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Abstract.  Alspach et al. (J. Austral. Math. Soc. 56(3) (1994) 391-402) constructed
an infinite family of tetravalent graphs M (a; m, n) and proved that if n > 9 be odd and
ad = 1(mod n), then M(a; 3, n) is half-arc-transitive. In this paper, we show that if
a’ = 1(mod n) , then M (a; 3, n) is an infinite family of tetravalent half-arc-transitive

Cayley graphs for all integers n except 7 and 14.
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1. Introduction

A graph G = (V, E) is said to be vertex-transitive, edge-transitive and arc-transitive if the
automorphism group of G, Aut(G), acts transitively on the vertices, on the edges and on
the arcs of G respectively. It is known that an arc-transitive graph is both vertex-transitive
and edge-transitive. However, a graph which is both vertex-transitive and edge-transitive
may not be arc-transitive, the smallest example being the Holt graph [10] on 27 vertices.
Such graphs are called half-arc-transitive graphs. For other definitions related to algebraic
graph theory, one is referred to [9].

The study of half-arc-transitive graphs was initiated by Tutte [13], who proved that
any half-arc-transitive graph is of even degree. Since any connected 2-regular is a cycle
and a cycle is arc-transitive, the first possibility of finding a half-arc-transitive graph is a
4-regular or tetravalent graph. The first examples of tetravalent half-arc-transitive graphs
were given by Bouwer [3] and the smallest example was given by Holt [10]. Though
numerous papers have been published in the last 50 years, the classification of tetravalent
half-arc-transitive graphs is not yet complete. In the absence of a complete classification,
two major approaches have been fruitful so far: the first is to characterize half-arc-transitive
graphs of some particular orders like p3, p*, p°, pq, 2pq, etc. [5-8], and the second is to
come up with infinite families of half-arc-transitive graphs [4,14].

In [1], Alspach et al. constructed an infinite family of tetravalent graphs M (a; m, n) and
proved as follows.
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Theorem 1.1 [1, Theorem 3.3]. Letn > 9 be odd and a® = 1(mod n). Then M(a; 3, n)
is half-arc-transitive.

In this paper, we prove that M (a; 3, n) is half-arc-transitive for all integers n except 7 and
14. For this, we redefine M (a; 3, n) (as I'(n, @) in Definition 1.1) in a different way which
helps us to prove the half-arc-transitivity of the entire family (not only when 7 is odd). It
turns out that I'(n, a) is a family of Cayley graphs of order 3z and for (n,a) = (9,4),
we get the Holt graph. In fact, our definition (Definition 1.1) is a generalization of an
alternative construction of the Holt graph (see the last paragraph of [10]).

DEFINITION 1.1

Let n be a positive integer such that 3 | ¢(n), where ¢ denotes the Euler totient function.
Then Z;, the group of units of Z,, is a group of order a multiple of 3. Let a be an element
of order 3 in Z} and b = a?(mod n). Define I'(n, a) to be the graph with vertex-set
Zn x 73 and the edge-set composed of edges of the form (i, j) ~ (ai =1, j — 1) and
(i, j) ~ (bi £b, j + 1), where the operations in the first and second coordinates are done
modulo n and modulo 3, respectively.

It is obvious that I (n, a) is tetravalent. One can check that I"(n, @) is a suitable redefini-
tion of M (a; 3, n) and I' (9, 4) is the Holt graph. It is also to be noted that for a particular n,
we can have two graphs, I'(n, a) and I (n, b). However, these two graphs are isomorphic
via the automorphism t : I'(n, a) — I'(n, a?) defined by t(i, j) = (ai, —j). So, without
loss of generality, we assume that a < b, where a, b € {2,...,n — 2}.

On the other hand, let n be a positive integer such thatay, b1, az, by are four elements of
order 3 in Z} with a1b; = 1(mod n) and ab, = 1(mod n). Then, by the above argument,
['(n,a1) =T (n,by) and I'(n, az) = I'(n, by). However, I'(n, a;) may not be isomorphic
to I'(n, ap). For example, if n = 63, we have 4-16 = 1(mod 63) and 22-43 = 1(mod 63),
but (63, 4) is not isomorphic to I' (63, 22), as the odd girth of I'(63, 4) is 9, whereas that
of I'(63, 22) is 21.

The definition of I'(n, a) requires that 3|¢(n). We discuss the form of n for which this
holds. Let n = p1®! pr®2 - .. py®%, where the p; are primes. Then ¢(n) = p;~! py®@2~!
ek (pr =D (p2a—1) - (pr — 1). As 3|p(n), either 3| p;% " or 3|(p; — 1) for some
i,i.e., 9n or p; = 1(mod 3) for some i. Thus n is either of the form 9¢ or pr, where p is
a prime of the form 1(mod 3) and ¢ is a positive integer.

At this junction, it is important to note the difference between our proof and the proof
of [1].

(1) First, the proof techniques are entirely different: While their proof is built on semireg-
ular automorphisms and blocks, ours is based on 6-cycles present in the graph.

(2) Second and most importantly, we prove that I'(n, a) is half-arc-transitive for all n
except 7 and 14, i.e., n is not necessarily odd, so that we prove the result for a larger
family of graphs.

In the next section, we prove the main results related to the automorphism group and
half-arc-transitivity of I"(n, ). In the Appendix, we provide the SageMath [12] code for
computing the automorphism group of I'(n, a).
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2. Automorphisms of I'(n, a)
Let G = Aut(I"(n, a)). We start by noting the following automorphisms of I'(n, a):
a: (i, ) (+alj); B, ) G j+1); y:G )= (=i )
It can be shown that «, 8, ¥ € G and o() = n, o(f) = 3 and o(y) = 2. Moreover, we
have the following relations: «¢f8 = ,Baaz, ay = ya~ !l and By = y8B.

Theorem 2.1. I'(n, a) is a Cayley graph.

Proof. Let H = («, B). Clearly it forms a subgroup of G. Also, as o(a) = n,o(f) =3
and aff = ﬂa“z, we have

H={a'p/:0<i<n—1,0<j<2} and |H|=3n=|T(n,a)l.

We will show that H acts regularly on I'(n, a). As |H| = |['(n, a)|, it is enough to show
that H acts transitively on I'(n, a). Asi +— i 4+ a~/ is a permutation of Z, order n and
j +— j + 1is apermutation of Z3 order 3, the action of H on I'(n, a) is transitive. O

Note that H is a semidirect product of (&) and (8), as B~ 'af = a® and a2 and n
are coprime, and I'(n, a) = Cay(H, S), where § = {f°a, f2a™!, Bal, Ba~b}. We now
recall a result on Hamiltonicity of Cayley graphs.

