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1. Introduction

The classic Müntz–Szàsz theorem proved way back in 1914, states that for a strictly
increasing sequence of positive real numbers 0 ≤ λ0 < λ1 < · · · , the family {xλk , k ∈ N}
is total in L2([0, 1]), if and only if

∑+∞
k=0

1
λk

= +∞ (cf. [1] and [6]). Several other versions
of this result have been widely developed by many authors (cf. [1], [4] and [16] and some
references therein). This was inspired by the original result of Müntz and Szàsz in the case
of C([0, 1]), the space of complex continuous function on [0, 1] (cf. [14] and [16]). The
purpose here is to generate and prove some analogues of the upshot for some classes of
non-commutative Lie groups, for which the main point is to define what the equivalent of
monomials should be.

In [5], Cook stated and proved an analogue (in an appropriate sense) of the result above
for L2

c(R
n), the set of compactly supported square integrable functions on R

n . He also
treated the case of a restrictive class of nilpotent Lie groups having a fixed abelian polarizer
for the open set of linear forms in general position. He showed a one way analogue of
Müntz–Szàsz theorem making use of Müntz–Szàsz sequences, which will be defined in
the next section.
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In [2], we treated the context of Euclidean motion groups G := K � R
n , where K =

SO(n) and n � 2. For this, we make use of the representation theory of G to define
analogues of Müntz–Szàsz theorem for matrix coefficients. The present paper aims to
tackle the context of compact extensions of Heisenberg groups. We will propose a Müntz–
Szàsz analogue for square integrable compactly supported functions of the semi direct
product G K = K � H2n+1, where K is a compact subgroup of automorphisms of the
Heisenberg group H2n+1. To do so, we are submitted to rephrase the condition of Müntz–
Szàsz theorem above as an integral against a monomial of a family of coordinate functions
depending upon the parameters involved in the spectrum of the Plancherel measure of G.

The outline of the paper is as follows. The next section is devoted to recall Müntz–
Szàsz theorem on the Euclidean space and record some basic facts about the Heisenberg
group H2n+1, the class of their compact extensions, their unitary representations, and their
related Plancherel formula. In Section 3, when K is connected we prove a first analogue
of Müntz–Szàsz theorem for G K using the coordinates function of a compactly supported
function on G K associated to the Garding vectors of G K (cf. Theorem 3.6), whose Fourier
transform are shown to admit an analytic continuation on the whole complex plane with an
exponential domination (cf. Theorem 3.2). A second variant of Müntz–Szàsz theorem for
arbitrary compact subgroup K is also proved in Section 3 (cf. Theorem 3.9). As a direct
application, the setting of Heisenberg groups is treated (cf. Subsection 3.4). We do hope
that our study could go farther to encompass other more general contexts.

2. Backgrounds

2.1 Müntz–Szàsz theorem on R
n

We first introduce the following symbols:

• N is the set of non-negative integers.
• N

∗ is the set of positive integers.
• R

∗ is the set of positive real numbers.
• L2

c(X) is the vector space of square integrable compactly supported functions on X ,
where X is a locally compact measure space.

DEFINITION 2.1

(1) Let 0 ≤ λ0 < λ1 < λ2 < · · · be an increasing sequence of positive real numbers. Let
[λk] designate the integer part of λk . Let E = {k ∈ N : [λk] is even} and O = {k ∈
N : [λk] is odd}. Then (λk)k is said to be a real Müntz–Szàsz’s sequence abbreviated
as MS, if E and O are both infinite sets and

∑

k∈O

1

λk
=

∑

k∈E

1

λk
= +∞.

(2) Let λ be a positive real number. Define the function xλ as

xλ =
{

xλ (x ≥ 0)

(−1)[λ](−x)λ (x < 0),

with the convention that x0 = 1. We have the following (cf. [3]).
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Theorem 2.2. Let (λi (k))k , (i ∈ {1, . . . , n}) be n strictly increasing sequences of positive
real numbers. Let b1, . . . , bn be n fixed positive numbers. Then the family

{xλ1(k1)
1 · · · xλn(kn)

n ; (k1, . . . , kn) ∈ N
n}

spans L2(
∏n

i=1[−bi , bi ]) if and only if (λi (k))k is MS for any i ∈ {1, . . . , n}.

This result can be easily generalized to encompass L2
c(R

n) as follows.

COROLLARY 2.3

Let (λi (k))k , (i ∈ {1, . . . , n}) be n strictly increasing sequences of positive real numbers.
Then the null-function is the unique function in L2

c(R
n) such that

∫
Rn xλ1(k1)

1 · · · xλn(kn)
n

f (x1, . . . , xn)dx1 · · · dxn = 0 for every (k1, . . . , kn) ∈ N
n, if and only if each of the

sequences (λi (k))k is MS, for every i ∈ {1, . . . , n}.

