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1. Introduction

The classic Miintz—Szasz theorem proved way back in 1914, states that for a strictly
increasing sequence of positive real numbers 0 < Ay < A| < - - -, the family {x**, k € N}
is total in Lz([O, 1]), if and only if Z,fig ﬁ = 400 (cf. [1] and [6]). Several other versions
of this result have been widely developed by many authors (cf. [1], [4] and [16] and some
references therein). This was inspired by the original result of Miintz and Szasz in the case
of C([0, 1]), the space of complex continuous function on [0, 1] (cf. [14] and [16]). The
purpose here is to generate and prove some analogues of the upshot for some classes of
non-commutative Lie groups, for which the main point is to define what the equivalent of
monomials should be.

In [5], Cook stated and proved an analogue (in an appropriate sense) of the result above
for LE(R"), the set of compactly supported square integrable functions on R”. He also
treated the case of a restrictive class of nilpotent Lie groups having a fixed abelian polarizer
for the open set of linear forms in general position. He showed a one way analogue of
Miintz—Szasz theorem making use of Miintz—Szasz sequences, which will be defined in
the next section.
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In [2], we treated the context of Euclidean motion groups G := K x R", where K =
SO(n) and n > 2. For this, we make use of the representation theory of G to define
analogues of Miintz—Szasz theorem for matrix coefficients. The present paper aims to
tackle the context of compact extensions of Heisenberg groups. We will propose a Miintz—
Szasz analogue for square integrable compactly supported functions of the semi direct
product Gk = K X Hp,y1, where K is a compact subgroup of automorphisms of the
Heisenberg group Hy,+1. To do so, we are submitted to rephrase the condition of Miintz—
Szasz theorem above as an integral against a monomial of a family of coordinate functions
depending upon the parameters involved in the spectrum of the Plancherel measure of G.

The outline of the paper is as follows. The next section is devoted to recall Miintz—
Szasz theorem on the Euclidean space and record some basic facts about the Heisenberg
group Hy, 11, the class of their compact extensions, their unitary representations, and their
related Plancherel formula. In Section 3, when K is connected we prove a first analogue
of Miintz—Szasz theorem for G g using the coordinates function of a compactly supported
function on G g associated to the Garding vectors of G g (cf. Theorem 3.6), whose Fourier
transform are shown to admit an analytic continuation on the whole complex plane with an
exponential domination (cf. Theorem 3.2). A second variant of Miintz—Szasz theorem for
arbitrary compact subgroup K is also proved in Section 3 (cf. Theorem 3.9). As a direct
application, the setting of Heisenberg groups is treated (cf. Subsection 3.4). We do hope
that our study could go farther to encompass other more general contexts.

2. Backgrounds
2.1 Miintz—Szasz theorem on R"
We first introduce the following symbols:

N is the set of non-negative integers.

N* is the set of positive integers.

R* is the set of positive real numbers.

Lg(X ) is the vector space of square integrable compactly supported functions on X,
where X is a locally compact measure space.

DEFINITION 2.1

(1) Let0 < Xp < A1 < A2 < --- be an increasing sequence of positive real numbers. Let
[Ar] designate the integer part of Ag. Let & = {k € N : [Ax] iseven} and & = {k €
N : [Ax] is odd}. Then (1¢)i is said to be a real Miintz—Szasz’s sequence abbreviated
as MS, if & and & are both infinite sets and

1 1
— = — = +00.

(2) Let A be a positive real number. Define the function x* as

xA:{ Xt (x =0)

(DM (=0 <0,

with the convention that x° = 1. We have the following (cf. [3]).
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Theorem 2.2. Let (i (k))k, (i € {1, ...,n}) ben strictly increasing sequences of positive
real numbers. Let by, . .., b, be n fixed positive numbers. Then the family

a0 kR0 L k) € NT)
spans Lz(l_[?:l[—bi, b;]) if and only if (A; (k))r is MS foranyi € {1, ..., n}.
This result can be easily generalized to encompass L%(R") as follows.
COROLLARY 2.3

Let (i (k))k, (i € {1,...,n}) be n strictly increasing sequences of positive real numbers.
Then the null-function is the unique function in L%(R“) such that fR,, 1?](1“) .- -ﬁ”(k”)
fx1, ..., xp)dxy - -dx, = O for every (ki,...,k,) € N, if and only if each of the

sequences (Aj (k)i is MS, foreveryi € {1, ..., n}.

