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Abstract. In this paper, we recall some well known Berger’s formulas. As their
applications, we prove that if the local holomorphic pinching constant is λ < 2, then
there exists a positive constant δ >

29(λ−1)√
(48−24λ)2+(29λ−29)2

such that cos α ≥ δ is

preserved along the mean curvature flow, improving Li–Yang’s main theorem in Li and
Yang (Geom. Dedicata 170 (2014) 63–69). We also prove that when cos α is close
enough to 1, then the symplectic mean curvature flow exists globally and converges to a
holomorphic curve.
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1. Introduction

Let (M, J, ω, ḡ) be a Kähler surface. For a compact oriented real surface � which is
smoothly immersed in M , the Kähler angle α of � in M was defined by

ω|� = cos αdμ�,

where dμ� is the area element of � in the induced metric from g. We say that � is a
symplectic surface if cos α > 0; � is a holomorphic curve if cos α = 1.

It is important to find the conditions to assure that the symplectic property is preserved
along the mean curvature flow. In the case that M is a Kähler–Einstein surface, the sym-
plectic property is preserved. Han and Li [7] proved that the symplectic property is also
preserved if the ambient Kähler surface evolves along the Kähler–Ricci flow. In [10], Li
and Yang found another condition to assure that the symplectic property is preserved along
the mean curvature flow. In this paper, we improve Li and Yang’s result in [10].

Here, we only consider the ambient Kähler surface with positive holomorphic sectional
curvature. We denote the minimum and maximum of holomorphic sectional curvatures at
p ∈ M by k1(p) and k2(p), respectively, and λ(p) = k2(p)

k1(p)
. We define

k1 := minp∈M k1(p) and k2 := maxp∈M k2(p).
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We also define the local holomorphic pinching constant by

λ := max
p∈M

λ(p).

Then we have the first main theorem.

Theorem 1.1. Suppose M is a Kähler surface with positive holomorphic sectional cur-
vature. If 1 ≤ λ < 2 and cos α(·, 0) ≥ δ >

29(λ−1)√
(48−24λ)2+(29λ−29)2

, then along the flow

(
∂

∂t
− �

)
cos α ≥ |∇̄ J�t |2 cos α + C sin2 α, (1)

where ∇̄ is the Levi–Civita connection with metric ḡ on M and |∇̄ J�t |2 is defined by (9) in
subsection 2.1, and C is a positive constant depending only on k1, k2 and δ. As a corollary,
min�t cos α is increasing with respect to t . In particular, at each time t , �t is symplectic.

Remark 1.1. Li–Yang’s main theorem in [10], i.e., the lower bound of δ is
53(λ−1)√

(53λ−53)2+(48−24λ)2
for λ ∈ [1, 11

7 ) and 8λ−5√
(8λ−5)2+(12−6λ)2

for λ ∈ [ 11
7 , 2). It is easy

to check that for each λ ∈ [1, 2),

29(λ − 1)√
(48 − 24λ)2 + (29λ − 29)2

≤ min

{
53(λ − 1)√

(53λ − 53)2 + (48 − 24λ)2
,

8λ − 5√
(8λ − 5)2 + (12 − 6λ)2

}
.

Hence we improve Li–Yang’s main result in [10].

Similar to Han–Li’s main theorem in [6], we also prove the following theorem for a
Kähler surface with positive holomorphic sectional curvature and 1 ≤ λ < 2.

Theorem 1.2. Suppose that M is a Kähler surface with positive holomorphic sectional
curvature and 1 ≤ λ < 2. Let α be the Kähler angle of the surface �t which evolves by
the mean curvature flow. Suppose that cos α(·, 0) >

58(λ−1)√
(48−24)2+(58λ−58)2

. r0 is defined in

Remark 4.2 and ε0 is the constant in Theorem 4.1, and define ε1 as

ε1 = π2ε2
0r6

0 (1 − e− 3
8 (2−λ)k1)2

4Area(�0)
.

Then if
∫
�0

sin2 α(x,0)
cos α(x,0)

dμ0 ≤ ε1, the mean curvature flow with initial surface �0 exists
globally and it converges to a holomorphic curve.