Theorem 2.2 [11, Theorem 3.3]. Every connected Cayley graph of a semidirect product
of a cyclic group of prime order by an abelain group of odd order is Hamiltonian. O

COROLLARY 2.1

If n is odd, then I (n, a) is Hamiltonian .

Proof. By Theorem 2.1, we have I'(n, a) is a Cayley graph on H and H is a semidirect
product of a cyclic group of order 3, namely (), and another cyclic group of odd order #,
namely (o). Thus, by Theorem 2.2, I'(n, a) is Hamiltonian. O

Theorem 2.3. I'(n, a) is edge-transitive.

Proof. AsT (n, a)is Cayley, itis vertex-transitive. Hence, it is enough to show that any two
edges incident with (0, 0) can be permuted by an automorphism. As I'(n, a) is tetravalent,
the four vertices adjacent to (0, 0) are namely: (1, 2), (—1,2), (b, 1) and (—b, 1). Let us
name the following edges as

e1:(0,0) ~(1,2) e:(0,0)~(—1,2)
e3:(0,0)~ (b, 1) e4:(0,0)~ (=b,1).

Itis to be noted that y (e;) = ez, afy(e1) = e§ and yaBy(er) = (Z. The reverse arrow
on top denotes that the orientation of the edge is changed. Hence, the theorem follows. [J
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For n = 7, 14, SageMath [12] computation shows that I"(n, @) is arc-transitive. Next,
we prove that I'(n, a) is not arc-transitive if n # 7, 14. For that, we show that there does
not exist any graph automorphism ¢ which maps the arc e3 to ey, i.e., ¢((0, 0)) = (0, 0)
and ¢((b, 1)) = (1, 2).

The next theorem shows that there can not be an automorphism ¢ for which ¢((0, 0)) =
(0,0) and ¢ ((b, 1)) = (1, 2) because ¢((1, 2)) should be one of {(b, 1), (—b, 1), (—1,2)}.

Theorem 2.4. If ¢ is an automorphism of U (n, a) such that n # 7, 14 and ¢((0,0) =
(0,0) and p((b, 1)) = (1, 2), then ¢((1,2)) ¢ {(b, 1), (—b, 1), (—1,2)}. O

Thus, from Theorems 2.1, 2.3 and 2.4, we obtain the following result.

Theorem 2.5. I'(n, a) is half-arc-transitive if n # 7, 14. O

3. Proof of Theorem 2.4

To prove Theorem 2.4, we prove a lemma and three theorems. Throughout this section,
¢ denotes an automorphism of I'(n, @) and G denotes the full automorphsim group of
I'(n, a).

Lemma 3.1. The following relations can not hold:

(1) 2a —4b =0,
(2) 2a + 4b = 0 except forn =9,
(3) 4a —2b = 0 except forn =17, 14,
(4) 4a +2b = 0 except forn = 18,
(5) 2a —2b =0,
(6) 2a +2b =0,
(7) 4a +4 =0,
8) 2a+6=0,
9 2(a+b-1)=0,

10) 2(b—a+1) =0,

(1) 2(a—b+1) =0,

12) 2(a+b+2) =0,

(13) 2(a—b—2) =0.

Proof.

(1) 2a —4b = 0, i.e., 8 = 64, 1.e., 56 = 0, i.e, n | 56 and hence n € {7, 14, 28, 56}
and the possible values of b are 4, 11, 25, 25, respectively. In all these cases 2b # 4,
which is a contradiction.

2) 2a+4b = 0,1i.e.,8 = —64,1.e.,72 = 0,1i.e.,n | 72 and hence n € {9, 18, 36, 72}
and the possible values of b are 7, 13, 25, 49. But the relation holds only if n = 9
and b =17.

3) 4a —2b =0,8 = 64, 1i.e.,56 = 0,1i.e.,n | 56 and hence n € {7, 14, 28, 56} and
the possible values of (a, b) are (2,4), (9, 11), (9, 25), (9, 25), respectively. But the
relation holds only if n € {7, 14}.
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4) 4a +2b =0,1i.e.,64 = —8,1i.e.,72 = 0,i.e.,,n | 72 and hence n € {9, 18, 36, 72}
and the possible values of (a, b) are (4,7), (7, 13), (13, 25), (25, 49), respectively.
But the relation holds only if n = 18.

(5) 2a —2b =0,1i.e.,2a = 2(mod n). If n being odd, then @ = 1, which is impossible.
Letnbeevenandn = 2m. Then wehavem | a —1,i.e.,a = mt + 1, forsome t € Z.
Asa #1,s0a=m+1,1i.e., ad—1= m(m2 + 3m + 3). Note that irrespective of
m is odd or even, (m2 + 3m + 3) is odd, say (2s + 1), for some s € Z. So we have
a®>—1=m@Qs+1),ie., a®> — 1 =m(mod n), which is a contradiction.

(6) The proof is the same as (5)

(7) 4a +4 =0, i.e., 4a = —4(mod n). If n is odd, then @ = —1, which is impossible.
If n is even and n = 2m, then we have m | 2(a + 1), i.e., 2a = mt — 2, for some
t€Z.As2a # —2,502a = m —2, ie., 8’ — 1) = m(m? — 6m + 12) — 16.
If m is even, then (m2 — 6m + 12) is even, say 2u, for some u € Z. So we have
8(a®> — 1) = 2mu — 16, i.e., 8(a® — 1) = —16(mod n), which is a contradiction.
If m is odd, then (m2 — 6m + 12) is odd, say 2v + 1, for some v € Z. So we have
8(a’—1) = mQ2u+1)—16,i.e.,8(a>—1) = m—16(mod n), which is a contradiction
asm # 16.

®)2a+6 = 0, ie, 8 = =216, ie., 224 = 0, ie, n | 224, ie, n €
{7, 14, 28, 56, 112, 224}. However, in all these cases, the possible values of a does
not allow 2a + 6 = 0.

9 2a@a+b—-1)=0,ie.,2(l +a—>b) =0,1i.e., 4a = 0, contradicting that a is a unit.

(10) The proof is the same as (9).

(11) 2(a—b+1)=0,ie,2(l —a+b)=0,ie,2(a—b+1)+2(1 —a+b) =0,ie.,
4 = 0, which is a contradiction.

(12) 2(a+b+2) = 0,i.e.,2(1+a+2b) = 0,i.e.,4(a+b+2)—2(1+a+2b) = 0,i.e.,2(a+
3) =0,ie.,8 =—-216,ie.,224 =0,i.e.,n | 224,ie.,n € {7, 14, 28, 56, 112, 224}.
In all these cases, 2a + 6 # 0, which is a contradiction.