Remark 2.4. Let (A; (k))k, (i € {1,...,n}) be n strictly increasing sequence of positive
integers. We can rephrase the statement of Corollary 2.3 as follows: Suppose that f €
Lg(R") and s is a fixed element of C". Then f = 0 is the unique function such that

gk Ahnhn)
fGst,....80) =0

asihl(kl) .. asr);n(kn)

forevery ki, ..., k, € N, if and only if each (}; (k))x is MS, foranyi € {1, ..., n}. Here,

r 1 —ix-s
f(s)= W . Sx)e™ " dx (2.1)

designates the Fourier transform of f € L'(R"), where x -5 denotes the usual inner product
on R”.

2.2 On Heisenberg groups

2.2.1 Generalities. For a positive integer n, let h := §,41 be the (2n + 1)-dimensional
Heisenberg Lie algebra endowed with the basis & = {X1, ..., X,,, Y1, ..., Yy, Z}, whose
pairwise brackets equal to zero, except the following:

[X;,.Yi1=2Z, ie{l,...,n}.

It is a two-step nilpotent Lie algebra. We denote by H», 4 its Lie group and h* its vector
dual space. Any element of Hj, | is written through the basis Z as

(x,y,2) :=exp(x1X1) - - -exp(x, Xp)exp(y1 Y1) - - - exp(yn Yn)exp(zZ),

with x = (x1,..., %),y = (V1,-..,yp) € R" and z € R, where exp : h — Hop4
designates the exponential mapping. The law group of Hj, | reads as

Ly )x@, Y. ) =+x y+y. 2+ +x ).
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2.2.2 The unitary dual of Hj,41. Let ITZE denote the unitary dual of H»,4; and let
7 € Hy,41 be aunitary irreducible representation of infinite dimension. Using the Kirillov

theory, 7 is equivalent to m, = IndAH,Iz”“xg, where £ € h*, M = exp(m), m := R-
span{Z, Y1, Y>, ..., Y,} is a real polarization for ¢, and y, is a unitary character of M
given by

xe(expX) =e 10X X em.

Actually, one can take £ = LZ*, for some A € R* = R\ {0}. We denote from now on 7,
instead of m¢. Any infinite dimensional irreducible unitary representation is equivalent to
a representation i, for some A € R*.

Let 77, be the space of all continuous functions on Hy, 1 with compact support modulo
M and which satisfy the following covariance relation:

E(gxh)=£()x, (W, heM and g e Hyy1. (2.2)

Then, the representation 7, is realized as a left translation on the completion of e%ﬂﬂ’k with

respect to the norm szn+|/M |E(g)|*dg < +o0, where dg is a Hb,1-invariant measure
on Hypt1/M.
For ¢ € LZ(R", A) L2(H2,,+1/M, M), we have by a direct computation,

(P, g, EX,0,0) = E((p, ¢, )" % (x,0,0))
=&x—p,—q.—t+p-q),

where p, ¢, x € R" and t € R. Using the covariance relation (2.2), we obtain for & € ji%,

n)\.(p7 q, t)é(x’ 07 0) = g(x - P, q, —1 + P q)
= E(x — p,0,0)e” A0,

The group Fourier transform of an integrable function f on Hj,, is defined to be the
operator-valued function:

0 (f) = fm) = f £(p. . O (p, 4. dpdgdt.

Hap+1

The Plancherel measure is supported on the subset of 172;,: given by {m;; A € R*}, and
the Plancherel formula for Hj,4| precisely reads as follows:

17115 = /R REXGRIFATALL TS 2.3)

where ||, (f)I3g = trace(my (f * £*)) denotes the Hilbert-Schmidt norm of the operator
. (f) (cf. [71, [11] and [17]).