By Theorem 1.2, it is easy to get the following corollary.
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COROLLARY 1.1

Under the same conditions and same notations as in Theorem 1.2, except
∫
�0

sin2 α(x,0)
cos α(x,0)

dμ0
≤ ε1, there exists a constant ε2 depending only on ε1 and Area(�0), such that if

1 − cos α(·, 0) ≤ ε2,

then the mean curvature flow with initial surface exists globally and it converges to a
holomorphic curve.

Remark 1.2. By Corollary 2.3, if λ < 3
2 , then the sectional curvature of M is positive,

which implies that the bisectional curvature is positive. By Frankel conjecture, which
was proved by Siu and Yau [12] and by Mori [11] independently, the Kähler surface is
biholomorphic to CP

2. Recently, Yang and Zheng (see Proposition 2.6 in [16]) proved that
the Kähler manifold Mn with λ < 2 must be biholomorphic to CP

n .

2. Preliminaries

In this section, we recall some preliminaries about the curvature and the evolution equations
of the mean curvature flow.

2.1 Evolution equations for the mean curvature flow

In this subsection, we recall some evolution equations for the mean curvature flow.
Suppose that � is a sub manifold in a Riemannian manifold M . We choose an orthonor-

mal basis {ei } for T � and {eα} for N�. Given an immersed F0 : � → M , we consider a
one parameter family of smooth maps Ft = F(·, t) : � → M with corresponding images
�t = Ft (�) immersed in M and F which satisfies the mean curvature flow equation:{

∂
∂t F(x, t) = H(x, t)

F(x, 0) = F0(x).
(2)

Recall the evolution equation for the second fundamental form hα
i j and |A|2 along the mean

curvature flow (see [4,9,13,14]).

Lemma 2.1.

∂

∂t
hα

i j = �hα
i j + (∇̄k Rm)αi jk + (∇̄ j Rm)αkik − 2Rli jkhα

lk

+ 2Rαβ jkhβ
ik + 2Rαβikhβ

jk − Rlkikhα
l j − Rlk jkhα

il

+ Rαkβkhβ
i j − Hβ(hβ

ikhα
jk + hβ

jkhα
ik) + hα

imhβ
mkhβ

k j

− 2hβ
imhα

mkhβ
k j + hβ

ikhβ
kmhα

mj + hα
kmhβ

mkhβ
i j + hβ

i j 〈eβ, ∇̄H eα〉, (3)

where RABC D is the curvature tensor of M and ∇̄ is the covariant derivative of M.
Therefore,
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∂

∂t
|A|2 = �|A|2 − 2|∇ A|2

+ [(∇̄k Rm)αi jk + (∇̄ j Rm)αkik]hα
i j − 4Rli jkhα

lkhα
i j

+ 8Rαβ jkhβ
ikhα

i j − 4Rlkikhα
l j h

α
i j + 2Rαkβkhβ

i j h
α
i j + 2P1 + 2P2,

(4)

where

P1 = �α,β,i, j

(
�k

(
hα

ikhβ
jk − hα

jkhβ
ik

))2
,

P2 = �α,β(�i, j h
α
i j h

β
i j )

2.

∂

∂t
|H |2 = �|H |2 − 2|∇H |2 + 2Rαkβk Hα Hβ + 2P3, (5)

where

P3 = �i, j (�α Hαhα
i j )

2.

Choose an orthonormal basis {e1, e2, e3, e4} on (M, ḡ) along �t such that {e1, e2} is the
frame of the tangent bundle T �t and {e3, e4} is the frame of the normal bundle N�t . Then
along the surface �t , we can take the complex structure on M as the form (cf. [9])

J =

⎛
⎜⎜⎝

0 cos α y z
− cos α 0 −z y

−y z 0 − cos α

−z −y cos α 0

⎞
⎟⎟⎠ (6)

or

J =

⎛
⎜⎜⎝

0 cos α y z
− cos α 0 z −y

−y −z 0 cos α

−z y − cos α 0

⎞
⎟⎟⎠ . (7)

Since Kähler form is self-dual, then J must be of the form (7).

