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Abstract. Let N be a sufficiently large integer. In this paper, it is proved that, with
at most O(N4/27+ε) exceptions, all even positive integers up to N can be represented
in the form p2

1 + p2
2 + p3

3 + p3
4 + p6

5 + p6
6, where p1, p2, p3, p4, p5, p6 are prime

numbers. This gives a large improvement of a recent result O(N127/288+ε) due to Liu
(Proc. Indian Acad. Sci. (Math. Sci.) 130(1) (2020) Article ID. 8).
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1. Introduction and main result

Let N , k1, k2, . . . , ks be natural numbers such that 2 � k1 � k2 � · · · � ks, N > s.
Waring’s problem of mixed powers concerns the representation of N as the form

N = xk1
1 + xk2

2 + · · · + xkss .

Almost since the invention of the circle method by Hardy and Littlewood nearly a century
ago, it has been folklore that the method fails to establish the solubility of problems of
Waring type when the sum of the reciprocals of the exponents does not exceed 2. As
articulated in [3], this convexity barrier ‘arises from the relative sizes of the product of
local densities associated with the system, and the square–root of the available reservoir
of variables that is a limiting feature of associated exponential sum estimates’, and has
been circumvented in very few cases by other devices. A variant of Waring’s problem in
which one considers mixed sums of squares, cubes and higher powers have provided a
rich environment for testing methods designed to approach this theoretical limit of the
circle method. A problem of this type that fails to be accessible to the circle method by
the narrowest of margins is the notorious one of representing integers as sums of two
squares, two positive integral cubes and two sixth powers. In 2013, Wooley [14] applied
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the method of Golubeva [5] to show, subject to the truth of the generalized Riemann
hypothesis (GRH), that all large integers are thus represented. However, Wooley’s work
[14] employs representations of special type and fails to deliver the anticipated asymptotic
formula for their total number. Also, Wooley [16] showed that, although the expected
asymptotic formula may occasionally fail to hold, the set of such exceptional instances is
extraordinarily sparse. Afterwards, Lü and Mu [8] refined the result of Wooley [16].

In view of the result of Wooley [14], it is reasonable to conjecture that, for every suffi-
ciently large even integer N , the following Diophantine equation

N = p2
1 + p2

2 + p3
3 + p3

4 + p6
5 + p6

6 (1.1)

is solvable. Here and below, the letter p, with or without subscript, always stands for a prime
number. But this conjecture is perhaps out of reach at present. In 2020, Liu [7] considered
the exceptional set of the representation (1.1). In [7], Liu mainly use the arguments of

Wooley [15] and showed that E(N ) � N
127
288 +ε, where E(N ) denotes the number of

positive even integersn up to N , which can not be represented as p2
1+p2

2+p3
3+p3

4+p6
5+p6

6.
In this paper, we shall continue to improve the estimate of the exceptional set for the

problem (1.1) and establish the following result.

Theorem 1.1. Let E(N ) denote the number of positive even integers n up to N, which can
not be represented as

n = p2
1 + p2

2 + p3
3 + p3

4 + p6
5 + p6

6. (1.2)

Then, for any ε > 0, we have

E(N ) � N
4
27 +ε.

Remark. In order to compare the result of Theorem 1.1 with that of Liu [7], we list the
numerical result as follows:

127

288
= 0.440972222 · · · ; 4

27
= 0.148148148 · · · .

We will establish Theorem 1.1 by using the method, which is created and developed
by Kawada and Wooley [9], to bound the set of exceptional integers not represented by
a given additive form in terms of the exceptional set corresponding to a subform. For the
exceptional set corresponding to a subform, we shall employ pruning process into the
Hardy–Littlewood circle method. In the treatment of the integrals over minor arcs, we
will employ the methods, which is developed by Brüdern [4], combining with the new
estimates for exponential sum over primes developed by Zhao [18] and Kumchev [10].
The full details will be explained in the following revelant sections.
Notation. Throughout this paper, let p, with or without subscripts, always denote a prime
number; ε always denotes a sufficiently small positive constant, which may not be the same
at different occurrences. As usual, we use ϕ(n) and d(n) to denote the Euler’s function
and Dirichlet’s divisor function, respectively. Also, we use χ mod q to denote a Dirichlet
character modulo q, and χ0 mod q the principal character. e(x) = e2π i x ; f (x) � g(x)
means that f (x) = O(g(x)); f (x) � g(x) means that f (x) � g(x) � f (x). N is a
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sufficiently large integer and n ∈ [N/2, N ], and thus log N � log n. The letter c, with or
without subscripts or superscripts, always denote a positive constant.

2. Preliminary and outline of the proof of Theorem 1.1

In order to better illustrate Lemma 2.1 and Lemma 2.2 below, we first introduce some
notations and definitions. When C ⊆ N, we write C for the complement N \ C of C within
N. When a and b are non-negative integers, it is convenient to denote by (C)ba the set
C ∩ (a, b], and by |C|ba the cardinality of C ∩ (a, b]. Next, when C,D ⊆ N, we define

C + D = {c + d : c ∈ C and d ∈ D}.

It is convenient, when k is a natural number, to describe a subset Q of N as being a high-
density subset of the k-th powers when (i) one has Q ∈ {nk : n ∈ N}, and (ii) for each
positive number ε, whenever N is a natural number sufficiently large in terms of ε, then
|Q|N0 > N 1/k−ε. Also, when θ > 0, we shall refer to a setR ⊆ N as having complementary
density growth exponent smaller than θ when there exists a positive number δ with the
property that, for all sufficiently large natural numbers N , one has |R|N0 < N θ−δ .

When q is a natural number and a ∈ {0, 1, . . . , q − 1}, we define Pa = Pa,q by

Pa,q = {a + mq : m ∈ Z}.

Also, we describe a set L as being a union of arithmetic progressions modulo q when, for
some subset L of {0, 1, . . . , q − 1}, one has

L =
⋃

l∈L
Pl,q .

In such circumstances, given a subset C of N and integers a and b, it is convenient to write

〈C ∧ L〉ba = min
l∈L

∣∣C ∩ Pl,q
∣∣b
a .

Let L be a union of arithmetic progressions modulo q, for some natural number q. When k
is a natural number, we describe a subset Q of N as being a high-density subset of the k-th
powers relative toLwhen (i) one hasQ ∈ {nk : n ∈ N}, and (ii) for each positive number ε,
whenever N is a natural number sufficiently large in terms of ε, then 〈Q∧L〉N0 �q N 1/k−ε.
In addition, when θ > 0, we shall refer to a set R ⊆ N as having L-complementary density
growth exponent smaller than θ when there exists a positive number δ with the property
that, for all sufficiently large natural numbers N , one has |R ∩ L|N0 < N θ−δ .