2.3 On the semi direct product K X Hpp41

2.3.1 Generalities. Let K be a compact subgroup of Aut(Hp,+1), the group of automor-
phisms of Hy,41. Itactson Ho,y 1 viak O (p, q,t) = (k-(p, q), t), where K acts naturally
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on R?". A maximal compact connected group of automorphisms of H, | is given by the
unitary group U (n). Conjugating by an automorphism of Hy, 1 if necessary, we can always
assume that K C U (n), the unitary group of C". It is well known that (U (n), Ha,+1) is a
Gelfand pair (this means that the convolution algebra of K -invariant L !-functions on Hy,, 1 |
is commutative) and there are many proper subgroups K of U (n) for which (K, Hz,+1)
form a Gelfand pair. Let us fix K and opt for the notation G = K X Hj, 1 instead of G
for the semi-direct product of Hj,+1 and K with the group law

(k,x,y,t)(h,u,v,s) = (kh, (x,y,t) * (k- (u,v),s)),

where (x, y, 1), (4, v,s) € Hyy+1andk,h € K.For K = U (n), K X Hy; 41 isknown as the
Heisenberg motion group (cf. [15]). Moreover, foreachk € K C U(n), v : (x,y,t)
(k - (x,y),t) is an automorphism of Hp, 1, because U (n) preserves the symplectic form
X-u—y-v.

2.3.2 Representation theory of G. Taking a representation p of H»,41 and using the auto-
morphism ¢ considered below, we can define the representation p; by px(x, y,f) =
p(k - (x,y),t) which coincides with p at the center. If we take p to be the Schrédinger
representation m, then by Stone-von Neumann theorem, (7, ) is unitarily equivalent to
7, and we get a unitary intertwining operator j; such that

k- (e, y, 1) = muk - (e, y), 1) = () m(x, y, s (k)

fork € K and (x, y, t) € Ha,+1. The operator-valued function w; can be chosen so that it
becomes a unitary representation of K on L?(R") and is called a metaplectic representation.
For more details, see [7].

For & # 0 and (7, L%(R", 1)) the irreducible unitary representation of Hj,1, the
Mackey induction machinery (cf. [13]) allows to define the induced representation

), — G ~ G Hop+1 ~ G
O, = IndHZanA ~ Inde’lHIndM X, 2 Indyy x5,

which acts on the space .75, , the completion of the set of compactly supported contin-

uous functions & : K — L2(R", 1) satisfying the covariance relation: £(k - (p, g),t) =
m.(p,q, 1 [£ (k)] with respect to the norm

2 _ 2
€13 = fK 162 2 g k.
where dk denotes a normalized measure on K. Actually, ®, is defined by

Ok, (p, g, DE(S) :=ma(s™" - (p, @), DIEG™ - 9)],

for & € Ho,, k,s € K and (p,q,t) € Hypt1. In this context, 5, is identified (and
so far noted) to the space LZ(K x R, 1) of the representation Indf,, Xx- As the space
L%(K) ® L?(R") turns out to be dense in L2(K x R"), for the sake of simplicity, we are
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very often submitted to pick up a basis {¢; ® W, }i,;)eaxr C L*(K) ® L*(R"), where A
and I' are countable sets and {W), }, cr are of compact supports (one can take, for instance,
a basis of wavelets of compact support included in some dyadic cubes, cf. [12]). Note that
®, is not irreducible.

2.3.3 A variant of the Plancherel formula on G. For many technical reasons, we found
it hard to manipulate the operators (u;)x-0. Thus, we will later generate our analogue
of Miintz—Szasz theorem making use of the following “non-irreducible” version of the
Plancherel theorem on G. The group Fourier transform of an integrable function f on G
is given by the operator-valued function

0,(f) = f(©,) = /K fH £k, p.q. 0Ok, p. q. Ndkdpdgdr.
2n+1

Thanks to [9] and [10], a variant of the Plancherel formula for the group G is given for
feL'nL*G)by

R XA 4

and this finds back formula (2.3), when K = {e}.