Remark 2.1. In fact, the above argument also shows that the Kähler form is self-dual. If
J is of the form (6), then the Kähler form is anti-self-dual, i.e., ∗ω = −ω, and hence it is
impossible to obtain Kähler form. Hence J must be of the form (7), then the Kähler form
ω must be self-dual.

Recall the evolution equation of the Kähler angle cos α (cf. [4,8]).

Lemma 2.2. The evolution equation for cos α along �t is

(
∂

∂t
− �

)
cos α = |∇̄ J�t |2 cos α + sin2 α Ric(Je1, e2). (8)

Here

|∇̄ J�t |2 = |h4
1k + h3

2k |2 + |h4
2k − h3

1k |2. (9)
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Then |∇̄ J�t |2 is independent of the choice of the frame and depend only on the orientation
of the frame. It is proved in [4,7] that

|∇̄ J�t |2 ≥ 1

2
|H |2 (10)

and

|∇ cos α|2 ≤ sin2 α|∇̄ J�t |2. (11)

2.2 Berger’s formulas

In this subsection, we recall some well known identities, which are called Berger’s for-
mulas. We first recall the definitions of the Riemannian curvature and the holomorphic
sectional curvature; secondly, we recall some Berger’s formulas, which are the relations
between Riemannian curvatures and the holomorphic sectional curvature.

The Riemann curvature tensor R of (M, g) is defined by

R(X, Y, Z , W ) = −g(∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ]Z , W )

for any vector fields X, Y, Z , W .
Set R(X, Y ) = R(X, Y, X, Y ) and R(X) = R(X, J X). Fix a point p ∈ M and a

two-dimensional plane � ⊂ Tp M . The sectional curvature of � is defined by

K (�) = R(X, Y )

g(X, X)g(Y, Y ) − g(X, Y )2 ,

where {X, Y } is a basis of �. We also denote it by K (X, Y ). For a Kähler manifold
(M, g, J ), if the two-dimensional plane � is spanned by {X, J X}, i.e., � is a holomorphic
plane, then the sectional curvature of � is called a holomorphic sectional curvature of �.
We denote it by H(X), where {X, J X} is a basis of �. Then

H(X) = R(X)

g(X, X)2 .

For any orthogonal four-frames {e1, e2, e3, e4} ⊂ Tp M , we have for any index
A, B, C, D ∈ {1, 2, 3, 4} the below lemma.

Lemma 2.3 [1].

24RABC D

= R(eA + eC , eB + eD) − R(eSA + eC , eB − eD)

− R(eA − eC , eB + eD)

+ R(eA − eC , eB − eD) − R(eA + eD, eB + eC )

+ R(eA + eD, eB − eC )

+ R(eA − eD, eB + eC ) − R(eA − eD, eB − eC )

(12)

For the proof, see the proof of Proposition 1.9 in [3]. Then we get the following property.
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COROLLARY 2.1 [1]

Let (M, g) be a Riemannian manifold, and let p be an arbitrary point in M. Suppose that
κ ≤ K (π) ≤ κ̄ for all two-dimensional planes π ⊂ Tp M. Then

R(e1, e2, e3, e4) ≤ 2

3
(κ̄ − κ) (13)

for all orthonormal four-frames {e1, e2, e3, e4} ⊂ Tp M.

If we take eA = eC = X, eB = Y, eD = Z in the equality (12), then we obtain the
following lemma.

Lemma 2.4. For any vector fields X, Y and Z on M ,

R(X, Y, X, Z) = 1

4
(R(X, Y + Z) − R(X, Y − Z)). (14)

It is well known that we can express the sectional curvatures by the holomorphic sectional
curvatures (see Proposition 2.1 in [2]).

Lemma 2.5. Let (M, ω, J ) be a Kähler manifold. Then

R(X, Y ) = 1

32
[3R(X + JY ) + 3R(X − JY ) − R(X + Y ) − R(X − Y )

− 4R(X) − 4R(Y )].
(15)

Then we have the following corollary, also see Corollary 2.1 in [2].

COROLLARY 2.2

For any two orthonormal vectors X and Y , if 〈X, JY 〉 = x , then

K (X, Y ) = 1

8
[3(1 + x)2 H(X + JY )

+ 3(1 − x)2 H(X − JY ) − H(X + Y ) − H(X − Y )

− H(X) − H(Y )].
Thus we have the following Corollary.