Lemma 2.1. Let L, M and N be unions of arithmetic progressions modulo q , for some
natural number q, and suppose that N ⊆ L + M. Suppose also that S is a high-density
subset of the squares relative toL, and thatA ⊆ N hasM-complementary density growth
exponent smaller than 1. Then, whenever ε > 0 and N is a natural number sufficiently
large in terms of ε, one has

∣∣A + S ∩ N ∣∣3N
2N �q N− 1

2 +ε
∣∣A ∩ M∣∣3N

N .
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Proof. See Theorem 2.2 of Kawada and Wooley [9]. �

Lemma 2.2. Let L, M and N be unions of arithmetic progressions modulo q , for some
natural number q, and suppose that N ⊆ L + M. Suppose also that C is a high-density
subset of the cubes relative to L, and that A ⊆ N has M-complementary density growth
exponent smaller than θ , for some positive number θ . Then, whenever ε > 0 and N is a
natural number sufficiently large in terms of ε, without any condition on θ , one has

∣∣A + C ∩ N ∣∣3N
2N �q N− 1

3 +ε
∣∣A ∩ M∣∣3N

N + N−1+ε
(∣∣A ∩ M∣∣3N

N

)2
.

Proof. See Theorem 4.1(a) of Kawada and Wooley [9]. �

In order to prove Theorem 1.1, we need the following proposition, whose proof will be
given in Section 3.

PROPOSITION 2.3

Let E1(N ) denote the number of positive integers n up to N , which satisfies n ≡ 0
(mod 2), n ≡ ±1 (mod 3), and can not be represented as p2

1 + p3
2 + p6

3 + p6
4 . Then, for

any ε > 0, we have

E1(N ) � N 1− 1
54 +ε.

Proof of Theorem 1.1. Let

A1 = {
p2

1 + p3
2 + p6

3 + p6
4 : p′

j s are primes, j = 1, 2, 3, 4
}
,

A2 = {
p2

1 + p2
2 + p3

3 + p6
4 + p6

5 : p′
j s are primes, j = 1, 2, 3, 4, 5

}
,

S1 = {
p2 : p is a prime

}
, S2 = {

p3 : p is a prime
}
,

M1 = {
n ∈ N : n ≡ 0 (mod 2), n ≡ ±1 (mod 3)

}
,

N1 = {
n ∈ N : n ≡ 1 (mod 2), n ≡ 0, 2 (mod 3)

}
, N2 = {

n ∈ N : n ≡ 0 (mod 2)
}
,

L1 = {
n ∈ N : n ≡ 1 (mod 24)

}
, L2 = {

n ∈ N : n ≡ 1 (mod 2), n ≡ ±1 (mod 3)
}
,

E1 = {
n ∈ N : n ≡ 0 (mod 2), n ≡ ±1 (mod 3), n �= p2

1 + p3
2 + p6

3 + p6
4, p′

j s are primes
}
,

E2 = {
n ∈ N : n ≡ 1 (mod 2), n ≡ 0, 2 (mod 3), n �= p2

1 + p2
2 + p3

3 + p6
4 + p6

5,

p′
j s are primes

}
,

E = {
n ∈ N : n ≡ 0 (mod 2), n �= p2

1 + p2
2 + p3

3 + p3
4 + p6

5 + p6
6, p′

j s are primes
}
.

Thus, we have E1(N ) = |E1|N0 and E(N ) = |E |N0 . Also, we write E2(N ) = |E2|N0 . Then
L1 is a union of arithmetic progression modulo 24, N2 is a union of arithmetic progression
modulo 2, and M1,N1 and L2 are unions of arithmetic progressions modulo 6, satisfying
the condition that N1 ⊆ L1 + M1 and N2 ⊆ L2 + N1. Moreover, it follows from the
Prime Number Theorem in arithmetic progression that

〈S1 ∧ L1〉N0 � N
1
2 (log N )−1 and 〈S2 ∧ L2〉N0 � N

1
3 (log N )−1.
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Therefore, S1 is a high-density subset of the squares relative toL1, and S2 is a high-density
subset of the cubes relative to L2. By Proposition 2.3, it is easy to see that

∣∣A1 ∩ M1
∣∣N
0 = |E1|N0 = E1(N ) � N 1− 1

54 +ε,

and thusA1 hasM1 complementary density growth exponent smaller than 1. From Lemma
2.1, we know that

∣∣E2
∣∣3N
2N = ∣∣A1 + S1 ∩ L2

∣∣3N
2N � N− 1

2 +ε
∣∣A1 ∩ M1

∣∣3N
N

� N− 1
2 +ε · E1(3N ) � N

1
2 − 1

54 +ε.

Let the integers N j for j � 0 by means of the iterative formula

N0 =
⌈

1

2
N

⌉
, N j+1 =

⌈
2

3
N j

⌉
, ( j � 0), (2.1)

where �N� denotes the least integer not smaller than N . Moreover, we define J to be the
least positive integer with the property that N j � 10, then J � log N . Therefore, there
holds

E2(N ) � 10 +
J∑

j=1

∣∣E2
∣∣3N j
2N j

� N
1
2 − 1

54 +ε. (2.2)

By (2.2), we know that

∣∣A2 ∩ N1
∣∣N
0 = ∣∣E2

∣∣N
0 = E2(N ) � N

1
2 − 1

54 +ε,

and thusA2 hasN1-complementary density growth exponent smaller than 1
2 . From Lemma

2.2, we obtain

∣∣E
∣∣3N
2N = ∣∣A2 + S2 ∩ N2

∣∣3N
2N �N− 1

3 +ε
∣∣A2 ∩ N1

∣∣3N
N + N−1+ε

(∣∣A2 ∩ N1
∣∣3N
N

)2

� N− 1
3 +ε · E2(3N ) + N−1+ε

(
E2(3N )

)2

� N
1
6 − 1

54 +ε � N
4
27 +ε.

Therefore, with the same notation as in (2.1), we deduce that

E(N ) � 10 +
J∑

j=1

|E |3N j
2N j

� N
4
27 +ε,

which completes the proof of Theorem 1.1.
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3. Outline of the proof of Proposition 2.3

In this section, we shall give the outline of the proof of Proposition 2.3. Let N be a
sufficiently large positive integer. For k = 2, 3, 6, we define

fk(α) =
∑

Xk<p�2Xk

(log p)e(pkα),

where Xk = (N/16)
1
k . Let

R(n) =
∑

n=p2
1+p3

2+p6
3+p6

4
X2<p1�2X2, X3<p2�2X3

X6<p3,p4�2X6

(log p1)(log p2)(log p3)(log p4).

Then for any Q > 0, it follows from orthogonality that

R(n) =
∫ 1

0
f2(α) f3(α) f 2

6 (α)e(−nα)dα

=
∫ 1+ 1

Q

1
Q

f2(α) f3(α) f 2
6 (α)e(−nα)dα.