Remark 2.4. Let (λi (k))k , (i ∈ {1, . . . , n}) be n strictly increasing sequence of positive
integers. We can rephrase the statement of Corollary 2.3 as follows: Suppose that f ∈
L2

c(R
n) and s is a fixed element of C

n . Then f = 0 is the unique function such that

∂λ1(k1)+···+λn(kn)

∂sλ1(k1)
1 · · · ∂sλn(kn)

n

f̂ (s1, . . . , sn) = 0

for every k1, . . . , kn ∈ N
n , if and only if each (λi (k))k is MS, for any i ∈ {1, . . . , n}. Here,

f̂ (s) = 1

(2π)
n
2

∫

Rn
f (x)e−i x ·sdx (2.1)

designates the Fourier transform of f ∈ L1(Rn), where x ·s denotes the usual inner product
on R

n .

2.2 On Heisenberg groups

2.2.1 Generalities. For a positive integer n, let h := h2n+1 be the (2n + 1)-dimensional
Heisenberg Lie algebra endowed with the basis B = {X1, . . . , Xn, Y1, . . . , Yn, Z}, whose
pairwise brackets equal to zero, except the following:

[Xi , Yi ] = Z , i ∈ {1, . . . , n}.
It is a two-step nilpotent Lie algebra. We denote by H2n+1 its Lie group and h∗ its vector
dual space. Any element of H2n+1 is written through the basis B as

(x, y, z) := exp(x1 X1) · · · exp(xn Xn)exp(y1Y1) · · · exp(ynYn)exp(zZ),

with x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n and z ∈ R, where exp : h → H2n+1

designates the exponential mapping. The law group of H2n+1 reads as

(x, y, z) ∗ (x ′, y′, z′) = (x + x ′, y + y′, z + z′ + x · y′).
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2.2.2 The unitary dual of H2n+1. Let Ĥ2n+1 denote the unitary dual of H2n+1 and let
π ∈ Ĥ2n+1 be a unitary irreducible representation of infinite dimension. Using the Kirillov
theory, π is equivalent to π� := IndH2n+1

M χ�, where � ∈ h∗, M = exp(m), m := R-
span{Z , Y1, Y2, . . . , Yn} is a real polarization for �, and χ� is a unitary character of M
given by

χ�(expX) = e−i〈�,X〉; X ∈ m.

Actually, one can take � = λZ∗, for some λ ∈ R
∗ = R�{0}. We denote from now on πλ

instead of π�. Any infinite dimensional irreducible unitary representation is equivalent to
a representation πλ for some λ ∈ R

∗.
LetH ′

πλ
be the space of all continuous functions on H2n+1 with compact support modulo

M and which satisfy the following covariance relation:

ξ(g ∗ h) = ξ(g)χ−1
� (h), h ∈ M and g ∈ H2n+1. (2.2)

Then, the representation πλ is realized as a left translation on the completion of H ′
πλ

with
respect to the norm

∫
H2n+1/M |ξ(g)|2dġ < +∞, where dġ is a H2n+1-invariant measure

on H2n+1/M.

For ξ ∈ L2(Rn, λ) � L2(H2n+1/M, λ), we have by a direct computation,

πλ(p, q, t)ξ(x, 0, 0) = ξ((p, q, t)−1 ∗ (x, 0, 0))

= ξ(x − p,−q,−t + p · q),

where p, q, x ∈ R
n and t ∈ R. Using the covariance relation (2.2), we obtain for ξ ∈ H ′

πλ
,

πλ(p, q, t)ξ(x, 0, 0) = ξ(x − p,−q,−t + p · q)

= ξ(x − p, 0, 0)e−iλ(t−q·x).

The group Fourier transform of an integrable function f on H2n+1 is defined to be the
operator-valued function:

πλ( f ) = f̂ (πλ) =
∫

H2n+1

f (p, q, t)πλ(p, q, t)d pdqdt.

The Plancherel measure is supported on the subset of Ĥ2n+1 given by {πλ; λ ∈ R
∗}, and

the Plancherel formula for H2n+1 precisely reads as follows:

‖ f ‖2
2 =

∫

R∗
‖πλ( f )‖2

HS|λ| n
2 dλ, (2.3)

where ‖πλ( f )‖2
HS = trace(πλ( f ∗ f ∗)) denotes the Hilbert–Schmidt norm of the operator

πλ( f ) (cf. [7], [11] and [17]).