COROLLARY 2.3

For any two orthonormal vectors X and Y , if 〈X, JY 〉 = x , then

1

4
[(3(1 + x2)k1 − 2k2] ≤ K (X, Y ) ≤ 1

4
[(3(1 + x2)k2 − 2k1] (16)

Remark 2.2. In fact, Bishop and Goldberg (see Proposition 3.1 in [2]) also obtained the
following interesting formula.
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Lemma 2.6. Let X, Y be the orthonormal vectors, if 〈X, JY 〉 = cos α. Denote

H(X, Y ) = 1

π

∫ π

0
H(X cos α + Y sin α)dα,

A(X, Y ) = 1

π

∫ π

0
K (X cos α + Y sin α,−J X sin α + JY cos α)dα.

Then

K (X, Y ) = H(X, Y ) − 3A(X, Y ) sin2 α.

If cos α = 0, by the Corollary 2.3, we have

1

4
(3k1 − 2k2) ≤ K (X, Y ) ≤ 1

4
(3k2 − 2k1).

On the other hand, for any orthonormal vectors X, Y with 〈X, JY 〉 �= 0 and |〈X, JY 〉| �=
1, let Ỹ = 〈X, JY 〉X−JY . Then 〈X, Ỹ 〉 = 〈X, J Ỹ 〉 = 0 and Span{X, JY } = Span{X, Ỹ }.
Hence we obtain

3k1 − 2k2

4
≤ K (X cos θ + Y sin θ,−J X sin θ + JY cos θ) ≤ 3k2 − 2k1

4

for every θ ∈ [0, π ]. Hence for any orthonormal vectors X, Y , we have

3k1 − 2k2

4
≤ A(X, Y ) ≤ 3k2 − 2k1

4
.

On the other hand, K (X, Y ) also can be expressed as follows:

K (X, Y ) = 1

4
[(1 + cos α)2 H(X + JY ) + (1 − cos α)2 H(X − JY )]

−A(X, Y ) sin2 α.

Then Bishop and Goldberg (Proposition 4.2 in [2]) established the following estimate.

PROPOSITION 2.1 [2]

Let X, Y be the orthonormal vectors with 〈X, JY 〉 = cos α. Then

k1 − 3k2

4
sin2 α ≤ K (X, Y ) ≤ k2 − 3k1

4
sin2 α.

It is easy to check that

1

4
[(3 + 3 cos2 α)k2 − 2k1] ≥ (or ≤)k2 − 3k1

4
sin2 α, i f cos2 α ≥ (or ≤)1/3.

Lemma 2.7. For the orthonormal basis {e1, e2, e3, e4} on (M, g) along �t , it takes the
form J as (7). Hence cos α, y, z are defined by (7). Then we have the following estimates:

(1) 1
4 (3 + 3 cos2 α)k1 − 1

2 k2 ≤ R1212 ≤ 1
4 (3 + 3 cos2 α)k2 − 1

2 k1;
(2) 1

4 (3 + 3y2)k1 − 1
2 k2 ≤ R2424 ≤ 1

4 (3 + 3y2)k2 − 1
2 k1;
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(3) 1
4 (3 + 3z2)k1 − 1

2 k2 ≤ R2323 ≤ 1
4 (3 + 3z2)k2 − 1

2 k1;
(4) 1

32 [(23 + 6(cos α + y)2)k1 − (23 + 6(cos α − y)2)k2] ≤ R2131 ≤ 1
32 [(23 + 6(cos α +

y)2)k2 − (23 + 6(cos α − y)2)k1];
(5) 1

32 [(23 + 6(cos α − y)2)k1 − (23 + 6(cos α + y)2)k2] ≤ R2434 ≤ 1
32 [(23 + 6(cos α −

y)2)k2 − (23 + 6(cos α + y)2)k1].

Proof. By (7), we have

• Je1 = cos αe2 + ye3 + ze4,

• Je2 = − cos αe1 + ze3 − ye4,

• Je3 = −ye1 − ze2 + cos αe4,

• Je4 = −ze1 + ye2 − cos αe3.