(13) 2(a—b—2)=0,i.e.,2(l —a—2b) =0,ie.,2(a—b—-2)+2(1 —a —2b) =0,
ie., 6b+2 =0,1i.e., 2a + 6 = 0. The rest of the proof is the same as (8). O

Theorem 3.1. If ¢ € G and ¢((0,0)) = (0,0), (b, 1)) = (1,2), ¢((1,2)) = (—1,2)
then n =7 or 14.

Proof. Considerthecycle C : (0,0) ~ (b, 1) ~ (a+b,2) ~ (1+a+b,0) ~ (a+1,1) ~
(1,2) ~ (0,0). Then ¢(C) : (0,0) ~ (1,2) ~ ¢((a + b,2)) ~ ¢((1 +a + b,0)) ~
p((a+1,1)) ~ (=1,2) ~ (0,0). As p((a + b, 2)) ~ (1, 2) and ¢((0, 0)) = (0, 0), so
¢((a+b, 2)) € {(2b,0), (a£1, 1)}. Again, p((a+1, 1)) ~ (=1, 2) and ¢((0, 0)) = (0, 0)
imply ¢((a + 1, 1)) € {(=2b,0), (—a = 1, 1)}. Also, o((1 +a + b, 0)) ~ ¢((a + b, 2))
and ¢((b, 1)) = (1, 2) imply

o((1+a+b,0) e{ath, 1),(3,2),(1+2b2),(b+a=xl,0),
(1-2b,2),(b—a=+1,0)). (1)

If p((a +1,1)) = (—=2b,0), then ¢((1 +a + b,0)) ~ ¢((a + 1, 1)) and ¢((1, 2)) =
(—1,2)) imply

(1 4+a+0b,0)) € {(=3,2), (—2a £ b, 1)}. (2)

From Equations (1) and (2), we have
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e cither —3 = 3, i.e., 6 =0, i.e., n = 6 which is impossible.

e or —3 =1+ 2b,1i.e., 2a + 4b = 0, which is possible only when n = 9 (by Lemma
3.1). However, direct SageMath computation for n = 9 shows that such ¢ does not
exist.

e or —3 =1—2b,ie., 2a — 4b = 0, which is impossible by Lemma 3.1.

e or —2a+b =2a=xb,ie,4a = 0orda —2b = 0 or 4a + 2b = 0. Though the
first one is impossible, the other two can hold only if n € {7, 14, 18} (by Lemma 3.1).
However, direct SageMath computation for n = 7, 14 and 18 shows that such a ¢ does
not exist.

Hence ¢((a + 1, 1)) # (=2b, 0).
Ifo((a+1,1)) =(—a+1,1),thenp((1+a+b,0) ~p({(a+1, 1)) and ¢((1,2)) =
(—1,2) imply

o((I+a+b,0) e {(=1+2b,2),(=b+a=x1,0)}. 3)

From Equations (1) and (3), we have

e cither—b+a+1 =b—a+l,ie.,2(a—b) =00r2(b—a+1) =0or2(b—a—1) =0,
all of which are impossible by Lemma 3.1.

eor—b+atl=>b+taxl,ie.,2b=00r2a —2b=0o0r2a+2b =0, all of which
are impossible by Lemma 3.1.

e or —1 +2b =3,i.e., 2a —4b = 0, which is impossible by Lemma 3.1.

e or —1+2b=1+42b,ie., 2 =0, which is a contradiction.

e or —1+4+2b =1-2b,ie., 4a — 2b = 0 which can hold only if n = 7 or 14. (by
Lemma 3.1.) However, direct SageMath computation for n = 7, 14 shows that such ¢
does not exist.

Hence p((a +1,1)) # (—a + 1, 1).
Ifo((a+1,1) =(—a—1,1),then p((14+a+b,0)) ~ p((a+1, 1)) and p((1,2)) =
(—1,2)) imply

(1 4+a+b,0) e{(-1-2b,2),(=b—a=x1,0)} 4)

From Equations (1) and (4), we have

e cither —1 —2b = 3,1i.e., 2a + 4b = 0, which can hold only if n = 9 (by Lemma 3.1).
However, direct SageMath computation rules out this possibility.

e or —1 —2b =1+ 2b,1i.e.,4a 4+ 2b = 0, which can hold only if n = 18. (by Lemma
3.1). However, direct SageMath computation rules out this possibility.

e or —1 —2b=1-—2b,i.e.,2 =0, which is a contradiction.

eor—b—axl=b—a+xl,ie.,2b=0,0r2a+2b=0,or2a—2b =0 all of which
are impossible by Lemma 3.1.

eor—b—axl=b+axl,ie,2(b+a—1) =0o0r2(b+a) = 0 (which are
impossible by Lemma 3.1), but 2(1 4+ a + b) = 0 may hold.

Therefore we have o((1 +a +b,0)) = (1 +a+b,0), p((a+1,1)) = (—a — 1, 1),
o((@a+b,2))=(a+1,1)with2(a+b+ 1) =0.

Consider the cycle C’' : (1 +a +b,0) ~ (@a+1,1) ~ (1 +2b,2) ~ (2a,0) ~
b+2,1)~@+b,2)~A+a+b,0). Thenp(C"): 1+a+b,0) ~(—a—1,1) ~
o((1 +2b,2)) ~ ¢(2a,0)) ~ (b +2,1)) ~ (a+1,1) ~ (1 +a + b,0). Now
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e(b+2, 1) ~@+1,1),p((14+a+5b,0) =1+a+b,0)and (b, 1)) = (1,2)
imply p((b+2, 1)) € {(142b,2), (b+a—1,0)}. Again ((1 +2b,2)) ~ (—a —1, 1),
pla+b+1,0)=@+b+1,0)=(—a—>b—1,0) and ¢((1, 2)) = (-1, 2) imply
o((142b,2)) € {(—=1 —=2b,2),(=b —a + 1,0)}. Also ¢((2a,0)) ~ ¢((b + 2, 1)) and
¢((a+Db,2)) =(a+1,1) imply

9(2a,0) € {(b+2a+b,0),(a+3, 1), (a+1-2b,1),(1+b—a=+1,2)}
o)

Leto((142b,2)) = (—1-2b,2). Then¢((2a, 0)) ~ ¢((142b,2)) and¢p((a+1, 1)) =
(—a — 1, 1) imply

¢((2a,0)) e {(=b —2a£b,0), (—a -3, 1). (6)

From Equations (5) and (6), we have

e cither —b —2a £ b =b +2a £b,i.e.,4a + 4 = 0 or 4a = 0 (which are impossible
by Lemma 3.1) or 4a + 2b = 0, which can hold only if » = 18. However, direct
SageMath computation rules out this possibility.

e or —a —3 =a+3,ie., 2a + 6 = 0, which is impossible by Lemma 3.1.

eor—a—3=a+1—-2b,ie.,2(a—b+2) =0.Also,wehad2(a+b+1) =0
previously. This yields 2a = 4,1i.e.,n =7 or 14.