3. Miintz-Szasz’s analogues for K x Hp, 41

Our objective in this section is to generate an analogue of Miintz—Szasz theorem in the
context of the semi-direct product G = K x H,41, where K is a compact subgroup of
Aut(Hoy41).

3.1 First preliminary results

3.1.1 The coordinates functions. Let f € L%(G). Let {e; ® W) }(i,y)eaxr be a fixed
orthonormal basis of L?(K) ® L?(R") as above. For two pairs I = (i, y), I’ = (i’,y’) €
A x T"'and u € R, we define the coordinate function:

fm<u>=// F ks (pog)eu+q-xe
R~ KZ RZ"

(k)W (x — p)e;(s) W, (x)
dpdgdsdkdx. 3.1

We have the following.

Lemma 3.1. Forany f € L'(G)andany I,1' € A x T, the function fr.1 is well defined
and it is of compact support whenever f is.
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Proof. We have

flfz/,z(u)lduff/ f/ 16k s (pr @)+ q - Xer
R R n K2 R2n

()W, (x — p)l
|&; ()W, (x)|d pdgdsdkdxdu

5/ / /If(s'k‘l,s~(p,q),u)ew
]R3" KZ R

(k)W (x — p)ei(s)Wy (x)|
dpdgdsdkdxdu.

By applying successive Holder inequalities, we get

/Ifzr,z(u)ldus/ / f|f(s-k*1,s-(p,q>,u)e,-f<k>é,-<s>|
R RZ” K2 R
1
(/ Wy — p)Px)
Rn

1
( / |®V(x)|2dx)2dudsdkdpdq
Rn

SII‘I’yllzll‘I’yfllz/ //If(k,p,q,u)l
R JK JR

(/K Ie,-/(k_ls)|2ds)%

1
( / |Ei(s)|2ds>2dkdudpdq
K
<Ny 20y 2 ller ll2llei 20l f Il < +o0.

Assume now that supp(f) C K x A(0, @) x [—«, o], where (0, ) designates the ball
of R?" of radius « centered at the origin for some positive real number . As g - x lies in
a compact set of R as x belongs to the support of W,» which is compact, it appears clear
that fp/ ; is compactly supported on R.

O

3.2 From a basis of L>*(R") to a basis of L*(R", 1)

There is a way to construct a function § e LE(R", )) starting from & € L2(R™"). Let
g € Hpuyi, there exists a unique x € R” and a unique b € M such that g = X % b
where X = (x, 0, 0). Define then ?E by E(g) = S()c))(_1 (b). Thus é obviously satisfies the
covariance relation (2.2) and belongs to the space L~ (R", 1).

We are now ready to prove the following.

Theorem 3.2. Let feLg(G) and {e; ® W, }i)eaxr be an orthonormal basis of

L*(K) ® LZ(R") as above. Let {\ily}yer be the corresponding orthonormal basis of
L%(R", 1) defined as in Section 3.2. Then for 1 # 0, the operator valued ©, (f) expands
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as ®A.(f)(ei ® \Ily) = Zl’:(f’,y’)GAXF f]’,]()")(ei/ ® \ily/), 1 = (l, )/) S AxT and

—

fr.1 admits an analytic continuation to the whole complex plane with the property that

.. —_— —_—
for some positive constant a,,, fp [(z) = 0(e*'l for any 7 € C. Here fr.1 denotes the
Fourier transform of fp 1 as in formula (2.1).

Proof. We first prove the following.
Lemma 3.3. Consider the orthonormal basis {e; ® \ily}(,-,y)eAXr C L3(K) ® L*(R", 1).
Then (8, (f)(er @W,1), ¢; ®W,) = frr. /() forany f € L'(G)NL*(G), I', ] € AxT,
and any A # 0.
Proof. We have the following:
(O(Ner @ Wy, e ® By)
= [ [ 0xhresrby 0@ )8, Gravds
K n
= [ [ esthes e, ésr¥, (ards
K n

:/ / / f(kf P Q’t)n)n(S7] : (pv qvt))ei’(k71 's)\yy’
" JK? J Hopyy
x)e; (s)\i’), (x)dpdgdrdkdsdx

Z/ / / f(s'k711S'(p’CI)vt)nk(pvq’t)\py/(x)ei’
" JK? J Hopy1
(k)é; (s)¥, (x)d pdgdrdkdsdx

:/ / f f(S ‘k_l,S . (p’ Q)v t)ei’
" JK? J Hopyi

()W, (x — p)e”=49g,(5)W,, (x)d pdgdrdkdsdx

Z/R(/R/K TG s (o) ut g e

()W, (x — pe; (s)\Ily (x)dpdqudkdx)
efi)\udu

= Fr1().