In order to apply the circle method, we set

P = N
1

24 −2ε, Q = N
23
24 +ε. (3.1)

By Dirichlet’s lemma on rational approximation (for instance, see Lemma 2.1 of Vaughan
[12]), each α ∈ [1/Q, 1 + 1/Q] can be written in the form

α = a

q
+ λ, |λ| � 1

qQ
,

for some integers a, q with 1 � a � q � Q and (a, q) = 1. Then we define the major
arcs M and minor arcs m as follows:

M =
⋃

1�q�P

⋃

1�a�q
(a,q)=1

M(q, a), m =
[

1

Q
, 1 + 1

Q

]∖
M, (3.2)

where

M(q, a) =
[
a

q
− 1

qQ
,
a

q
+ 1

qQ

]
.

Then one has

R(n) =
{ ∫

M
+

∫

m

}
f2(α) f3(α) f 2

6 (α)e(−nα)dα.
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In order to prove Proposition 2.3, we need the two following propositions, whose proofs
will be given in Sects. 4 and 6, respectively.

PROPOSITION 3.1

Let the major arcs M be defined as in (3.2) with P and Q defined in (3.1). Then, for
n ∈ (N/2, N ] and any A > 0, there holds

∫

M
f2(α) f3(α) f 2

6 (α)e(−nα)dα = 1

216
S(n)J(n) + O

(
N

1
6 L−A)

,

where S(n) is the singular series defined in (4.1) below, which is absolutely convergent
and satisfies

(log log n)−c∗ � S(n) � d(n) (3.3)

for any integer n satisfying n ≡ 0 (mod 2) and n ≡ ±1 (mod 3), and some fixed constant
c∗ > 0; while J(n) is defined by (4.9) and satisfies

J(n) � N
1
6 .

For the properties (3.3) of singular series, we shall give the proof in Section 5.

PROPOSITION 3.2

Let the minor arcs m be defined as in (3.2) with P and Q defined in (3.1). Then we have

∫

m

∣∣ f 2
2 (α) f 2

3 (α) f 4
6 (α)

∣∣dα � N
1
3 +1− 1

54 +ε.

The remaining part of this section is devoted to establishing Proposition 2.3 by using
Propositions 3.1 and 3.2.

Proof of Proposition 2.3. Let U (N ) denote the set of integers n ∈ (N/2, N ] such that

∣∣∣∣
∫

m
f2(α) f3(α) f 2

6 (α)e(−nα)dα

∣∣∣∣ � N
1
6 L−A.

Then we have

N
1
3 L−2A|U (N )| �

∑

n∈U (N )

∣∣∣∣
∫

m
f2(α) f3(α) f 2

6 (α)e(−nα)dα

∣∣∣∣
2

�
∑

N
2 <n�N

∣∣∣∣
∫

m
f2(α) f3(α) f 2

6 (α)e(−nα)dα

∣∣∣∣
2

. (3.4)
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By Bessel’s inequality, we have

∑

N
2 <n�N

∣∣∣∣
∫

m
f2(α) f3(α) f 2

6 (α)e(−nα)dα

∣∣∣∣
2

�
∫

m

∣∣ f 2
2 (α) f 2

3 (α) f 4
6 (α)

∣∣dα.

(3.5)

Combining (3.4), (3.5) and Proposition 3.2, we have

|U (N )| � N 1− 1
54 +ε.

Therefore, with at most O(N 1−1/54+ε) exceptions, all the integers n ∈ (N/2, N ] satisfy

∣∣∣∣
∫

m
f2(α) f3(α) f 2

6 (α)e(−nα)dα

∣∣∣∣ � N
1
6 L−A.

Using the above equation and Proposition 3.1, we deduce that, with at most O(N 1−1/54+ε)

exceptions, all the positive integers n ∈ (N/2, N ] satisfying n ≡ 0 (mod2) and n ≡
±1 (mod3) can be represented in the form p2

1 + p3
2 + p6

3 + p6
4, where p1, p2, p3, p4 are

prime numbers. By a splitting argument, we obtain

E1(N ) � N 1− 1
54 +ε.

This completes the proof of Proposition 2.3.

4. Proof of Proposition 3.1

In this section, we shall concentrate on proving Proposition 3.1. We first introduce some
notations. For a Dirichlet character χ mod q and k ∈ {2, 3, 6}, we define

Ck(χ, a) =
q∑

h=1

χ(h)e

(
ahk

q

)
, Ck(q, a) = Ck(χ

0, a),

where χ0 is the principal character modulo q. Let χ2, χ3, χ
(1)
6 , χ

(2)
6 be Dirichlet characters

modulo q. Define

B
(
n, q, χ2, χ3, χ

(1)
6 , χ

(2)
6

) =
q∑

a=1
(a,q)=1

C2(χ2, a)C3(χ3, a)C6
(
χ

(1)
6 , a

)

C6
(
χ

(2)
6 , a

)
e

(
− an

q

)
, B(n, q) = B

(
n, q, χ0, χ0, χ0, χ0),

and write

A(n, q) = B(n, q)

ϕ4(q)
, S(n) =

∞∑

q=1

A(n, q). (4.1)
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Lemma 4.1. For (a, q) = 1 and any Dirichlet character χ mod q, there holds

|Ck(χ, a)| � 2q1/2dβk (q)

with βk = (log k)/ log 2.

Proof. See Problem 14 of Chapter VI of [13]. �

Lemma 4.2. The singular series S(n) satisfies (3.3).

The proof of Lemma 4.2 is given in Section 5.

Lemma 4.3. Let f (x) be a real differentiable function in the interval [a, b]. If f ′(x) is
monotonic and satisfies | f ′(x)| � θ < 1, then we have

∑

a<n�b

e2π i f (n) =
∫ b

a
e2π i f (x)dx + O(1).

Proof. See Lemma 4.8 of [11]. �

Lemma 4.4. Let χ2 mod r2, χ3 mod r3 and χ
(i)
6 mod r (i)

6 with i = 1, 2 be primitive char-

acters, r0 = [
r2, r3, r

(1)
6 , r (2)

6

]
, and χ0 the principal character modulo q. Then there holds

∑

q�x
r0|q

1

ϕ4(q)

∣∣B
(
n, q, χ2χ

0, χ3χ
0, χ

(1)
6 χ0, χ

(2)
6 χ0)∣∣ � r−1+ε

0 log257 x . (4.2)

Proof. By Lemma 4.1, we have

∣∣B
(
n, q, χ2χ

0, χ3χ
0, χ

(1)
6 χ0, χ

(2)
6 χ0)∣∣

�
q∑

a=1
(a,q)=1

∣∣C2
(
χ2χ

0, a
)
C3

(
χ3χ

0, a
)
C6

(
χ

(1)
6 χ0, a

)
C6

(
χ

(2)
6 χ0, a

)∣∣

� q2ϕ(q)d8(q).