Hence ¢((1 + 2b,2)) = (—1 — 2b, 2) is possible only if n = 7 or 14. Moreover, direct
SageMath computation for n = 7 and 14 confirms the possibility.

Let o((1 4+ 2b,2)) = (=b — a + 1, 0). Then ¢((2a, 0)) ~ ¢((1 4+ 2b, 2)) and ¢((a +
1,1) =(—a—1,1) imply

0(2a,0) e{(—a—14+2b,1), (-1 =b+a=+£1,2). ()

From Equations (5) and (7), we have

e cither -1 —b+axtl=1+b—a=x1l,ie,2(b—a+1)=0o0r2(a—b)=0o0r
2(a — b — 2) = 0, all of which are impossible by Lemma 3.1.

eor—a—14+2b=a+1-2b,ie,2(a+1—-2b) =0,ie.,2(a+b—-2) =0.
Hence combining 2(a + b 4+ 1) = 0 and 2(a + b — 2) = 0, we have 6 = 0, which is
impossible.

eor—a—1+4+2b=a+3,ie.,2(a— b+ 2) =0. Therefore, from2(a+b+1) =0
and 2(a — b +2) =0, we have 2a = 4,1.e.,n =7 or 14.

Hence ¢((1+2b,2)) = (—b —a + 1, 0) may be possible if n = 7 or 14. Moreover, direct
SageMath computation for n = 7 and 14 confirms the possibility.

Therefore, for ¢ € G, we can have ¢((0, 0)) = (0, 0), ¢((b, 1)) = (1,2), ¢((1,2)) =
(=1,2) onlyifn =7 or 14. [l

Theorem 3.2. If ¢ € G and ¢((0,0)) = (0,0), ¢((b, 1)) = (1,2), then ¢((1,2)) #
(b, 1).

Proof. Suppose that ¢ € G and ¢((0,0)) = (0,0), ¢((b, 1)) = (1,2) and ¢((1,2)) =
(—b, 1).Consider thecycle C : (0,0) ~ (b, 1) ~ (a+b,2) ~ (1+a+Db,0) ~ (a+1,1) ~
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(1,2) ~ (0,0). Then ¢(C) : (0,0) ~ (1,2) ~ ¢((a + b,2)) ~ ¢((1 +a + b,0)) ~
o((a+1,1)) ~ (=b,1) ~ (0,0). As ¢((a + b, 2)) ~ (1,2) and ¢((0, 0)) = (0, 0), then
¢((a+b, 2)) € {(2b,0), (a£1, 1)}. Again, ¢((a+1, 1)) ~ (—b, 1) and ¢((0, 0)) = (0, 0)
imply ¢((a + 1, 1)) € {(—=2,0), (—a £ b, 2)}. Now as o((1 +a + b, 0)) ~ ¢((a + b, 2))
and ¢((b, 1)) = (1, 2), we have

o((1+a+b,0) € {a+tbh,1),(3,2),(1+2b,2),b+a=x1,0),
(1-2b,2),(b—a=x1,0)}. (8)

Depending upon the value of ¢((a 4 1, 1)), one of the following three cases must hold,
namely:

Case A: p((a + 1, 1)) = (=2,0)),
Case B: o((a+1,1)) = (—a — b, 2)) or
Case C: p((a+1,1)) = (—a + b, 2)).

However, before resolving these three cases, we prove a claim which will be crucial in
the following proof.

Claim. 9((—1 —a — b,0)) € {(=2a £ b, 1), (=3,2), (=1 +2b,2), (=b +a £ 1,0),
(=1 —2b,2),(=b —a £1,0), 2a £ 1,2),3b, 1), (b + 2,1), (1 +a £ b,0), (b —
2,1), (1 —a+b,0)).

Proof of Claim. As (—b, 1) ~ (0,0)and (—1, 2) ~ (0, 0), we have p((—b, 1)), ¢((—1, 2))
e {(, 1), (—1,2)}.

Case 1: Let p((—b, 1)) = (—1,2) and ¢((—1,2)) = (b, 1). Consider the cycle C’ :
©0,0)~(b,1)~(—a—b,2)y ~(-1—a—-b,0) ~(—a—-1,1) ~ (—1,2) ~ (0,0),
then ¢(C’) : (0,0) ~ (=1,2) ~ ¢((—a — b,2)) ~ ¢((—=1 —a —b,0)) ~ ¢((—a —
1,1) ~ (b,1) ~ (0,0). As ¢((—a — b,2)) ~ (—1,2) and ¢((0,0)) = (0,0) then
¢((=a—b,2)) € {(=2b,0), (—a=x1, D}. p((—=a—1,1)) ~ (b, 1) and ¢((0, 0)) = (0, 0)
imply ¢((—a — 1, 1)) € {(2,0), (a £b,2)}. Now ¢((—1 —a — b,0)) ~ ¢((—a — b, 2))
and ¢((—b, 1)) = (=1, 2) imply

o((—1—a—b,0)) € {(=2a £ b, 1), (=3,2), (=142b,2), (=b +a £ 1, 0),
(=1 =2b,2), (=b —a £ 1,0)}. 9)

Case 2: Let ¢((—b, 1)) = (b, 1) and ¢((—1,2)) = (—1,2). Consider the cycle C’ :
0,0) ~ (=b, 1) ~(—a —b,2) ~ (=1 —a—b,0) ~ (—a—1,1) ~ (=1,2) ~ (0,0).
Then ¢(C") : (0.0) ~ (b, 1) ~ ¢((—a = b,2)) ~ ¢((—1 —a —b,0)) ~ p((—a -
LD) ~ (b, 1) ~ (0,0). As ¢((—a — b,2)) ~ (b, 1) and ¢((0,0)) = (0,0), then
p((=a —=b,2)) € {(=2,0), (a£b,2)}. p((—a — 1, 1)) ~ (=1, 2) and ¢((0, 0)) = (0, 0)
imply p((—a—1, 1)) € {(=2b,0), (—a=x1, 1)}. Now ¢((—=1—a—>b,0)) ~ ¢((—a—>b, 2))
and ¢((—=b, 1)) = (b, 1) imply

o((=1—a—b,0) € {Qa£1,2),(3b, 1), (b +2,1),(1 +a+b,0),
b—-2,1),(—a%b,0)). (10)

Combining Cases (1) and (2), the claim follows.
‘We now turn towards the three cases mentioned earlier.
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CaseA:Ifp((a+1,1)) = (—2,0),then p((14+a+b,0)) ~ ¢((a+1, 1)) and ¢((1, 2)) =
(=b, 1) imply