2.3 On the semi direct product K � H2n+1

2.3.1 Generalities. Let K be a compact subgroup of Aut(H2n+1), the group of automor-
phisms of H2n+1. It acts on H2n+1 via k �(p, q, t) = (k ·(p, q), t), where K acts naturally



Proc. Indian Acad. Sci. (Math. Sci.)          (2021) 131:27 Page 5 of 16    27 

on R
2n . A maximal compact connected group of automorphisms of H2n+1 is given by the

unitary group U (n). Conjugating by an automorphism of H2n+1 if necessary, we can always
assume that K ⊂ U (n), the unitary group of C

n . It is well known that (U (n), H2n+1) is a
Gelfand pair (this means that the convolution algebra of K -invariant L1-functions on H2n+1
is commutative) and there are many proper subgroups K of U (n) for which (K , H2n+1)

form a Gelfand pair. Let us fix K and opt for the notation G = K � H2n+1 instead of G K

for the semi-direct product of H2n+1 and K with the group law

(k, x, y, t)(h, u, v, s) = (kh, (x, y, t) ∗ (k · (u, v), s)),

where (x, y, t), (u, v, s) ∈ H2n+1 and k, h ∈ K . For K = U (n), K �H2n+1 is known as the
Heisenberg motion group (cf. [15]). Moreover, for each k ∈ K ⊆ U (n), ϑ : (x, y, t) �→
(k · (x, y), t) is an automorphism of H2n+1, because U (n) preserves the symplectic form
x · u − y · v.

2.3.2 Representation theory of G. Taking a representation ρ of H2n+1 and using the auto-
morphism ϑ considered below, we can define the representation ρk by ρk(x, y, t) =
ρ(k · (x, y), t) which coincides with ρ at the center. If we take ρ to be the Schrödinger
representation πλ, then by Stone-von Neumann theorem, (πλ)k is unitarily equivalent to
πλ and we get a unitary intertwining operator μλ such that

k · πλ(x, y, t) = πλ(k
−1 · (x, y), t) = μλ(k)−1πλ(x, y, t)μλ(k)

for k ∈ K and (x, y, t) ∈ H2n+1. The operator-valued function μλ can be chosen so that it
becomes a unitary representation of K on L2(Rn) and is called a metaplectic representation.
For more details, see [7].

For λ �= 0 and (πλ, L2(Rn, λ)) the irreducible unitary representation of H2n+1, the
Mackey induction machinery (cf. [13]) allows to define the induced representation


λ = IndG
H2n+1

πλ � IndG
H2n+1

IndH2n+1
M χλ � IndG

Mχλ

which acts on the space H
λ , the completion of the set of compactly supported contin-
uous functions ξ : K → L2(Rn, λ) satisfying the covariance relation: ξ(k · (p, q), t) =
πλ(p, q, t)−1[ξ(k)] with respect to the norm

‖ξ‖2
2 =

∫

K
‖ξ(k)‖2

L2(Rn)
dk,

where dk denotes a normalized measure on K . Actually, 
λ is defined by


λ(k, (p, q, t))ξ(s) := πλ(s
−1 · (p, q), t)[ξ(k−1 · s)],

for ξ ∈ H
λ , k, s ∈ K and (p, q, t) ∈ H2n+1. In this context, H
λ is identified (and
so far noted) to the space L2(K × R

n, λ) of the representation IndG
Mχλ. As the space

L2(K ) ⊗ L2(Rn) turns out to be dense in L2(K × R
n), for the sake of simplicity, we are
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very often submitted to pick up a basis {ei ⊗ �γ }(i,γ )∈A×
 ⊂ L2(K ) ⊗ L2(Rn), where A
and 
 are countable sets and {�γ }γ∈
 are of compact supports (one can take, for instance,
a basis of wavelets of compact support included in some dyadic cubes, cf. [12]). Note that

λ is not irreducible.

2.3.3 A variant of the Plancherel formula on G. For many technical reasons, we found
it hard to manipulate the operators (μλ)λ�=0. Thus, we will later generate our analogue
of Müntz–Szàsz theorem making use of the following “non-irreducible” version of the
Plancherel theorem on G. The group Fourier transform of an integrable function f on G
is given by the operator-valued function


λ( f ) = f̂ (
λ) =
∫

K

∫

H2n+1

f (k, p, q, t)
λ(k, p, q, t)dkd pdqdt.

Thanks to [9] and [10], a variant of the Plancherel formula for the group G is given for
f ∈ L1 ∩ L2(G) by

‖ f ‖2
2 =

∫

R∗
‖
λ( f )‖2

HS|λ| n
2 dλ (2.4)

and this finds back formula (2.3), when K = {e}.

3. Müntz–Szàsz’s analogues for K � H2n+1

Our objective in this section is to generate an analogue of Müntz–Szàsz theorem in the
context of the semi-direct product G = K � H2n+1, where K is a compact subgroup of
Aut(H2n+1).

3.1 First preliminary results

3.1.1 The coordinates functions. Let f ∈ L2
c(G). Let {ei ⊗ �γ }(i,γ )∈A×
 be a fixed

orthonormal basis of L2(K ) ⊗ L2(Rn) as above. For two pairs I = (i, γ ), I ′ = (i ′, γ ′) ∈
A × 
 and u ∈ R, we define the coordinate function:

f I ′,I (u) =
∫

Rn

∫

K 2

∫

R2n
f (s · k−1, s · (p, q), u + q · x)ei ′

(k)�γ ′(x − p)ēi (s)�̄γ (x)

d pdqdsdkdx . (3.1)

We have the following.