Now, fix f € LE(G) meeting the assumption of the theorem. We have the following.
Lemma 3.4. The function f | belongs to L%(R) forany I' )] € A xT.

Proof. We have

|f1/,1(u)|§/ // G-k s (poq)ou+q )
R~ K2 RZn
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lei ()W, (x — p)II2i ()W, (x)|dpdgdkdsdx

(we use Holder’s inequality)
1

N7 2
5/ / / |wy<x>é,-(s)e,»/<k>|(/ |f<s-kl,s-<p,q),u+q-x)|2dp)
n K2 Rn R~
1
( / W, (x — p)|2dp> ’ dgdkdsdx.
Rn

Since f, e, Wy, e;, W, are compactly supported and due to successive Holder inequal-
ities, we obtain:

|f1/,1(u)|§M1/ / |0y, (x)e; (s)epr (k)|
R” K2
1
(// £k s (pog)u+ g - 0Pdpdg)’
(/ W, (x — p)lzdp)idkdsdx
Rn
SMZ(/ / / |fGs ks (pog)u+q -0
n K2 RZn
1
(f/ |e,'/(k)\llyr(x—p)|2dpdkdx>2
K JR2n

< Malerlalwy o [ [ [ 156 ks kg o)
Rr JK2 JR2n
1

21 ()W, (x) |2dpdqdkdsdx> 2

=

& ()W, (x) |2dpdqdkdsdx>

Finally, we get

/R | frr.1 (u)|*du < M4||e,-f||%||wyf||%( /R fK |é,-(s)lily(x)|2dsdx)

</// |f(k,p,q,t)|2dpdqdkdt>
R JK JR

2 2 2 2 2
< Mallex 1151y Iz1le 1211y 1211 f 115 < oo,
for some positive constants M, M>, M3 and M4 and this finishes the proof. O

Using the theorem of holomorphy under the integral sign, one can show that the function
?]/’\] extends to an entire function on the whole complex plane. On the other hand, the
support of fp ; issitting inside [—a,,, oy, ]. Indeed, suppose that supp(f) C K x Z(0, «) x
[, «] and assume that u + g - x € [—a, a] (otherwise fy ; is identically zero), then
we get |u| < o+ |q - x| < a + «flx|2. Here, x belongs to the support of Wy which is a
compact of R", supposed to be included in a ball %(0, B, ). We obtain conclusively that
lu| <a+aB), :=a,. Therefore, we get

|E7<z>|s// / e sk s ()4 q )|
R R3" KZ



27 Page 10 of 16 Proc. Indian Acad. Sci. (Math. Sci.) (2021) 131:27
le; ()W, (x — p)lle; (s)\ify (x)|dpdgdxdkdsdu

J
< @ InE / s Goldu < € ¥ £ 11,
R

where Jm(z) denotes the imaginary part of z. |

3.2.1 Analogue of Miintz—Szasz theorem on G. First, we have the following:

Lemma 3.5. Let K be a connected compact Lie group and ¢ its Lie algebra. Then there
exists a compact set C in ¥ such that the exponential mapping from C to K is surjective.