(1 4+a+b,0)) € {(=3b,1),(—2a £ 1,2)}. an

From Equations (8) and (11), we have

e cither —3b = 2a + b, i.e., —2b = 2a or 2b = —4. By Lemma 3.1, this can hold only
if n = 9. However, direct SageMath computation for n = 9 shows that such a ¢ does
not exist.

eor—2a+1=3,ie,—-2a =40r —2a =2,ie.,4a+2b =0or2a +2b = 0. By
Lemma 3.1, 2a 4+ 2b = 0 can not hold and 4a 4 2b = 0 can hold only if n = 18.
However, direct SageMath computation for n = 18 shows that such a ¢ does not exist.

e or—2a+1=1-2b,ie.,2a =2b,2(b—a— 1) =0, both of which are impossible
by Lemma 3.1.

e or —2a+1=1+42b,i.e.,2a + 2b = 0 (which is impossible by Lemma 3.1) but

2a + 2b 4+ 2 = 0 may hold. (12)

When¢((a+1, 1)) = (=2,0),¢((14+a+b, 0)) = (142b, 2),¢((a+b, 2)) = (a+1, 1),
then we have Equation (12). As2a +2b+2 = 0,ie,a+b+1 = —a — b — 1, then
¢o((—1 —a —b,0)) = (1 4 2b, 2). But from Equations (9) and (10), we have ¢ ((—1 —
a —b,0)) # (1 4 2b,2), which is a contradiction. Hence ¢((a + 1, 1)) # (—2,0) and
Case A can not hold.

Case B: If ¢((a + 1, 1)) = (—a — b, 2), then ¢((1 + a + b,0)) ~ ¢((a + 1,1)) and
¢((1,2)) = (=b, 1)) imply

o((1+a+0b,0) e{(-b—2,1),(—1 —a=xb,0)}. (13)
From Equations (8) and (13), we have as follows:

Case B(1): —=b—2 =2a =+ b, i.e.,2a+2b = 0, which is impossible by the Lemma 3.1, or
2a 4+ 2b + 2 = 0 may hold. (14)

Case B2): =1 —a+b=b+a=£1,ie.,2a+ 2b =0 or2a = 0 (which are impossible
by Lemma3.1),but —1 —a —b=>b+a+ 1,ie,

2a +2b + 2 = 0 may hold. (15)

Case B(3): —1 —a=+b = b—a=£1. This gives rise to four equations, out of which three are
impossible by Lemma 3.1, namely 2 = 0, 2b = 0 and 2a + 2b = 0. The only possibility
which remains is —1 —a + b = b — a — 1 and it is an identity.

So assuming this identity, we have ¢((a + 1, 1)) = (—a — b,2), ¢p((a+ b+ 1,0)) =
(b—a—1,0)and ¢((a+b,2)) = (a—1, 1). Similarly, we can show that ¢ ((a — 1, 1)) =
(—a+b,2),p((b—a+1,0) =bB+a—1,0)and ¢((a —b,2)) = (a+ 1, 1). Now
p((a+b,2)) =(a—1,1,9(((a—0b,2)) = (a+1,1) and ¢((2, 0)) ~ ¢((b, 1)) = (1,2)
imply ¢((2,0)) = (2b,0).

Now, consider the cycle C; : (@ +b+ 1,0) ~ (a+1,1) ~ (1,2) ~ (2b,0) ~
QQa+b,1) ~(@+b+2,2) ~(@+b+1,0).Sop(Cr): (b—a—1,0) ~(—a—>b,2) ~
(=b, 1) ~@((2b,0)) ~ p((2a + b, 1)) ~p((a+b+2,2)) ~(b—a—1,0).
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Again ¢((0,0)) = (0,0), ¢p((a+1,1)) = (—a — b, 2) and ¢((2b, 0)) ~ (—b, 1) imply
®((2b,0)) € {(—a +b,2),(=2,0)} and ¢(((a + b,2)) = (a =1, 1), p((a + 1, 1)) =
(—a—>b,2)and p((a +b+2,2)) ~(b—a—1,0) imply p((a + b+ 2,2)) € {(—b —
a+2,2),(=1=2b+a, 1)}. ¢((1,2)) = (—b, 1) and ¢((2a + b, 1)) ~ ¢((2b, 0)) imply

o(Ra+b,1)e{(=14+a=£b,0),(=b+2,1),(=3b, 1), (=2a £ 1,2). (16)

Case B(3)(a):If o((a+b+2,2)) = (=b—a+2,2),thenp((a+b+1,0)) = (b—a—1,0)
and ¢((2a + b, 1)) ~ ¢((a + b + 2, 2)) imply

¢o((a+b,1) ef{(a—143b,0),(—1—-b+2a=x1,1)}. a7

From Equations (16) and (17), we have

e cither —1 —b+42a=+1 = —b+2, which implies either 2a —2b = 0 which is impossible
by Lemma 3.1 or 4a — 2b = 0 which is possible only for n = 7 or 14. However, direct
SageMath computation for n = 7 and 14 shows that such a ¢ does not exist.

eora—1+3bh=—-1—a=xb,ie, 2a + 4b = 0 which is possible only forn = 9
or 2a + 2b = 0, which is impossible by Lemma 3.1. And finally direct SageMath
computation for n = 9 shows that such ¢ does not exist.

eor—1—b+2a+1=-3b,ie.,2a+2b=0o0r2a+2b—2 =0, both of which are
impossible by Lemma 3.1.

Hence p((a +b+2,2)) # (b —a +2,2).

Case BB)(b):If o((a+b+2,2)) = (a—1—-2b, 1), thenp((a+b+1,0) = (b—a—1,0)
and ¢((2a + b, 1)) ~ ¢((a + b + 2, 2)) imply

0(a+b, 1) e{(b—a—3,0),(1—b—2a+b,2). (18)

From Equations (16) and (18), we have

e citherb—a—3=—1+a=xb,ie.,2a+2b=0o0r2a—2b+2 =0, both of which
are impossible by Lemma 3.1.

e orl —b —2a+b = —2a=+ 1. These give rise to four equations, out of which three
are impossible, by Lemma 3.1, namely 2 = 0, 20 = 0 and 2a — 2b = 0. The only
possibility which remains is 1 — b — 2a + b = —2a + 1 and it is an identity.

So assuming this to be the case, we have ¢((2b,0)) = (=2,0), ¢((a + b + 2,2)) =
(@a—1—-2b,1)and ¢((2a + b, 1)) = (—2a + 1, 2).