Therefore, the left-hand side of (4.2) is

�
∑

q�x
r0|q

q2ϕ(q)d8(q)

ϕ4(q)
=

∑

t� x
r0

r2
0 t

2d8(r0t)

ϕ3(r0t)
� r−1+ε

0 (log x)
∑

t�x

d8(t)

t
.

� r−1+ε
0 log257 x .

This completes the proof of Lemma 4.4. �



   29 Page 10 of 25 Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:29 

Write

Vk(λ) =
∑

Xk<m�2Xk

e(mkλ),

Wk(χ, λ) =
∑

Xk<p�2Xk

(log p)χ(p)e(pkλ) − δχ

∑

Xk<m�2Xk

e(mkλ), (4.3)

where δχ = 1 or 0 according to whether χ is principal or not. Then by the orthogonality
of Dirichlet characters, for (a, q) = 1, we have

fk

(
a

q
+ λ

)
= Ck(q, a)

ϕ(q)
Vk(λ) + 1

ϕ(q)

∑

χ mod q

Ck(χ, a)Wk(χ, λ).

For j = 1, 2, . . . , 12, we define the sets S j as follows:

S j =
⎧
⎨

⎩

{2, 3, 6, 6}, if j = 1; {3, 6, 6}, if j = 4; {3, 6}, if j = 7; {3}, if j = 10;
{2, 3, 6}, if j = 2; {2, 3}, if j = 5; {6, 6}, if j = 8; {6}, if j = 11;
{2, 6, 6}, if j = 3; {2, 6}, if j = 6; {2}, if j = 9; φ, if j = 12.

Also, we write S j = {2, 3, 6, 6} \ S j . Then we have

∫

M
f2(α) f3(α) f 2

6 (α)e(−nα)dα =: I1 + 2I2 + I3 + I4 + I5 + 2I6 + 2I7

+ I8 + I9 + I10 + 2I11 + I12, (4.4)

where

I j =
∑

q�P

1

ϕ4(q)

q∑

a=1
(a,q)=1

( ∏

k∈S j

Ck(q, a)

)
e

(
− an

q

)

×
∫ 1

qQ

− 1
qQ

( ∏

k∈S j

Vk(λ)

)( ∏

k∈S j

∑

χ mod q

Ck(χ, a)Wk(χ, λ)

)
e(−nλ)dλ.

In the following content of this section, we shall prove that I1 produces the main term,
while the others contribute to the error term.

For k = 2, 3, 6, applying Lemma 4.3 to Vk(λ), we have

Vk(λ) =
∫ 2Xk

Xk

e(ukλ)du + O(1) = 1

k

∫ (2Xk )
k

Xk
k

v
1
k −1e(vλ)dv + O(1)

= 1

k

∑

Xk
k<m�(2Xk )

k

m
1
k −1e(mλ) + O(1). (4.5)
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Putting (4.5) into I1, we see that

I1 = 1

216

∑

q�P

B(n, q)

ϕ4(q)

∫ 1
qQ

− 1
qQ

( ∑

X2
2<m�(2X2)2

m− 1
2 e(mλ)

)

×
( ∑

X3
3<m�(2X3)3

m− 2
3 e(mλ)

)( ∑

X6
6<m�(2X6)6

m− 5
6 e(mλ)

)2

e(−nλ)dλ

+ O

( ∑

q�P

|B(n, q)|
ϕ4(q)

∫ 1
qQ

− 1
qQ

∣∣∣∣
∑

X2
2<m�(2X2)2

m− 1
2 e(mλ)

∣∣∣∣

×
∣∣∣∣

∑

X3
3<m�(2X3)3

m− 2
3 e(mλ)

∣∣∣∣

∣∣∣∣
∑

X6
6<m�(2X6)6

m− 5
6 e(mλ)

∣∣∣∣dλ

)
. (4.6)

By using the elementary estimate

∑

Xk
k<m�(2Xk )

k

m
1
k −1e(mλ) � N

1
k −1 min

(
N ,

1

|λ|
)

, (4.7)

and Lemma 4.4 with r0 = 1, the O-term in (4.6) can be estimated as

�
∑

q�P

|B(n, q)|
ϕ4(q)

( ∫ 1
N

0
Ndλ +

∫ ∞
1
N

N−2 · 1

λ3 dλ

)
� L257 � N

1
6 L−A.

If we extend the interval of the integral in the main term of (4.6) to [−1/2, 1/2], then from
(3.1) we can see that the resulting error is

� L257
∫ 1

2

1
qQ

N− 17
6 · dλ

λ4 � N− 17
6 q3Q3L257 � N− 17

6 (PQ)3L257 � N
1
6 −�

for some � > 0. Therefore, by Lemma 4.2, (4.6) becomes

I1 = 1

216
S(n)J(n) + O

(
N

1
6 L−A)

, (4.8)

where

J(n) :=
∑

m1+m2+m3+m4=n
X2

2<m1�(2X2)
2, X3

3<m2�(2X3)
3

X6
6<m3,m4�(2X6)

6

m
− 1

2
1 m

− 2
3

2 (m3m4)
− 5

6 � N
1
6 . (4.9)

In order to estimate the contribution of I j for j = 2, 3, . . . , 12, we shall need the
following three preliminary lemmas, i.e. Lemmas 4.5–4.7, whose proofs are exactly the
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same as Lemmas 3.5–3.7 in Zhang and Li [17], so we omit the details herein. In view of
this, for k = 2, 3, 6, we recall the definition of Wk(χ, λ) in (4.3) and write

Jk(g) =
∑

r�P

[g, r ]−1+ε
∑∗

χ mod r

max
|λ|� 1

r Q

∣∣Wk(χ, λ)
∣∣,

and

Kk(g) =
∑

r�P

[g, r ]−1+ε
∑∗

χ mod r

( ∫ 1
r Q

− 1
r Q

∣∣Wk(χ, λ)
∣∣2dλ

) 1
2

.

Here and below, 
∗ indicates that the summation is taken over all primitive characters.

Lemma 4.5. Let P, Q be defined as in (3.1). For k = 6, we have

K6(g) � g−1+εN− 1
3 Lc.

Lemma 4.6. Let P, Q be defined as in (3.1). Then we have

J3(g) � g−1+εN
1
3 Lc.

Lemma 4.7. Let P, Q be defined as in (3.1). Then, for any A > 0, we have

J2(1) � N
1
2 L−A.