Lemma 3.1. For any f ∈ L1(G) and any I, I ′ ∈ A × 
, the function f I ′,I is well defined
and it is of compact support whenever f is.
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Proof. We have

∫

R

| f I ′,I (u)|du ≤
∫

R

∫

Rn

∫

K 2

∫

R2n
| f (s · k−1, s · (p, q), u + q · x)ei ′

(k)�γ ′(x − p)|
|ēi (s)�̄γ (x)|d pdqdsdkdxdu

≤
∫

R3n

∫

K 2

∫

R

| f (s · k−1, s · (p, q), u)ei ′

(k)�γ ′(x − p)ēi (s)�̄γ (x)|
d pdqdsdkdxdu.

By applying successive Hölder inequalities, we get

∫

R

| f I ′,I (u)|du ≤
∫

R2n

∫

K 2

∫

R

| f (s · k−1, s · (p, q), u)ei ′(k)ēi (s)|
( ∫

Rn
|�γ ′(x − p)|2dx

) 1
2

( ∫

Rn
|�̄γ (x)|2dx

) 1
2
dudsdkd pdq

≤ ‖�γ ‖2‖�γ ′ ‖2

∫

R2n

∫

K

∫

R

| f (k, p, q, u)|
( ∫

K
|ei ′(k

−1s)|2ds
) 1

2

( ∫

K
|ēi (s)|2ds

) 1
2
dkdud pdq

≤ ‖�γ ‖2‖�γ ′ ‖2‖ei ′ ‖2‖ei‖2‖ f ‖1 < +∞.

Assume now that supp( f ) ⊂ K ×B(0, α) × [−α, α], where B(0, α) designates the ball
of R

2n of radius α centered at the origin for some positive real number α. As q · x lies in
a compact set of R as x belongs to the support of �γ ′ which is compact, it appears clear
that f I ′,I is compactly supported on R.

�

3.2 From a basis of L2(Rn) to a basis of L2(Rn, λ)

There is a way to construct a function ξ̃ ∈ L2(Rn, λ) starting from ξ ∈ L2(Rn). Let
g ∈ H2n+1, there exists a unique x ∈ R

n and a unique b ∈ M such that g = x̃ ∗ b
where x̃ = (x, 0, 0). Define then ξ̃ by ξ̃ (g) = ξ(x)χ−1

λ (b). Thus ξ̃ obviously satisfies the
covariance relation (2.2) and belongs to the space L2(Rn, λ).

We are now ready to prove the following.

Theorem 3.2. Let f ∈ L2
c(G) and {ei ⊗ �γ }(i,γ )∈A×
 be an orthonormal basis of

L2(K ) ⊗ L2(Rn) as above. Let {�̃γ }γ∈
 be the corresponding orthonormal basis of
L2(Rn, λ) defined as in Section 3.2. Then for λ �= 0, the operator valued 
λ( f ) expands
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as 
λ( f )(ei ⊗ �̃γ ) = ∑
I ′=(i ′,γ ′)∈A×
 f̂ I ′,I (λ)(ei ′ ⊗ �̃γ ′), I = (i, γ ) ∈ A × 
 and

f̂ I ′,I admits an analytic continuation to the whole complex plane with the property that

for some positive constant αγ , f̂ I ′,I (z) = O(eαγ |z|) for any z ∈ C. Here f̂ I ′,I denotes the
Fourier transform of f I ′,I as in formula (2.1).

Proof. We first prove the following.

Lemma 3.3. Consider the orthonormal basis {ei ⊗ �̃γ }(i,γ )∈A×
 ⊂ L2(K ) ⊗ L2(Rn, λ).

Then 〈
λ( f )(ei ′ ⊗ �̃γ ′), ei ⊗ �̃γ 〉 = f̂ I ′,I (λ) for any f ∈ L1(G)∩ L2(G), I ′, I ∈ A×
,
and any λ �= 0.

Proof. We have the following:

〈
λ( f )(ei ′ ⊗ �̃γ ′), ei ⊗ �̃γ 〉
=

∫

K

∫

Rn

λ( f )ei ′(s)�̃γ ′(x̃)ēi (s)

¯̃
�γ (x̃)dxds

=
∫

K

∫

Rn

λ( f )ei ′(s)�γ ′(x)ēi (s)�̄γ (x)dxds

=
∫

Rn

∫

K 2

∫

H2n+1

f (k, p, q, t)πλ(s
−1 · (p, q, t))ei ′(k

−1 · s)�γ ′

(x)ēi (s)�̄γ (x)d pdqdtdkdsdx

=
∫

Rn

∫

K 2

∫

H2n+1

f (s · k−1, s · (p, q), t)πλ(p, q, t)�γ ′(x)ei ′

(k)ēi (s)�̄γ (x)d pdqdtdkdsdx

=
∫

Rn

∫

K 2

∫

H2n+1

f (s · k−1, s · (p, q), t)ei ′

(k)�γ ′(x − p)e−iλ(t−q·x)ēi (s)�̄γ (x)d pdqdtdkdsdx

=
∫

R

( ∫

Rn

∫

K 2

∫

R2n
f (s · k−1, s · (p, q), u + q · x)ei ′

(k)�γ ′(x − p)ēi (s)�̄γ (x)d pdqdsdkdx
)

e−iλudu

= f̂ I ′,I (λ).