Proof. Since exp : £ — K is a local diffeomorphism, one can write £ = (J o Vi,
where each V; is an open set of £ and exp : Vy — exp(V,) is a diffeomorphism. Since
K is compact and connected, then exp : ¢ — K is surjective (cf. [8]), hence K =
exp(® = e €xp(Vy), where each exp(Vy) is an open set of K. We obtain therefore that
K = U,N:1 exp(Vy,) for some positive integer N. Finally the exponential mapping from

C = UlNzl Vy, to UlNzl exp(Vy,) = K is surjective. O

We assume from now on that K is a connected compact subgroup of O (2n). Then its Lie
algebra t is a subspace of 4%, (R), the Lie algebra of O(2n). With the above in mind,
define for f € LE(G), the following function on C, X Ha,+1 C R™ x Hp,41 by

F(T,(p.q,w) = fexp(T), (p, q,u)),

where m is the dimension of £ and C,, is the compact set as in Lemma 3.5. Remark here
that fbelongs to L%(Rm X Hp,4+1) whenever f € LE(G).

Letnow s € K,k = (ki,...,km,kmy1) € N*t t = (t1,...,1,) and & =
TRAEE ~tﬂ)"‘m, we define

= [ [ O fts (gt g ndgdudt. 32
RrRm JR+

We now suggest the following first analogue for Miintz—Szasz theorem for G.

Theorem 3.6. Let [ € LE(G). For a strictly increasing sequence (M)x of positive real
numbers, (A ) k>0 is MS, ifand only if, the trivial function is the unique function f satisfying
I,?(f)(s, p, x) =0 for almost every s € K, p, x € R" and for any k € N"*1,

Proof. We first prove the following lemma.

Lemma 3.7. Let (Ag)k>0 be MS and [ € Lg(G). IffR,,H gkff(k, s-(p,q),u+q-x)
dqdu = 0, for any j € N and for almost every (k, s, x, p) € K*> x R" x R", then f
vanishes on G.
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Proof. Letl,I' € A x T and fp; the coordinate function defined as in Section 3.1. Then

we have
/zkffzf,z(u)dbt:// / / uh i f(s ks (pog)u+q - x)ep (k)
R R n KZ RZn

W, (x — p)e;(s)V, (x)dpdgdsdkdxdu

:/ f F(p,x,s,k)
RZ" KZ

(/ uti fk,s-(p.q),u+q ~x)dqdu)dsdkdpdx
Rn-H
(where F(p, x, s, k)

=er (k™ 5)Wy (x = p)éi () Wy (x))
=0 (by the assumption of the lemma).

As above, the function fj/ ; is compactly supported on R. By applying Corollary 2.3, we
obtain that f;/ ; = 0 on R as (Ax)x is MS. On the other hand, by Lemma 3.3, we have

IO (Nlks = Y. [FraGl? =0.

I,I'eAxT

Due to formula (2.4), we show that f vanishes on G. This achieves the proof. (]

Back to the proof of Theorem 3.6, we first prove the “only if” part: If for almost every
seK,p,xeR"?, Ilﬁ(f)(s, p, x) = 0 then by applying Corollary 2.3, we get that
/ uMtnst f(t,s - (p.q), u +q - x)dgdu =0,
Rn+l1
for almost every t € R™, which induces that

/ EAkarlf(kss : (pa CI)vM +q )C)dqdu :0’
Rn+l1

for almost every k,s € K and for any k;,,11 € N. Lemma 3.7 applied to the function
(k, (p,q,u)) — f(k, (p,q,u)) entails that f = 0 almost everywhere on G.

We look now for the “if”” part: Suppose that (A;) is not MS, then applying Corollary 2.3,
there exists a non-zero function ¢ € Lg(R’”) satisfying

/ B M (At = 0, (33)

for all (ky, ..., k,) € N". Thus, considering f(t, p.q,u) = v (t)1p(p,q,u), where B
is any compact set of Hy,41, we get that Ilﬁ( f)(s, p,x) = 0 for almost every s € K,
p,x € R" and for any k € N"*!_ Here, 13 means the characteristic function of B. This
ends the proof of the theorem.
|
It is somehow possible to reformulate the statement of Theorem 3.6 making use of an
integral over the group G. Let j, j/ € N™ x N and consider

T (). x) = / P ()G, pox)dp
, N
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_ At i A ~
= / / pri iy mtL f(t, s - (p, q), u + q - x)dpdgdudt
n H2n+1

= / / PH it it fexp(), s - (pg). u+q - x)
Cn JHopy1
dpdgdudt

B / P iutint1 f(exp(t), s - (p, q), u + g - x)dpdgdudt.
(G=exp(Cp)x Hap+t1)

As a direct consequence of Theorem 3.6, the following corollary holds.
COROLLARY 3.8

Let f € Lg(G) and let ()i be a strictly increasing sequence of positive real numbers.
Then (})j>0 is MS, if and only if, f is trivial whenever lej,(f) (s, x) = 0 for almost
everys € K, x € R" and for anyj, j’ € N"*1 x N.