Now, we concentrate on estimating the terms I j for j = 2, 3, . . . , 12. We begin with
the term I12, which is the most complicated one. Reducing the Dirichlet characters in I12
into primitive characters, we have

|I12| =
∣∣∣∣

∑

q�P

1

ϕ4(q)

q∑

a=1
(a,q)=1

e
(

− an

q

) ∫ 1
qQ

− 1
qQ

( ∑

χ2 mod q

C2(χ2, a)W2(χ2, λ)

)

×
( ∑

χ3 mod q

C3(χ3, a)W3(χ3, λ)

)( ∑

χ6 mod q

C6(χ6, a)W6(χ6, λ)

)2

e(−nλ)dλ

∣∣∣∣

=
∣∣∣∣

∑

q�P

∑

χ2 mod q

∑

χ3 mod q

∑

χ
(1)
6 mod q

∑

χ
(2)
6 mod q

1

ϕ4(q)
·B

(
n, q, χ2, χ3, χ

(1)
6 , χ

(2)
6

)

×
∫ 1

qQ

− 1
qQ

W2(χ2, λ)W3(χ3, λ)W6(χ
(1)
6 , λ)W6(χ

(2)
6 , λ)e(−nλ)dλ

∣∣∣∣

�
∑

r2�P

∑

r3�P

∑

r (1)
6 �P

∑

r (2)
6 �P

∑∗

χ2 mod r2

∑∗

χ3 mod r3

∑∗

χ
(1)
6 mod r (1)

6

∑∗

χ
(2)
6 mod r (2)

6
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×
∑

q�P
r0|q

∣∣B
(
n, q, χ2χ0, χ3χ0, χ

(1)
6 χ0, χ

(2)
6 χ0)∣∣

ϕ4(q)

×
∫ 1

qQ

− 1
qQ

∣∣∣W2
(
χ2χ0, λ

)
W3

(
χ3χ0, λ

)
W6

(
χ

(1)
6 χ0, λ

)
W6

(
χ

(2)
6 χ0, λ

)∣∣∣dλ,

where χ0 is the principal character modulo q and r0 = [r2, r3, r
(1)
6 , r (2)

6 ]. For q � P
and Xk < p � 2Xk with k = 2, 3, 6, we have (q, p) = 1. From this and the defi-
nition of Wk(χ, λ), we obtain W2

(
χ2χ

0, λ
) = W2

(
χ2, λ

)
, W3

(
χ3χ

0, λ
) = W3

(
χ3, λ

)

and W6
(
χ

(i)
6 χ0, λ

) = W6
(
χ

(i)
6 , λ

)
for primitive characters χ2, χ3, χ

(i)
6 with i = 1, 2.

Therefore, by Lemma 4.4, we obtain

|I12| �
∑

r2�P

∑

r3�P

∑

r (1)
6 �P

∑

r (2)
6 �P

∑∗

χ2 mod r2

∑∗

χ3 mod r3

∑∗

χ
(1)
6 mod r (1)

6

∑∗

χ
(2)
6 mod r (2)

6

×
∫ 1

r0Q

− 1
r0Q

∣∣∣W2(χ2, λ)W3(χ3, λ)W6
(
χ

(1)
6 , λ

)
W6

(
χ

(2)
6 , λ

)∣∣∣dλ

×
∑

q�P
r0|q

∣∣B
(
n, q, χ2χ

0, χ3χ
0, χ

(1)
6 χ0, χ

(2)
6 χ0

)∣∣
ϕ4(q)

� L257 ·
∑

r2�P

∑

r3�P

∑

r (1)
6 �P

∑

r (2)
6 �P

r−1+ε
0

∑∗

χ2 mod r2

∑∗

χ3 mod r3

∑∗

χ
(1)
6 mod r (1)

6

∑∗

χ
(2)
6 mod r (2)

6

×
∫ 1

r0Q

− 1
r0Q

∣∣∣W2(χ2, λ)W3
(
χ3, λ

)
W6

(
χ

(1)
6 , λ

)
W6(χ

(2)
6 , λ)

∣∣∣dλ.

In the last integral, we pick out
∣∣W2(χ2, λ)

∣∣ and
∣∣W3(χ3, λ)

∣∣, and then use Cauchy’s
inequality to derive that

|I12| � L257
( ∑

r2�P

∑∗

χ2 mod r2

max
|λ|� 1

r2Q

∣∣∣W2(χ2, λ)

∣∣∣
)( ∑

r3�P

∑∗

χ3 mod r3

max
|λ|� 1

r3Q

∣∣∣W3(χ3, λ)

∣∣∣
)

×
∑

r (1)
6 �P

∑∗

χ
(1)
6 mod r (1)

6

( ∫ 1

r(1)
6 Q

− 1

r(1)
6 Q

∣∣∣W6
(
χ

(1)
6 , λ

)∣∣∣
2
dλ

) 1
2

×
∑

r (2)
6 �P

r−1+ε
0

∑∗

χ
(2)
6 mod r (2)

6

( ∫ 1

r(2)
6 Q

− 1

r(2)
6 Q

∣∣∣W6
(
χ

(2)
6 , λ

)∣∣∣
2
dλ

) 1
2
. (4.10)

Now we introduce the iterative procedure to bound the sums over r (2)
6 , r (1)

6 , r3, r2, con-

secutively. We first estimate the above sum over r (2)
6 in (4.10) via Lemma 4.5. Since

r0 = [
r2, r3, r

(1)
6 , r (2)

6

] = [[
r2, r3, r

(1)
6

]
, r (2)

6

]
,



   29 Page 14 of 25 Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:29 

the sum over r (2)
6 is

=
∑

r (2)
6 �P

[[
r2, r3, r

(1)
6

]
, r (2)

6

]−1+ε
∑∗

χ
(2)
6 mod r (2)

6

( ∫ 1

r(2)
6 Q

− 1

r(2)
6 Q

∣∣∣W6
(
χ

(2)
6 , λ

)∣∣∣
2
dλ

) 1
2

= K6

([
r2, r3, r

(1)
6

]) � [
r2, r3, r

(1)
6

]−1+ε
N− 1

3 Lc. (4.11)

Again, by Lemma 4.5, the contribution of the quantity on the right-hand side of (4.11) to
the sum over r (1)

6 in (4.10) is

� N− 1
3 Lc ·

∑

r (1)
6 �P

[[
r2, r3

]
, r (1)

6

]−1+ε
∑∗

χ
(1)
6 mod r (1)

6

( ∫ 1

r(1)
6 Q

− 1

r(1)
6 Q

∣∣∣W6
(
χ

(1)
6 , λ

)∣∣∣
2
dλ

) 1
2

= N− 1
3 Lc · K6

([r2, r3]
) � [r2, r3]−1+εN− 2

3 Lc. (4.12)

By Lemma 4.6, the contribution of the quantity on the right-hand side of (4.12) to the sum
over r3 in (4.10) is

� N− 2
3 Lc ·

∑

r3�P

[r2, r3]−1+ε
∑∗

χ3 mod r3

max
|λ|� 1

r3Q

∣∣∣W3
(
χ3, λ

)∣∣∣

= N− 2
3 Lc · J3(r2) � r−1+ε

2 N− 1
3 Lc. (4.13)

Finally, from Lemma 4.7, inserting the bound on the right-hand side of (4.13) to the sum
over r2 in (4.10), we get

|I12| � N− 1
3 Lc ·

∑

r2�P

[1, r2]−1+ε
∑∗

χ2 mod r2

max
|λ|� 1

r2Q

∣∣∣W2
(
χ2, λ

)∣∣∣

= N− 1
3 Lc · J2(1) � N

1
6 L−A. (4.14)

For the estimation of the terms I2, I3, . . . , I11, by noting (4.5) and (4.7), we obtain

( ∫ 1
Q

− 1
Q

|Vk(λ)|2dλ

) 1
2 �

( ∫ 1
Q

− 1
Q

N
2
k −2 min

(
N ,

1

|λ|
)2

dλ + 1

Q

) 1
2

� N
1
k −1

( ∫ 1
N

0
N 2dλ +

∫ 1
Q

1
N

dλ

λ2

) 1
2 + 1

Q1/2 � N
1
k − 1

2 .