�

Now, fix f ∈ L2
c(G) meeting the assumption of the theorem. We have the following.

Lemma 3.4. The function f I ′,I belongs to L2
c(R) for any I ′, I ∈ A × 
.

Proof. We have

| f I ′,I (u)| ≤
∫

Rn

∫

K 2

∫

R2n
| f (s · k−1, s · (p, q), u + q · x)|
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|ei ′(k)�γ ′(x − p)||ēi (s)�̄γ (x)|d pdqdkdsdx

(we use Hölder’s inequality)

≤
∫

Rn

∫

K 2

∫

Rn
|�̄γ (x)ēi (s)ei ′(k)|

(∫

Rn
|f (s · k−1, s · (p, q), u+q · x)|2d p

) 1
2

(∫

Rn
|�γ ′(x − p)|2dp

) 1
2

dqdkdsdx .

Since f, ei ′ , �γ ′ , ei , �γ are compactly supported and due to successive Hölder inequal-
ities, we obtain:

| f I ′,I (u)| ≤ M1

∫

Rn

∫

K 2
|�̄γ (x)ēi (s)ei ′(k)|

( ∫

Rn

∫

Rn
| f (s · k−1, s · (p, q), u + q · x)|2d pdq

) 1
2

( ∫

Rn
|�γ ′(x − p)|2d p

) 1
2
dkdsdx

≤ M2

( ∫

Rn

∫

K 2

∫

R2n
| f (s · k−1, s · (p, q), u + q · x)|2|

ēi (s)�̄γ (x)|2d pdqdkdsdx
) 1

2
( ∫

K

∫

R2n
|ei ′(k)�γ ′(x − p)|2d pdkdx

) 1
2

≤ M3‖ei ′ ‖2‖�γ ′ ‖2

( ∫

Rn

∫

K 2

∫

R2n
| f (s · k−1, s · (p, q), u + q · x)|2|

ēi (s)�̄γ (x)|2d pdqdkdsdx
) 1

2
.

Finally, we get

∫

R

| f I ′,I (u)|2du ≤ M4‖ei ′ ‖2
2‖�γ ′ ‖2

2

(∫

Rn

∫

K
|ēi (s)�̄γ (x)|2dsdx

)

(∫

R

∫

K

∫

R2n
| f (k, p, q, t)|2d pdqdkdt

)

≤ M4‖ei ′ ‖2
2‖�γ ′ ‖2

2‖ei‖2
2‖�γ ‖2

2‖ f ‖2
2 < +∞,

for some positive constants M1, M2, M3 and M4 and this finishes the proof. �

Using the theorem of holomorphy under the integral sign, one can show that the function
f̂ I ′,I extends to an entire function on the whole complex plane. On the other hand, the
support of f I ′,I is sitting inside [−αγ , αγ ]. Indeed, suppose that supp( f ) ⊂ K ×B(0, α)×
[−α, α] and assume that u + q · x ∈ [−α, α] (otherwise f I ′,I is identically zero), then
we get |u| ≤ α + |q · x | ≤ α + α‖x‖2. Here, x belongs to the support of �γ which is a
compact of R

n , supposed to be included in a ball B(0, Bγ ). We obtain conclusively that
|u| ≤ α + αBγ := αγ . Therefore, we get

| f̂ I ′,I (z)| ≤
∫

R

∫

R3n

∫

K 2
|e−iuz || f (s · k−1, s · (p, q), u + q · x)|
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|ei ′(k)�γ ′(x − p)||ēi (s)�̄γ (x)|d pdqdxdkdsdu

≤ eαγ Im(z)
∫

R

| f I ′,I (u)|du ≤ eαγ |z|‖ f I ′,I ‖1,

where Im(z) denotes the imaginary part of z. �

3.2.1 Analogue of Müntz–Szàsz theorem on G. First, we have the following:

Lemma 3.5. Let K be a connected compact Lie group and k its Lie algebra. Then there
exists a compact set C in k such that the exponential mapping from C to K is surjective.

Proof. Since exp : k → K is a local diffeomorphism, one can write k = ⋃
x∈k Vx ,

where each Vx is an open set of k and exp : Vx → exp(Vx ) is a diffeomorphism. Since
K is compact and connected, then exp : k → K is surjective (cf. [8]), hence K =
exp(k) = ⋃

x∈k exp(Vx ), where each exp(Vx ) is an open set of K . We obtain therefore that
K = ⋃N

i=1 exp(Vxi ) for some positive integer N . Finally the exponential mapping from

C = ⋃N
i=1 Vxi to

⋃N
i=1 exp(Vxi ) = K is surjective. �

We assume from now on that K is a connected compact subgroup of O(2n). Then its Lie
algebra k is a subspace of A2n(R), the Lie algebra of O(2n). With the above in mind,
define for f ∈ L2