Now consider the cycle C3 : (2b,0) ~ 2a +b,1) ~ (a+b+2,2) ~ (1 +a+
30,0) ~ Ba+1,1) ~ (3,2) ~ (2b,0). So ¢(C3) : (=2,0) ~ (—2a + 1,2) ~
(a—1-=2b,1) ~ (1 4+a+3b,0) ~ ¢e(Ba+1,1)) ~ ¢((3,2)) ~ (=2,0). Then
9((2b,0)) = (=2,0), 9((2a + b, 1)) = (=2a + 1,2) and ¢((3,2)) ~ (=2, 0) imply
©((3,2)) € {(-=3b,1),(—2a — 1,2)}. Again ¢(2a + b, 1)) = (—2a + 1,2), p((a +
b+1,0) = (b —-a—1,0)and ¢((1 +a + 3b,0)) ~ (a — 1 —2b, 1) imply ¢o((1 +
a+3b,0)) € {1 —2a —2b,2),(b —a — 3,0)}. Finally ¢((2b,0)) = (—2,0) and
o((Ba+1,1) ~ ¢((3,2)) imply

9(@Ba+1,1) € {(—=4,0),(=3a £b,2),(-2—-2b,0),(=2b —a £ 1, 1)}.
19)
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Case B3)(b)(1): If o((1 + a + 3b,0)) = (1 — 2a — 2b,2), then ¢((3a + 1,1)) ~
o((1 4+ a + 3b,0)) implies

e(Ba+1,1))e{(b—2a—-2+b,0),(a—2—-2b%1,1)}. (20)

From Equations (19) and (20), we have

e citherb —2a —2+b = —4,1.e.,2a —2b = 0or 2a — 2b — 2 = 0, both of which are
impossible by Lemma 3.1.

eorb—2a—2+b=-2-2b,ie.,2a —2b =0or2a — 4b = 0, both of which are
impossible by Lemma 3.1.

eora—2—-2b+1=-2b—a=x1l,ie.2a—2b=0o0r2a=0o0r4a —2b =0.By
Lemma 3.1, the first two are impossible and the third one may hold only for n = 7 or
14. However, direct SageMath computation for n = 7 and 14 shows that such a ¢ does
not exist.

So we have ¢((1 +a + 3b,0)) # (1 —2b — 2a, 2).

Case B3)(b)(2): If o((1 +a +3b,0)) = (b —a — 3,0), then ¢((Ba + 1, 1)) ~ ¢((1 +
a + 3b, 0)) implies

e(Ba+1,1)e{la—1-3b+b,1),(b—1—-3a+1,2)}. 1)

From Equations (19) and (21), we have

e cithera—1—-3b+tb=-2b—a=x1,ie.,2a=00r2a—2b=0o0r2a—-2b—2=0,
all of which are impossible by Lemma 3.1.

eorl —b—3a=x1 = —3a=x£b. Out of the four relations that we get, three of them
(namely, 2 = 0, 2a — 2b = 0 and 2b = 0) are invalid, by Lemma 3.1 and the fourth is
an identity, i.e., 1 —b —3a — 1 = —3a — b.

Sowehave p((3a+1,1)) = (—3a—>b,2),9((3,2)) = (—3b,1),p((a+1+3b,0)) =
(b —a — 3, 0). Similarly we can show that ¢((3a — 1, 1)) = (—3a + b, 2) and ¢((—a +
143b,0)) =(a+b—3,0).

Now ¢((2b,0)) = (=2,0), 9(Ba + 1, 1)) = (=3a — b, 2), ((Ba — 1, 1)) = (—3a +
b,2) and ¢((4b, 0)) ~ ¢((3,2)) = (=3b, 1) imply ¢((4b, 0)) = (—4,0).

Proceeding in this way, we can show that ¢((2kb, 0)) = (—2k,0) for all k € Z. So
we have ¢((2,0)) = (—2a, 0), where k = a, which is a contradiction as we have shown
earlierthatp((2, 0)) = (2b, 0) and 2b # —2a. Therefore, ¢ ((a+b+1,0)) # (b—a—1, 0).

Case B(1): When ¢((a + 1,1)) = (—a — b,2), o((1 +a + b,0)) = 2a + b, 1),
o((a + b, 2)) = (2b,0), we have Equation (14). As2a +2b+2 =0,ie,a+b+ 1=
—a — b — 1, then p((—1 — a — b,0)) = (2a + b, 1). But from Equations (9) and
(10), we have ¢((—1 — a — b,0)) # (2a + b, 1), which is a contradiction. Hence
o((14+a+>b,0) #Qa+b,1).

Case B(2): Now when ¢ ((a +1,1)) = (—a —b,2), p((a+b+1,0) = (a+ b+ 1,0),
¢((@a+b,2)) = (a+ 1, 1), then we have Equation (15). Consider the cycle C; : (a +b +
1,0) ~ (a+1,1) ~ (142b,2) ~ 2a,0) ~ (b+2,1) ~ (a+b,2) ~ (a+b+1,0). Then
e(C1):(@a+b+1,0)~(=a—0,2) ~e((1+2b,2)) ~¢((2a,0)) ~ p((b+2,1)) ~
(a+1,1)~(@+b+1,0).Nowop((a+b+1,0)=(@@+b+1,0) =(—a—b—1,0),
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@((1,2)) = (=b, 1) and @((1 4+ 2b,2)) ~ (—a — b, 2) imply ¢((1 + 2b,2)) € {(—1 —
a+b,0),(—b—2,1)}. Again, p((b, 1)) = (1,2),¢p((a+b+1,0)) = (a+b+1,0) and
e((b+2,1)) ~e((a+1,1))imply o((b+2,1)) € {(b+a —1,0), (1 +2b, 2)}. Also,
@((a+1,1)) = (—a — b, 2) and ¢((2a, 0)) ~ ¢((1 + 2b, 2)) imply

0((2a,0) € {(=b—14+a£b, 1), (—a—b+2,2), (=1 —2a=£1,0),
(—a — 3b,2)}. (22)

Case B(2)(a): Now if o((b+2,1)) = (b+a —1,0), then p((@a+5b,2)) = (@ + 1, 1) and
©((2a,0)) ~ ¢((b + 2, 1)) imply

¢((2a,0) e{(a+1-2b,1),(14+b—-a=x1,2)}. (23)

From Equations (22) and (23), we have

e citherl +b—a+t1=—a—>b+2ie.,2b=0o0r2a—2b = 0, both of which are
impossible by Lemma 3.1.

eorl4+b—axl = —a—3b,ie., 4b = 0 which is impossible or 4a +2b = 0, which, by
Lemma 3.1, holds only if n = 18. However, direct SageMath computation for n = 18
shows that such a ¢ does not exist.

eora+1—2b=—-b—14+azxb,ie.,2 = 0or2a—2b =0, both of which are
impossible by Lemma 3.1.