Using this estimate and the upper bound of Vk(λ), which derives from (4.5) and (4.7), that

Vk(λ) � N
1
k , we can argue similarly to the treatment of I12 and obtain

11∑

j=2

I j � N
1
6 L−A. (4.15)

Combining (4.4), (4.8), (4.14) and (4.15), we can derive the conclusion of Proposition 3.1.



Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:29 Page 15 of 25    29 

5. The singular series

In this section, we shall investigate the properties of the singular series which appear in
Proposition 3.1.

Lemma 5.1. Let p be a prime and pα‖k. For (a, p) = 1, if � � γ (p),we haveCk(p�, a) =
0, where

γ (p) =
{

α + 2, if p �= 2 or p = 2, α = 0;
α + 3, if p = 2, α > 0.

Proof. See Lemma 8.3 of [6]. �

For k � 1, we define

Sk(q, a) =
q∑

m=1

e

(
amk

q

)
.

Lemma 5.2. Suppose that (p, a) = 1. Then

Sk(p, a) =
∑

χ∈Ak

χ(a)τ (χ),

whereAk denotes the set of non-principal charactersχ modulo p for whichχk is principal,
and τ(χ) denotes the Gauss sum

p∑

m=1

χ(m)e
(m
p

)
.

Also, there hold |τ(χ)| = p1/2 and |Ak | = (k, p − 1) − 1.

Proof. See Lemma 4.3 of [12]. �

Lemma 5.3. For (p, n) = 1, we have

∣∣∣∣
p−1∑

a=1

S2(p, a)S3(p, a)S2
6 (p, a)

p4 e
(

− an

p

)∣∣∣∣ � 50p− 3
2 . (5.1)

Proof. We denote by S the left-hand side of (5.1). By Lemma 5.2, we have

S = 1

p4

p−1∑

a=1

( ∑

χ2∈A2

χ2(a)τ (χ2)

)( ∑

χ3∈A3

χ3(a)τ (χ3)

)

×
( ∑

χ6∈A6

χ6(a)τ (χ6)

)2

e
(

− an

p

)
.
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If |Ak | = 0 for some k ∈ {2, 3, 6}, then S = 0. If this is not the case, then

S = 1

p4

∑

χ2∈A2

∑

χ3∈A3

∑

χ
(1)
6 ∈A6

∑

χ
(2)
6 ∈A6

τ(χ2)τ (χ3)τ
(
χ

(1)
6

)
τ
(
χ

(2)
6

)

×
p−1∑

a=1

χ2(a)χ3(a)χ
(1)
6 (a)χ

(2)
6 (a)e

(
− an

p

)
.

From Lemma 5.2, the quadruple outer sums have not more than 50 terms. In each of these
terms, we have

∣∣τ(χ2)τ (χ3)τ
(
χ

(1)
6

)
τ
(
χ

(2)
6

)∣∣ = p2.

Since in any one of these terms χ2(a)χ3(a)χ
(1)
6 (a)χ

(2)
6 (a) is a Dirichlet character χ (mod

p), the inner sum is

p−1∑

a=1

χ(a)e
(

− an

p

)
= χ(−n)

p−1∑

a=1

χ(−an)e
(

− an

p

)
= χ(−n)τ (χ).

From the fact that τ(χ0) = −1 for principal character χ0 mod p, we have

∣∣χ(−n)τ (χ)
∣∣ � p

1
2 .

By the above arguments, we obtain

|S| � 1

p4 · 50 · p2 · p 1
2 = 50p− 3

2 .

This completes the proof of Lemma 5.3. �

Lemma 5.4. Let L (p, n) denote the number of solutions of the following congruence;

x2
1 + x3

2 + x6
3 + x6

4 ≡ n (mod p), 1 � x1, x2, x3, x4 � p − 1.

Then, for n ≡ 0 (mod 2) and n ≡ ±1 (mod 3), we have L (p, n) > 0.

Proof. We have

p · L (p, n) =
p∑

a=1

C2(p, a)C3(p, a)C2
6 (p, a)e

(
− an

p

)
= (p − 1)4 + Ep,

where

Ep =
p−1∑

a=1

C2(p, a)C3(p, a)C2
6 (p, a)e

(
− an

p

)
.
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By Lemma 5.2, we obtain

|Ep| � (p − 1)(
√
p + 1)(2

√
p + 1)(5

√
p + 1)2.

It is easy to check that |Ep| < (p−1)4 for p � 67. Therefore, we obtain L (p, n) > 0 for
p � 67. For p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, we can
check L (p, n) > 0 directly. This completes the proof of Lemma 5.4. �

Lemma 5.5. A(n, q) is multiplicative in q.

Proof. By the definition of A(n, q) in (4.1), we only need to show that B(n, q) is multi-
plicative in q. Suppose q = q1q2 with (q1, q2) = 1. Then we have

B(n, q1q2) =
q1q2∑

a=1
(a,q1q2)=1

C2(q1q2, a)C3(q1q2, a)C2
6 (q1q2, a)e

(
− an

q1q2

)

=
q1∑

a1=1
(a1,q1)=1

q2∑

a2=1
(a2,q2)=1

C2(q1q2, a1q2 + a2q1)C3(q1q2, a1q2 + a2q1)

× C2
6 (q1q2, a1q2 + a2q1)e

(
− a1n

q1

)
e

(
− a2n

q2

)
. (5.2)

For (q1, q2) = 1 and k ∈ {2, 3, 6}, there holds

Ck(q1q2, a1q2 + a2q1) =
q1q2∑

m=1
(m,q1q2)=1

e

(
(a1q2 + a2q1)mk

q1q2

)

=
q1∑

m1=1
(m1,q1)=1

q2∑

m2=1
(m2,q2)=1

e

(
(a1q2 + a2q1)(m1q2 + m2q1)

k

q1q2

)

=
q1∑

m1=1
(m1,q1)=1

e

(
a1(m1q2)

k

q1

) q2∑

m2=1
(m2,q2)=1

e

(
a2(m2q1)

k

q2

)

= Ck(q1, a1)Ck(q2, a2). (5.3)
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Putting (5.3) into (5.2), we deduce that

B(n, q1q2) =
q1∑

a1=1
(a1,q1)=1

C2(q1, a1)C3(q1, a1)C
2
6 (q1, a1)e

(
− a1n

q1

)

×
q2∑

a2=1
(a2,q2)=1

C2(q2, a2)C3(q2, a2)C
2
6 (q2, a2)e

(
− a2n

q2

)

= B(n, q1)B(n, q2).