Proof. Let us prove the “only if” part: If for almost every s € K, x € R" and for any
j.j e N x N, ijj,(f)(s, x) = 0 then by applying Corollary 2.3, we get that

/ pH i fexp(t), s - (p.q).u+¢ - x)dpdgdu =0,
Hopqt
for almost every t € R”, which induces that

f pritutine fk, s (p.q),u+q - x)dpdgdu =0,

Hopti

for almost every k € K and for any j,,+1 € N. The function

Fi 2 p = Fi(p) =/ 1f"'"*‘f(k,s (P, @), u+q - x)dqdu

Rn+

belongs to LE(R"). In fact, by applying Cauchy—Schwartz inequality we get

1

1 1
= [ ([ wenrag) ([ 17k (ot a 0Pdg)
R R7 R

1
Sle (f If(k,S~(p,q),u+q-x)Izdf1>2du
R \JRe
1
< Mz(/ / |fk,s-(p,q),u+gq -x)lqudu)z.
R JRn
Therefore, we obtain that
/ |Fe(p)*dp < Mzz/ / |f(k,s - (p,q),u+q-x)*dgdudp
R» Rr JR+1

= M22/ |f(k’ (17, 51), f|2dpdth
R2n+1
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Hence, we are done using the fact that

f/|mm%mhw@m6
K JR"

Besides, thanks to Corollary 2.3, we get that

/ u)\jerlf(k,s.(p’q)’u+q~x)dqdu :0,
R

n+l

for any j,,+1 € N and for almost every (k, s, x) € K x R*". Lemma 3.7 applied to the
function (k, (p, q,u)) — f(k, (p, q, u)) entails that f = 0 almost everywhere on G.
On the other hand, the “if”” part is a direct consequence of Theorem 3.6. ]

3.3 A second variant of Miintz—Szasz theorem for K x Hap, 41

We keep our notation and consider a strictly increasing sequence {rny }; of positive integers
and assume that K is arbitrary. Let 7" be the vector space generated by the family of
monomials {x"*; k € N}. Let .#p ; be the linear subspace spanned by all the f;/ ;’s for
fixed I’,I € A x I'. We shall produce a two-sides discrepant variant of Miintz-Szasz
theorem for G which appears to deeply depend on the fine properties of the group in
question and its unitary representations.

Let 271 ; be the operator defined on LE(G) by @p ;(f) = fr.;. So from the last
section, 27/ ; takes its value on L2([—oz,,, ay]) for some positive real number «,,. Let
T = Ran(ap ;) C L2([—ay, ay]) denote the range of the linear map <7 ;. The
following result is a second variant of Miintz—Szasz theorem for compact extensions of
Heisenberg groups.

Theorem 3.9. Let G = K X Hy,11. Given a strictly increasing sequence of positive
integers {ny}x the following assertions are equivalent:

(1) {ni}r is MS.
(2) ForanyI' )1 € Ax T, ¥ isdensein ¥ + 1y ;.
(3) Forsomel € A x T,V isdensein ¥V + 1.

Proof. The fact that {n}; is MS is equivalent to the fact that " is dense in Lz([—ay, ay])
and soin 7"+t ;. Then only the proof of (3)=>(1) is required. This amounts to show that
77,7 1s dense in L2([—ay, ay]) for some I € A x T'. Indeed, ¥ is dense ¥ + 7,1 which
is dense in L2([—Oly, @, ]) and this entails the fact that ¥ is dense in L2([—ay, ay ).