Hence p((b+2,1)) #(b+a—1,0).

Case B(2)(b): Now if ((b +2,1)) = (1 + 2b,2), then ¢((a + b,2)) = (a +1,1) and
¢((2a,0)) ~ ¢((b + 2, 1)) imply

©((2a,0)) € {(a+3,1), (b +2a+b,0)}. (24)

From Equations (22) and (24), we have

e cithera+3=—-b—1+a=xb,ie,4 =0or2a+ 4b = 0, which, by Lemma 3.1,
can hold only if n = 9. However, direct SageMath computation for n = 9 shows that
such a ¢ does not exist.

eorb+2at+tb=—-1—-2ax1,ie,2(a+b+2)=0o0rda =0o0r2a—+4b =0or
4a 4+ 2b = 0. By Lemma 3.1, the first two are impossible and the next two can hold
only if n = 9 or 18. But those are also ruled out by SageMath computation.

Hence ¢((b + 2, 1)) # (1 + 2b,2) and hence ¢((a + 1, 1)) # (—a — b, 2), i.e., Case B
can not hold.

Case C:If p((a+1,1)) = (—a+b,2),then ¢((1,2)) = (=b, ) and p((a+b+1,0)) ~
¢((a + 1, 1)) imply

p((14+a+b,0) €{(=b+2,1),(=1+a=xb,0)}. (25)

From Equations (8) and (25), we have

e ecither —b 4+ 2 = 2a £ b, ie,2a —2b = 0or2(a + b — 1) = 0, both of which are
impossible by Lemma 3.1.
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eor—1l+atb=b—a=x1,ie,2a=00r2a—2b=0o0r2(a—b—1)=0and all
of them are ruled out by Lemma 3.1.

e ofr —1 +a=+xb = b+ a=x 1. This gives rise two four conditions, out of which three
(namely, 2 = 0, 2a 4+ 2b = 0 and 2b = 0) are ruled out by Lemma 3.1 and the fourth
one is the identity —1 +a +b =b+a — 1.

So we have ¢((a + b + 1,0)) = (a — 1+ b,0), ¢o(((a + b,2)) = (a + 1,1) and
o(a+1,1) = (—a +b,2).

Similarly we can show that p((—a + b+ 1,0)) = (—a — 1 + b,0), ¢(((a — b,2)) =
(a—1,1)and ¢((a — 1, 1)) = (—a — b, 2).

Now¢((a+b,2)) = (a+1,1),¢(((a=b,2)) = (a—1, 1) and p((2, 0)) ~ ¢((b, 1)) =
(1,2) imply ¢((2, 0)) = (25, 0).

Consider thecycle C> : (a+b+1,0) ~ (a+1,1) ~(1,2) ~ (2b,0) ~ 2a+b, 1) ~
(a+b+2,2)~(@+b+1,0).S0¢(C2):(a—14+b,0)~(—a+b,2) ~(=b, 1) ~
©((2b,0)) ~ p((2a+b, 1)) ~ p((a+b+2,2)) ~ (a—14b,0). Then ¢ ((0, 0)) = (0, 0),
¢(a+1,0) = (—a + b,2) and ¢((2b,0)) ~ (—b, 1) imply ¢((2b,0)) € {(—a —
b,2),(—2,0)}. Again, ¢(((a + b,2)) = (a+ 1,1), ¢((a + 1,1)) = (—a + b,2) and
o((a+b+2,2)) ~ (a—1+Db,0) imply p((a+b+2,2)) € {(b—a+2,2), 1—-2b+a, 1)}.
Also, ¢((1,2)) = (=b, 1) and ¢((2a + b, 1)) ~ ¢((2b, 0)) imply

9o((2a+0b,1))e{(=1=a=£b,0),(=b—2,1),(=3b,1), (—2a £ 1, 2)}.
(26)

Case C(1): If p((a+b+2,2)) =(b—a+2,2),thenp((a+b+1,0)) =(a+b—-1,0)
and ¢((2a + b, 1)) ~ ¢((a + b + 2, 2)) imply

o(Qa+b, 1) e{la—1+3b,0),(1—b+2a+1,1). Q7

From Equations (26) and (27), we have
e either | —b+2a+1=—-b—2,ie,2a+2b=0or4a +2b =0. By Lemma 3.1,
the first is an impossibility and the second one can hold only if n = 18. However, that
is also ruled out by SageMath computation for n = 18.
eora—1+4+3b=—-1—a=xb,ie,2a+2b=0or2a+4b = 0. By Lemma 3.1, the
first is an impossibility and the second one can hold only if n = 9. However, that is
also ruled out by SageMath computation for n = 9.
eorl —b+2a+1=-3b,ie. 2a+ 2b = 0, which is impossible by Lemma 3.1 but,
2a 4 2b + 2 = 0 may hold. (28)
When ¢((a + b + 1,0)) = (@ -1+ b,0), ¢(((a + b,2)) = (@ + 1,1) and
¢((a+1,1)) = (—a + b, 2), then we have Equation (28). As 2a +2b + 2 = 0, i.e.,
a+b+1=—-a—-b—1,thenp((—1—a—>b,0)) = (a—1+D>,0). But from Equations (9)
and (10), we have ¢((—1 —a — b, 0)) # (a — 1 + b, 0), which is a contradiction. Hence
p(@a+b+2,2))# b —a+2,2).

Case CQ):Ifp((a+b+2,2)) =(a+1—-2b,1),thenp((a+b+1,0) = (a—1+b,0)
and ¢((2a + b, 1)) ~ ¢((a + b + 2, 2)) imply
o(Ra+b, 1)) e{(b+a—3,0,(1+b—2a+b,2)}). (29)

From Equations (26) and (29), we have
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e citherb+a—-3=—-1—a=xb,ie.,2a—2b=0or2a+2b—2=0,both of which
are impossible by Lemma 3.1.

e or | +b —2a £ b = —2a =+ 1. This gives rise to four conditions, out of which three,
namely 2b = 0,2 — 0 and 2a + 2b = 0, are ruled out, by Lemma 3.1 and the fourth
one is the identity 1 +b —2a — b = —2a + 1.

So we have ¢((2a +b, 1)) = (—2a+ 1, 2). Also previously, we had ¢ ((2b, 0)) = (-2, 0)
andp((@a+b+2,2))=(1—-2b+a,l).