c(G), the following function on Cn × H2n+1 ⊂ R
m × H2n+1 by

f̃ (T, (p, q, u)) = f (exp(T ), (p, q, u)),

where m is the dimension of k and Cn is the compact set as in Lemma 3.5. Remark here
that f̃ belongs to L2

c(R
m × H2n+1) whenever f ∈ L2

c(G).
Let now s ∈ K , k = (k1, . . . , km, km+1) ∈ N

m+1, t = (t1, . . . , tm) and tλk :=
t1

λk1 · · · tmλkm , we define

I λ
k ( f )(s, p, x) =

∫

Rm

∫

Rn+1
tλk uλkm+1 f̃ (t, s · (p, q), u + q · x)dqdudt. (3.2)

We now suggest the following first analogue for Müntz–Szàsz theorem for G.

Theorem 3.6. Let f ∈ L2
c(G). For a strictly increasing sequence (λk)k of positive real

numbers, (λk)k≥0 is MS, if and only if, the trivial function is the unique function f satisfying
I λ
k ( f )(s, p, x) = 0 for almost every s ∈ K , p, x ∈ R

n and for any k ∈ N
m+1.

Proof. We first prove the following lemma.

Lemma 3.7. Let (λk)k≥0 be MS and f ∈ L2
c(G). If

∫
Rn+1 uλ j f (k, s · (p, q), u + q · x)

dqdu = 0, for any j ∈ N and for almost every (k, s, x, p) ∈ K 2 × R
n × R

n, then f
vanishes on G.
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Proof. Let I, I ′ ∈ A ×
 and f I ′,I the coordinate function defined as in Section 3.1. Then
we have

∫

R

uλ j f I ′,I (u)du =
∫

R

∫

Rn

∫

K 2

∫

R2n
uλ j f (s · k−1, s · (p, q), u + q · x)ei ′(k)

�γ ′(x − p)ēi (s)�̄γ (x)d pdqdsdkdxdu

=
∫

R2n

∫

K 2
F(p, x, s, k)

( ∫

Rn+1
uλ j f (k, s · (p, q), u + q · x)dqdu

)
dsdkd pdx

(where F(p, x, s, k)

= ei ′(k
−1 · s)�γ ′(x − p)ēi (s)�̄γ (x))

= 0 (by the assumption of the lemma).

As above, the function f I ′,I is compactly supported on R. By applying Corollary 2.3, we
obtain that f I ′,I = 0 on R as (λk)k is MS. On the other hand, by Lemma 3.3, we have

‖
λ( f )‖2
HS =

∑

I,I ′∈A×


| f̂ I ′,I (λ)|2 = 0.

Due to formula (2.4), we show that f vanishes on G. This achieves the proof. �

Back to the proof of Theorem 3.6, we first prove the “only if” part: If for almost every
s ∈ K , p, x ∈ R

n , I λ
k ( f )(s, p, x) = 0 then by applying Corollary 2.3, we get that

∫

Rn+1
uλkm+1 f̃ (t, s · (p, q), u + q · x)dqdu = 0,

for almost every t ∈ R
m , which induces that

∫

Rn+1
uλkm+1 f (k, s · (p, q), u + q · x)dqdu = 0,

for almost every k, s ∈ K and for any km+1 ∈ N. Lemma 3.7 applied to the function
(k, (p, q, u)) �→ f (k, (p, q, u)) entails that f = 0 almost everywhere on G.

We look now for the “if” part: Suppose that (λk)k is not MS, then applying Corollary 2.3,
there exists a non-zero function ψ ∈ L2

c(R
m) satisfying

∫

Rm
t1

λk1 · · · tm
λkm ψ(t)dt = 0, (3.3)

for all (k1, . . . , km) ∈ N
m . Thus, considering f̃ (t, p, q, u) = ψ(t)1B(p, q, u), where B

is any compact set of H2n+1, we get that I λ
k ( f )(s, p, x) = 0 for almost every s ∈ K ,

p, x ∈ R
n and for any k ∈ N

m+1. Here, 1B means the characteristic function of B. This
ends the proof of the theorem.

�
It is somehow possible to reformulate the statement of Theorem 3.6 making use of an

integral over the group G. Let j, j ′ ∈ N
m × N and consider

Jλ
j, j ′( f )(s, x) =

∫

Rn
pλ j ′ Iλ

j ( f )(s, p, x)d p
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=
∫

Cn

∫

H2n+1

pλ j ′ tλj uλ jm+1 f̃ (t, s · (p, q), u + q · x)d pdqdudt

=
∫

Cn

∫

H2n+1

pλ j ′ tλj uλ jm+1 f (exp(t), s · (p, q), u + q · x)

d pdqdudt

=
∫

(G=exp(Cn)×H2n+1)
pλ j ′ tλj uλ jm+1 f (exp(t), s · (p, q), u + q · x)d pdqdudt.

As a direct consequence of Theorem 3.6, the following corollary holds.