Let g € Lz([—a),, ay]), then forany [ = f1 ® f» ® f3 where fi € C*(K), f2 €
CX(R*") and f3 € C2°(R), we have

0=fyngume

=f ' g(u)/ / [k s (p@)u+q-x)eik)
ay R JK2 JR2n

W, (x — p)é;(s)¥, (x)dpdgdsdkdxdu
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=/ yg(u)/ / / Fils KD fals - (@) fou + g - er(k)
—ay Rn KZ RZn
W, (x — ple; (s)\IJy (x)dpdgdsdkdxdu.

As this holds for any f; € C°°(K), we obtain that for almost all k € K,

02/ yg(u)/ // fals - (P, @) f3(u +q - x)e
—ay Rr JK JR2n

(k" )W, (x — p)ei(s)
W, (x)dpdgdsdxdu

=fyg(u>/ // HO D +maG - (@) %)
—ay Rr JK JR2
ik )W, (x — mi (s (p. @)@ ()W, ()d pdgdsdxdu,

where 71, 7> designate the first and the second projections of R*". Since again this holds
forany f> € CSO(RZ"), we get for almost all (k, p, g) € K X R2n,

ozf yg(u)/ /f3<u+nz(s—1-(p,q)>-x)ei(k—1-s>
R JK

—ay

W, (x — 7[1(s71 -(p,)))ei (s)\fly (x)dsdxdu.

As the function
vk | g(u)/ ei(k™! - 5)ei(s)
—ay K
/R fu+ms™ - (p @) - Wy (x —mi(s™ - (p, )Wy (x)dxdsdu,

is continuous using the theorem of continuity under the integral sign, one gets that v(k) = 0
for any k € K. Hence

w:(p,q) ’ g(u)/K lei (5)I*
/R i+ (p ) - )Wy (x —mis™" - (p, )W, (x)dxdsdu

is null for almost all (p,q) € R?". Likewise, we get that u also vanishes on R*". We
Ay

finally deduce that0 = (0, 0) := [Z} g(u) f3(w)du [y |e; (8)[?ds fga [Wy (x)|?dx which

induces that fiﬁy &) f3(u)du = 0. As this holds for any f3 € C2°(R), we find that g is
null on [~ay,, a;, ]. This completes the proof of the theorem. |

3.4 The setting of Heisenberg groups

The Heisenberg group can be regarded as a trivial case of G g where K = {e}. We consider
{lily}yer - LE(R”) an orthonormal basis of L2(R", 1). Let f € L?(Han41) such that
supp(f) C #(0, a) x [—a, a] for some positive number «. We define in a similar way as
in formula (3.1), the function f, , as follows:
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Jyry @) = /M f(p.q.u+q- )W, (x — p)¥, (x)dpdgdx.
Then we have the following.

Theorem 3.10. Let f € L%(Hg,,_H) and let {‘I’y}yer - Lg(R") be an orthonormal basis
of L*>(R", 1) defined as in Section 3.2. Consider (A )i a strictly increasing sequence
of positive real numbers. Let K = (ki, ..., ky, kyt1) € N+ p = (p1,..., pn) and
p* = pi**i - p M and define

Hop1

R(f)(x) 2/ putt f(p, g, u+q - x)dudpdq.

Then

(1) For A # 0, the operator-valued Fourier transform expands as

TNy =Y fry Wy,

y'el’

and fygy admits an analytic continuation to the whole complex plane with the property
that for some positive real number o, fy/,y (z) = 0(e* ) forany z € C.

(2) (M=o is MS, if and only if the trivial function is the unique function satisfying
I,?‘ (f)(x) = 0 for almost every x € R", and for any k € N1,

3.5 A concluding remark

We find back the result by Cook in [5]. Let G = exp(g) be a nilpotent Lie group which
admits an ideal b C g, polarizing all representations for which the orbits of the related
linear forms are of maximal dimension, which is the case of Heisenberg groups. The author
proved a Miintz—Szasz theorem for the matrix coefficients of the operator valued Fourier
transform on G. As a part of the proof, he constructed a so called an almost strong Malcev
basis, which is a Malcev basis of g with respect to b. Then the author uses such a basis to
only prove partial similar result as in Theorem 3.6.
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