Now consider the cycle C3 : (2b,0) ~ 2a +b,1) ~ (a+b+2,2) ~ (1 +a+
30,0) ~ Ba+1,1) ~ (3,2) ~ (2b,0). So ¢(C3) : (—2,0) ~ (—2a + 1,2) ~
I4+a—-2b,1) ~ (1 4+a+3b,0) ~ @(Ba+1,1) ~ ¢((3,2)) ~ (—2,0). Now,
©((2b,0)) = (=2,0), ¢((2a + b, 1)) = (—2a + 1,2) and ¢((3,2)) ~ (—2,0) imply
©((3,2)) € {(=3b,1), (—2a — 1, 2)}. Again ¢p((2a + b, 1)) = (—2a + 1,2), p((a + b +
1,0)) = (@a+b—1,0)and o((1+a+3b,0)) ~ (14+a—2b, 1) imply p((14+a+3b,0)) €
{2b+1—-2a, 2), (a+b—3,0)}. Also, ¢((2b, 0)) = (—2,0)and ¢((3a+1, 1)) ~ ¢((3,2))
imply

9(@Ba+1,1) € {(—=4,0),(=3a£b,2),(=2—-2b,0),(=2b —a £ 1, 1)}.
(30)

Case C2)(a): If o((1 +a +3b,0)) = 2b + 1 — 2a, 2), then ¢((3a + 1, 1)) ~ o((1 +
a + 3b, 0)) implies

e(Ba+1,1) €{Qa+b—2%b,0),24+a—2b+1,1)). (31)

From Equations (30) and (31), we have

e cither2+a—2b+1=—-2b—a=1,i.e.2a+2b = 0or2a = 0 (which are impossible
by Lemma 3.1) or 4a 4+ 2b = 0 which can hold only if » = 18. But direct SageMath
computation for n = 18 ruled out this case.

eor2a+b—-2+b = -2-2b,1ie, 2a 4+ 2b = 0 (impossible by Lemma 3.1) or
2a + 4b = 0, which can hold only if n = 9. But direct SageMath computation ruled

out this possibility.
eor2a+b—-2+b=—4,ie.,2a+ 2b =0, which is impossible by Lemma 3.1 but
2a + 2b + 2 = 0 may hold. (32)

Thus, if p((a +b+1,0) = (@—1+5b,0), o(((a+b,2)) = (a+1,1) and ¢((a +
1,1)) = (—a + b, 2) holds, then we have 2a +2b +2 = 0. As2a +2b+2 =0, i.e.,
a+b+1=—-a—-b—1,thenp((—1 —a—>b,0)) = (a — 1+ b, 0). But from Equations
(9) and (10), we have ¢ ((—1 —a — b, 0)) # (a — 1+ b, 0), which is a contradiction. Thus,
Equation (32) does not hold.

So we have ¢((1 +a + 3b,0)) # 2b+ 1 — 2a, 2).

Case C)(b):If ((14+a+3b, 0)) = (a+b—3, 0),then p((3a+1, 1)) ~ ¢((1+a+3b, 0))
implies

e(@Ba+1,1)e{(l+a—3b+b,1),(b+1—-3a+1,2). (33)

From Equations (30) and (33), we have
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e citherl +a—-3b+tb=-2b—a=x+1,ie.,2a=00r2a+2b=00r2a—2b=0or
2a — 2b + 2 = 0, all of which are impossible by Lemma 3.1.

e orb+1—3a=£1= —3a=xb. This gives rise to four conditions, out of which three,
namely 2 = 0, 2a 4+ 2b = 0 and 2b = 0, are ruled out, by Lemma 3.1 and fourth one
is the identity b + 1 —3a — 1 = —3a + b.

Sowehave p((3a+1,1)) = (—3a+b,2),9((3,2)) = (=3b,1),p((a+14+3b,0)) =
(a+b—-3,0).

Similarly we can show that ¢((3a — 1, 1)) = (—3a — b, 2) and ¢((—a + 1 +3b,0)) =
(—a+b—-3,0).

Now ¢((2b,0)) = (—2,0), ¢(Ba+1,1)) = (=3a+b,2), op(Ba — 1, 1)) = (—3a —
b,2) and ¢((4b, 0)) ~ ¢((3,2)) = (=3b, 1) imply ¢((4b, 0)) = (—4,0).

Proceeding this way, we can show that ¢ ((2kb, 0)) = (—2k, 0), for all k € Z. So we
have ¢((2,0)) = (—2a, 0), where k = a, which is a contradiction as we have shown that
¢((2,0)) = (2b,0) and 2b # —2a. Therefore, we have p((a + 1, 1)) # (—a + b, 2) and
Case C can not hold.

As none of the cases A, B and C hold, the assumption that ¢ ((1, 2)) = (—b, 1) is wrong.
Hence the lemma follows. O

Theorem 3.3. If ¢ € G and ¢((0,0)) = (0,0), ¢((b, 1)) = (1,2), ¢((1,2)) = (b, 1),
then n =7 or 14.

Proof. The proof follows as in the proof of Theorem 3.1. For a detailed proof, one can see
the proof of Theorem 4.3 [2]. O

Now, the proof of Theorem 2.4 follows from Theorems 3.1, 3.2 and 3.3.

4. Open issues

In this paper, we proved the half-arc-transitivity of an infinite family of tetravalent Cayley
graphs. However, a few issues are still pending and can be topics for further research.

(1) Full Automorphism Group. It was shown that (o, 8, y) is a subgroup of the full auto-
morphism group. It remains to be shown (as observed in SageMath) that G = («, 8, y)
forn #7, 14.

(2) Structural Properties of T (n, a). We have shown that I (n, a) is Hamiltonian if n is odd.
However, the Hamiltonicity for even values of #n is still unresolved. Similarly, other
structural properties like girth, diameter, domination number are few open issues.
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Appendix
Appendix A: Sage Code for I'(n, a) forn =7,a = 2:

n="7

a=2

b=mod (a”2,n)

A=list(var('A_%d’ % i) for i in range(n))
B=list(var(’'B_%d’ % 1) for i1 in range(3))
C = cartesian_product ([A, BIl)

V=C.list()

E=[]

Gamma=Graph ()

Gamma .add_vertices (V)

for i in range(n):

for j in range(3):
E.append(((A[i],B[j]), (A[mod(a*i+1l,n)],B[mod(j-1,3)1)))
E.append(((A[i],B[j]), (A[mod(a*i-1,n)],B[mod(j-1,3)1)))
E.append(((A[i],B[j]), (A[mod(b*i+b,n)],B[mod(j+1,3)1)))
E.append(((A[i],B[j]), (A[mod(b*i-b,n)],Blmod(j+1,3)1)))

Gamma .add_edges (E)

G=Gamma .automorphism_group ()

for £ in G:
if £((A[0],B[0]))==(A[0],B[0]) and £((A[b],B[1]))==(A[1],
B[2]) and
£((A[1]1,B[2]))==(A[n-11,B[2]):

print "sucess"
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