COROLLARY 3.8

Let f ∈ L2
c(G) and let (λk)k be a strictly increasing sequence of positive real numbers.

Then (λ j ) j≥0 is MS, if and only if, f is trivial whenever Jλ
j, j ′( f )(s, x) = 0 for almost

every s ∈ K , x ∈ R
n and for any j, j ′ ∈ N

m+1 × N.

Proof. Let us prove the “only if” part: If for almost every s ∈ K , x ∈ R
n and for any

j, j ′ ∈ N
m × N, Jλ

j, j ′( f )(s, x) = 0 then by applying Corollary 2.3, we get that

∫

H2n+1

pλ j ′ uλ jm+1 f (exp(t), s · (p, q), u + q · x)d pdqdu = 0,

for almost every t ∈ R
m , which induces that

∫

H2n+1

pλ j ′ uλ jm+1 f (k, s · (p, q), u + q · x)d pdqdu = 0,

for almost every k ∈ K and for any jm+1 ∈ N. The function

Fk : p �→ Fk(p) =
∫

Rn+1
uλ jm+1 f (k, s · (p, q), u + q · x)dqdu

belongs to L2
c(R

n). In fact, by applying Cauchy–Schwartz inequality we get

|Fk(p)| ≤
∫

R

( ∫

Rn
|uλ jm+1 |2dq

) 1
2
( ∫

Rn
| f (k, s · (p, q), u + q · x)|2dq

) 1
2
du

≤ M1

∫

R

( ∫

Rn
| f (k, s · (p, q), u + q · x)|2dq

) 1
2
du

≤ M2

( ∫

R

∫

Rn
| f (k, s · (p, q), u + q · x)|2dqdu

) 1
2
.

Therefore, we obtain that

∫

Rn
|Fk(p)|2d p ≤ M2

2

∫

Rn

∫

Rn+1
| f (k, s · (p, q), u + q · x)|2dqdud p

≤ M2
2

∫

R2n+1
| f (k, (p, q), t |2d pdqdt.
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Hence, we are done using the fact that

∫

K

∫

Rn
|Fk(p)|2d pdk ≤ M2

2 ‖ f ‖2
2.

Besides, thanks to Corollary 2.3, we get that

∫

Rn+1
uλ jm+1 f (k, s · (p, q), u + q · x)dqdu = 0,

for any jm+1 ∈ N and for almost every (k, s, x) ∈ K × R
2n . Lemma 3.7 applied to the

function (k, (p, q, u)) �→ f (k, (p, q, u)) entails that f = 0 almost everywhere on G.
On the other hand, the “if” part is a direct consequence of Theorem 3.6. �

3.3 A second variant of Müntz–Szàsz theorem for K � H2n+1

We keep our notation and consider a strictly increasing sequence {nk}k of positive integers
and assume that K is arbitrary. Let V be the vector space generated by the family of
monomials {xnk ; k ∈ N}. Let FI ′,I be the linear subspace spanned by all the f I ′,I ’s for
fixed I ′, I ∈ A × 
. We shall produce a two-sides discrepant variant of Müntz–Szàsz
theorem for G which appears to deeply depend on the fine properties of the group in
question and its unitary representations.

Let AI ′,I be the operator defined on L2
c(G) by AI ′,I ( f ) = f I ′,I . So from the last

section, AI ′,I takes its value on L2([−αγ , αγ ]) for some positive real number αγ . Let
τI ′,I := Ran(AI ′,I ) ⊂ L2([−αγ , αγ ]) denote the range of the linear map AI ′,I . The
following result is a second variant of Müntz–Szàsz theorem for compact extensions of
Heisenberg groups.

Theorem 3.9. Let G = K � H2n+1. Given a strictly increasing sequence of positive
integers {nk}k the following assertions are equivalent:
(1) {nk}k is MS.
(2) For any I ′, I ∈ A × 
, V is dense in V + τI ′,I .
(3) For some I ∈ A × 
, V is dense in V + τI,I .

Proof. The fact that {nk}k is MS is equivalent to the fact that V is dense in L2([−αγ , αγ ])
and so in V + τI ′,I . Then only the proof of (3)⇒(1) is required. This amounts to show that
τI,I is dense in L2([−αγ , αγ ]) for some I ∈ A × 
. Indeed, V is dense V + τI,I which
is dense in L2([−αγ , αγ ]) and this entails the fact that V is dense in L2([−αγ , αγ ]).

Let g ∈ L2([−αγ , αγ ]), then for any f = f1 ⊗ f2 ⊗ f3 where f1 ∈ C∞(K ), f2 ∈
C∞

c (R2n) and f3 ∈ C∞
c (R), we have

0 =
∫ αγ

−αγ

g(u) f I,I (u)du

=
∫ αγ

−αγ

g(u)

∫

Rn

∫

K 2

∫

R2n
f (s · k−1, s · (p, q), u + q · x)ei (k)

�γ (x − p)ēi (s)�̄γ (x)d pdqdsdkdxdu
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=
∫ αγ

−αγ

g(u)

∫

Rn

∫

K 2

∫

R2n
f1(s · k−1) f2(s · (p, q)) f3(u + q · x)ei (k)

�γ (x − p)ēi (s)�̄γ (x)d pdqdsdkdxdu.