This completes the proof of Lemma 5.5. �

Lemma 5.6. Let A(n,q) be as defined in (4.1).

(i) We have

∑

q>Z

|A(n, q)| � Z− 1
2 +εd(n),

and thus the singular series S(n) is absolutely convergent and satisfies S(n) � d(n);
(ii) There exists an absolute positive constant c∗ > 0, such that, for n ≡ 0 (mod 2) and
n ≡ ±1 (mod 3),

S(n) � (log log n)−c∗
.

Proof. From Lemma 5.5, we know that B(n, q) is multiplicative in q. Therefore, there
holds

B(n, q) =
∏

pt‖q
B(n, pt ) =

∏

pt‖q

pt∑

a=1
(a,p)=1

C2(p
t , a)C3(p

t , a)C2
6 (pt , a)e

(
−an

pt

)
.

(5.4)

From (5.4) and Lemma 5.1, we deduce that B(n, q) = ∏
p‖q B(n, p) or 0 according to q

being square-free or not. Thus, one has

∞∑

q=1

A(n, q) =
∞∑

q=1
q square-free

A(n, q). (5.5)

Write

V (p, a) := C2(p, a)C3(p, a)C2
6 (p, a) − S2(p, a)S3(p, a)S2

6 (p, a).
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Then

A(n, p) = 1

(p − 1)4

p−1∑

a=1

S2(p, a)S3(p, a)S2
6 (p, a)e

(
− an

p

)

+ 1

(p − 1)4

p−1∑

a=1

V (p, a)e
(

− an

p

)
. (5.6)

Applying Lemma 4.1 and noticing that Sk(p, a) = Ck(p, a) + 1, we get Sk(p, a) � p
1
2 ,

and thus V (p, a) � p
3
2 . Therefore, the second term in (5.6) is � c1 p− 3

2 . On the other
hand, from Lemma 5.3, we can see that the first term in (5.6) is � 24 · 50p− 3

2 = 800p− 3
2 .

Let c2 = c1 + 800. Then we have proved that, for p � n, there holds

|A(n, p)| � c2 p
− 3

2 . (5.7)

Moreover, if we use Lemma 4.1 directly, it follows that

|B(n, p)| = ∣∣
p−1∑

a=1

C2(p, a)C3(p, a)C2
6 (p, a)e

(
− an

p

)∣∣∣∣

�
p−1∑

a=1

∣∣C2(p, a)C3(p, a)C2
6 (p, a)

∣∣

� (p − 1) · 24 · p2 · 216 = 3456p2(p − 1),

and therefore,

|A(n, p)| = |B(n, p)|
ϕ4(p)

� 3456p2

(p − 1)3 � 23 · 3456p2

p3 = 27648

p
. (5.8)

Let c3 = max(c2, 27648). Then, for square-free q, we have

∣∣A(n, q)
∣∣ =

(∏

p|q
p�n

∣∣A(n, p)
∣∣
)( ∏

p|q
p|n

∣∣A(n, p)
∣∣
)

�
( ∏

p|q
p�n

(
c3 p

− 3
2
))(∏

p|q
p|n

(
c3 p

−1)
)

= cω(q)
3

(∏

p|q
p− 3

2

)( ∏

p|(n,q)

p
1
2

)
� q− 3

2 +ε(n, q)
1
2 .

Hence, by (5.5), we obtain

∑

q>Z

|A(n, q)| �
∑

q>Z

q− 3
2 +ε(n, q)

1
2 =

∑

d|n

∑

q> Z
d

(dq)−
3
2 +εd

1
2

=
∑

d|n
d−1+ε

∑

q> Z
d

q− 3
2 +ε �

∑

d|n
d−1+ε

( Z

d

)− 1
2 +ε
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= Z− 1
2 +ε

∑

d|n
d− 1

2 +ε � Z− 1
2 +εd(n).

This proves (i) of Lemma 5.6.
To prove (ii) of Lemma 5.6, by Lemma 5.5, we first note that

S(n) =
∏

p

(
1 +

∞∑

t=1

A
(
n, pt

)) =
∏

p

(
1 + A(n, p)

)

=
( ∏

p�c3

(
1 + A(n, p)

))( ∏

p>c3
p�n

(
1 + A(n, p)

))( ∏

p>c3
p|n

(
1 + A(n, p)

))
.

(5.9)

From (5.7), we have

∏

p>c3
p�n

(
1 + A(n, p)

)
�

∏

p>c3

(
1 − c3

p3/2

)
� c4 > 0. (5.10)

By (5.8), we know that there exists c5 > 0 such that

∏

p>c3
p|n

(
1+A(n, p)

)
�

∏

p>c3
p|n

(
1− c3

p

)
�

∏

p|n

(
1− c3

p

)
� (log log n)−c5 . (5.11)

On the other hand, it is easy to see that

1 + A(n, p) = p · L (p, n)

ϕ4(p)
. (5.12)

By Lemma 5.4, we know that L(p, n) > 0 for all p with n ≡ 0 (mod 2) and n ≡
±1 (mod 3), and thus 1 + A(n, p) > 0. Therefore, there holds

∏

p�c3

(
1 + A(n, p)

)
� c6 > 0. (5.13)

Combining the estimates (5.9)–(5.11) and (5.13), and taking c∗ = c5 > 0, we derive that

S(n) � (log log n)−c∗
.

This completes the proof of Lemma 5.6. �

6. Proof of Proposition 3.2

In this section, we first present some lemmas that will be used to prove Proposition 3.2.
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Lemma 6.1. Suppose that α is a real number, and that there exist integers a ∈ Z and
q ∈ N satisfying

(a, q) = 1, 1 � q � �, |qα − a| � �−1,

where

� =
{
N

3
4 , if k = 2,

N
1
2 , if k = 3.

Then, for k ∈ {2, 3}, we have

fk(α) � X1−ηk+ε
k + X1+ε

k√
q(1 + N |α − a/q|) ,

where

η2 = 1

8
, η3 = 1

12
.

Proof. For the proof of the upper bound of f2(α), one can see Theorem 3 of [10]; while
for the proof of the upper bound of f3(α), one can see Lemma 2.3 of [18]. �

Lemma 6.2. Let 2 � k1 � k2 � · · · � ks be natural numbers such that

s∑

i= j+1

1

ki
� 1

k j
, 1 � j � s − 1.

