C, Tetravalent half-arc-transitive graphs of order 4p, European
J. Combinat. 28 (2007) 726–733

[9] Godsil C and Royle G F, Algebraic Graph Theory, Graduate Texts in Mathematics, 207 (2001)
(Springer-Verlag)

[10] Holt D F, A Graph Which Is Edge Transitive But Not Arc Transitive, J. Graph Thery 5 (1981)
201–204

http://arxiv.org/abs/2008.07525


Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:28 Page 17 of 17    28 

[11] Marusic D, Hamiltonian Circuits in Cayley Graphs, Discrete Math. 46 (1983) 49–54
[12] Stein W et al., Sage Mathematics Software (Version 7.3), Release Date: 04.08.2016, http://

www.sagemath.org.
[13] Tutte W T, Connectivity in Graphs (1966) (Toronto: Univ. of Toronto Press)
[14] Zhou C and Feng Y Q, An infinite family of tetravalent half-arc-transitive graphs, Discrete

Math. 306 (2006) 2205–2211

Communicating Editor: Sukanta Pati

http://www.sagemath.org
http://www.sagemath.org

	A family of tetravalent half-arc-transitive graphs
	1.  Introduction
	2.  Automorphisms of Γ(n,a)
	3.  Proof of Theorem 2.4
	4.  Open issues
	Acknowledgements
	Appendix
	References