As this holds for any f1 ∈ C∞(K ), we obtain that for almost all k ∈ K ,

0 =
∫ αγ

−αγ

g(u)

∫

Rn

∫

K

∫

R2n
f2(s · (p, q)) f3(u + q · x)ei

(k−1 · s)�γ (x − p)ēi (s)

�̄γ (x)d pdqdsdxdu

=
∫ αγ

−αγ

g(u)

∫

Rn

∫

K

∫

R2n
f2(p, q) f3(u + π2(s

−1 · (p, q)) · x)

ei (k
−1 · s)�γ (x − π1(s

−1 · (p, q)))ēi (s)�̄γ (x)d pdqdsdxdu,

where π1, π2 designate the first and the second projections of R
2n . Since again this holds

for any f2 ∈ C∞
c (R2n), we get for almost all (k, p, q) ∈ K × R

2n ,

0 =
∫ αγ

−αγ

g(u)

∫

Rn

∫

K
f3(u + π2(s

−1 · (p, q)) · x)ei (k
−1 · s)

�γ (x − π1(s
−1 · (p, q))))ēi (s)�̄γ (x)dsdxdu.

As the function

ν : k �→
∫ αγ

−αγ

g(u)

∫

K
ei (k

−1 · s)ei (s)

∫

Rn
f3(u + π2(s

−1 · (p, q)) · �γ (x − π1(s
−1 · (p, q)))�̄γ (x)dxdsdu,

is continuous using the theorem of continuity under the integral sign, one gets that ν(k) = 0
for any k ∈ K . Hence

μ : (p, q) �→
∫ αγ

−αγ

g(u)

∫

K
|ei (s)|2

∫

Rn
f3(u + π2(s

−1 · (p, q)) · x)�γ (x − π1(s
−1 · (p, q)))�̄γ (x)dxdsdu

is null for almost all (p, q) ∈ R
2n . Likewise, we get that μ also vanishes on R

2n . We
finally deduce that 0 = μ(0, 0) := ∫ αγ

−αγ
g(u) f3(u)du

∫
K |ei (s)|2ds

∫
Rn |�γ (x)|2dx which

induces that
∫ αγ

−αγ
g(u) f3(u)du = 0. As this holds for any f3 ∈ C∞

c (R), we find that g is
null on [−αγ , αγ ]. This completes the proof of the theorem. �

3.4 The setting of Heisenberg groups

The Heisenberg group can be regarded as a trivial case of G K where K = {e}. We consider
{�̃γ }γ∈
 ⊂ L2

c(R
n) an orthonormal basis of L2(Rn, λ). Let f ∈ L2(H2n+1) such that

supp( f ) ⊂ B(0, α) × [−α, α] for some positive number α. We define in a similar way as
in formula (3.1), the function fγ ′,γ as follows:
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fγ ′,γ (u) =
∫

R3n
f (p, q, u + q · x)�γ ′(x − p)�̄γ (x)d pdqdx .

Then we have the following.

Theorem 3.10. Let f ∈ L2
c(H2n+1) and let {�̃γ }γ∈
 ⊂ L2

c(R
n) be an orthonormal basis

of L2(Rn, λ) defined as in Section 3.2. Consider (λk)k a strictly increasing sequence
of positive real numbers. Let k = (k1, . . . , kn, kn+1) ∈ N

n+1, p = (p1, . . . , pn) and
pλk = p1

λk1 · · · pn
λkn and define

I λ
k ( f )(x) =

∫

H2n+1

pλkuλkn+1 f (p, q, u + q · x)dud pdq.

Then

(1) For λ �= 0, the operator-valued Fourier transform expands as

πλ( f )�̃γ =
∑

γ ′∈


f̂γ ′,γ (λ)�̃γ ′,

and f̂γ ′,γ admits an analytic continuation to the whole complex plane with the property

that for some positive real number αγ , f̂γ ′,γ (z) = O(eαγ |z|) for any z ∈ C.

(2) (λk)k≥0 is MS, if and only if the trivial function is the unique function satisfying
I λ
k ( f )(x) = 0 for almost every x ∈ R

n, and for any k ∈ N
n+1.

3.5 A concluding remark

We find back the result by Cook in [5]. Let G = exp(g) be a nilpotent Lie group which
admits an ideal b ⊂ g, polarizing all representations for which the orbits of the related
linear forms are of maximal dimension, which is the case of Heisenberg groups. The author
proved a Müntz–Szàsz theorem for the matrix coefficients of the operator valued Fourier
transform on G. As a part of the proof, he constructed a so called an almost strong Malcev
basis, which is a Malcev basis of g with respect to b. Then the author uses such a basis to
only prove partial similar result as in Theorem 3.6.
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