Then we have

∫ 1

0

∣∣∣∣
s∏

i=1

fki (α)

∣∣∣∣
2

dα � N
1
k1

+···+ 1
ks

+ε
.

Proof. See Lemma 1 of [1]. �

Lemma 6.3. Let fk(α) be defined as above. Then we have

∫ 1

0

∣∣ f 2
2 (α) f 8

6 (α)
∣∣dα � N

4
3 +ε.

Proof. The conclusion can be deduced by counting the number of solutions of the under-
lying Diophantine equation:

x2
1 − x2

2 = y6
1 + y6

2 + y6
3 + y6

4 − y6
5 − y6

6 − y6
7 − y6

8
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with X2 < x1, x2 � 2X2 and X6 < yi � 2X6 for i = 1, 2, . . . , 8. If x1 �= x2, the
contribution is bounded by X8+ε

6 . If x1 = x2, the contribution is bounded by

� X2 ·
∫ 1

0
| f6(α)|8dα.

By Lemma 2.5 of [12], we have

∫ 1

0
| f6(α)|8dα � X5+ε

6 ,

and thus the contribution with x1 = x2 is � X2 · X5+ε
6 . Combining the above two cases,

we deduce that

∫ 1

0

∣∣ f 2
2 (α) f 8

6 (α)
∣∣dα � X8+ε

6 + X2 · X5+ε
6 � N

4
3 +ε.

This completes the proof of Lemma 6.3. �

For the proof of Proposition 3.2, we define a general Hardy–Littlewood dissection
employed in our application of the circle method. When X is a positive number with
X �

√
N , we take N(X) to be the union of the intervals

N(q, a, X) = {
α : |qα − a| � XN−1},

with 1 � a � q � X and (a, q) = 1. Also, when X �
√
N/2, we put R(X) =

N(2X) \ N(X). Finally, we take

m1 = m ∩ N(N
1
8 ), m2 = m \ N(N

1
8 ).

For α ∈ m2, by Dirichlet’s lemma on rational approximation (for instance, see Lemma 2.1
of Vaughan [12]), there exist a ∈ Z and q ∈ N satisfying

1 � q � N
1
2 , |qα − a| � N− 1

2 , (a, q) = 1.

Since α ∈ m2, we know that either q > N
1
8 or N |qα − a| > N

1
8 . Therefore, by Lemma

6.1, it is easy to see that

f3(α) � X
1− 1

12 +ε

3 + X1+ε
3√
N 1/8

� N
11
36 +ε,
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which combines Hölder’s inequality, Lemma 6.2 and Lemma 6.3 yields

∫

m2

∣∣ f 2
2 (α) f 2

3 (α) f 4
6 (α)

∣∣dα

� sup
α∈m2

∣∣ f3(α)
∣∣ 2

3 ×
(∫ 1

0

∣∣ f 2
2 (α) f 2

3 (α) f 2
6 (α)

∣∣dα

) 2
3
( ∫ 1

0

∣∣ f 2
2 (α) f 8

6 (α)
∣∣dα

) 1
3

� (
N

11
36 +ε

) 2
3 · (N 1+ε)

2
3 · (N

4
3 +ε)

1
3 � N

1
3 +1− 1

54 +ε. (6.1)

We define the function ϒ : [0, 1] → [0, 1] by putting ϒ(α) = 0 for α ∈ [0, 1] \ N(N
1
8 ),

and when α ∈ N(N
1
8 ) ∩ N(q, a, N

1
8 ) we write

ϒ(α) = (q + qN |α − a/q|)−1.

Define

m3 = m1 ∩ N(N
1
18 ), m4 = m1 \ N(N

1
18 ).

By noting the fact that m4 ⊆ N(N
1
8 )\N(N

1
18 ), hence for α ∈ m4, it follows from Lemma

6.1 that

| f2(α)|2 � N 1+εϒ(α) and | f3(α)|2 � N
11
18 +ε,

which combined with the trivial estimate f6(α) � N
1
6 +ε yields

∫

m4

∣∣ f 2
2 (α) f 2

3 (α) f 4
6 (α)

∣∣dα

�
(

sup
α∈m4

| f3(α)|2
)

· N 1
3 +ε · N 1+ε ·

∫

N(N
1
8 )

ϒ(α)| f6(α)|2dα

� N
35
18 +ε ·

∫

N(N
1
8 )

ϒ(α)| f6(α)|2dα. (6.2)

By Lemma 2 of [2], we obtain

∫

N(N
1
8 )

ϒ(α)| f6(α)|2dα � N− 2
3 +ε.

Using the above estimate and (6.2), we conclude that

∫

m4

∣∣ f 2
2 (α) f 2

3 (α) f 4
6 (α)

∣∣dα � N
1
3 +1− 1

18 +ε. (6.3)

For α ∈ m3, by Lemma 6.1, we get

| f2(α)|2 � N 1+εϒ(α) and | f3(α)|2 � N
2
3 +εϒ(α).
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Hence, for α ∈ m3, there holds

∣∣ f 2
2 (α) f 2

3 (α)
∣∣ � N

5
3 +εϒ2(α),

which combined with the trivial estimate f6(α) � N
1
6 +ε yields

∫

m3

∣∣ f 2
2 (α) f 2

3 (α) f 4
6 (α)

∣∣dα � N 2+ε ·
∫

m∩N(N
1
18 )

ϒ2(α)
∣∣ f6(α)

∣∣2dα. (6.4)

This leaves the set m ∩ N(N
1

18 ) for treatment, and this set is covered by the union of sets

R(Y ) = N(2Y ) \ N(Y ) as Y runs over the sequence 2− j N
1
18 with P � Y � N

1
18 /2.

Note that ϒ(α) � Y−1 for α /∈ N(Y ). Moreover, Lemma 2 of [2] supplies the following
upper bound

∫

N(2Y )

ϒ(α)
∣∣ f6(α)

∣∣2dα � Y N− 5
6 +ε + N− 2

3 +ε,

which implies that

∫

R(Y )

ϒ2(α)
∣∣ f6(α)

∣∣2dα � N− 5
6 +ε + N− 2

3 +εY−1

� N− 5
6 +ε + N− 2

3 +εP−1 � N− 17
24 +ε. (6.5)

By a splitting argument, from (6.4) and (6.5), we derive that

∫

m3

∣∣ f 2
2 (α) f 2

3 (α) f 4
6 (α)

∣∣dα � N 2+ε max
P�Y�N

1
18 /2

∫

R(Y )

ϒ2(α)
∣∣ f6(α)

∣∣2dα

� N 2+ε · N− 17
24 +ε � N

1
3 +1− 1

24 +ε. (6.6)

Combining (6.1), (6.3) and (6.6), we obtain the conclusion of Proposition 3.2.
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