Hence 〈Je1, e2〉 = cos α, 〈Je4, e2〉 = y, 〈Je2, e3〉 = z. Then by Corollary 2.3, we get
(1)–(3).

By Lemma 2.4,

R1213 = 1

4
(R(e1, e2 + e3) − R(e1, e2 − e3)). (17)

Hence Je1 = cos αe2+ye3+ze4, 〈Je1, e2+e3〉 = cos α+y and 〈Je1, e2−e3〉 = cos α−y.
Then by Corollary 2.3,

1

16
[(27 + 12(cos α + y)2)k1 − 19k2]

≤ R(e1, e2 + e3) ≤ 1

16
[(27 + 12(cos α + y)2)k2 − 19k1] (18)

and

1

16
[(27 + 12(cos α − y)2)k1 − 19k2] ≤ R(e1, e2 − e3)

≤ 1

16
[(27 + 12(cos α − y)2)k2 − 19k1]. (19)

Hence

R1213 ≤ 1

64
[(46 + 12(cos α + y)2)k2 − (46 + 12(cos α − y)2)k1]

= 1

32
[(23 + 6(cos α + y)2)k2 − (23 + 6(cos α − y)2)k1]

(20)

and

R1213 ≥ 1

32
[(23 + 6(cos α + y)2)k1 − (23 + 6(cos α − y)2)k2]. (21)

Hence we obtain (4).
Using Lemma 2.4, Corollary 2.3 and the same argument as in the proof of (4) , we can

obtain (5). �
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3. Lower bound along the mean curvature flow

In this section, we follow the argument in [10] to prove the first main theorem of this paper,
which improves the main theorem in [10].

Theorem 3.1. Suppose M is a Kähler surface with positive holomorphic sectional cur-

vatures. If 1 ≤ λ < 2 and cos α(·, 0) ≥ δ >
29(λ−1)√

(48−24λ)2+(29λ−29)2
, then along the flow

(
∂

∂t
− �

)
cos α ≥ |∇̄ J�t |2 cos α + C sin2 α, (22)

where C is a positive constant depending only on k1, k2 and δ. As a corollary, min�t cos α

is increasing with respect to t . In particular, at each time t , �t is symplectic.

Proof. For simplicity, we can take y = sin α, z = 0 in the form of J . Due to the evolution
of cos α (see Lemma 2.2),

(
∂

∂t
− �

)
cos α = |∇̄ J�t |2 cos α + Ric(Je1, e2) sin2 α. (23)

In order to prove this theorem, we need to estimate Ric(Je1, e2). Then

Ric(Je1, e2) =
4∑

i=1

R(Je1, ei , e2, ei )

=
4∑

i=1

R(cos αe2 + sin αe3, ei , e2, ei )

= cos αR22 + sin α(R1213 + R4243)

= cos αR22 + sin αR23.

(24)

By Lemma 2.7, we have

R22 = R1212 + R3232 + R4242 ≥ 3k1 − 3

2
k2 (25)

and

|R23| = |R1213 + R4243| ≤ 29

16
(k2 − k1). (26)

Hence we have

Ric(Je1, e2)

≥ cos α

(
3k1 − 3

2
k2

)
−

√
1 − cos2 α

29

16
(k2 − k1)

=
(

3 cos α + 29

16

√
1 − cos2 α

)
k1 −

(
3

2
cos α + 29

16

√
1 − cos2 α

)
k2

= k1

{
3

2
cos α(2 − λ) + 29

16

√
1 − cos2α(1 − λ)

}
.

(27)
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We set

fλ(x) = 3

2
(2 − λ)x + 29

16
(1 − λ)

√
1 − x2. (28)

When 1 ≤ λ < 2, fλ(x) > 0 is equivalent to

3

2
(2 − λ)x >

29

16
(λ − 1)

√
1 − x2.

Furthermore, if x > 0, fλ(x) > 0 is equivalent to

(
3

2
(2 − λ)x

)2

>

(
29

16
(λ − 1)(1 − x2)

)
,

it is equivalent to

{(
3

2
(2 − λ)

)2

+
(

29

16
(λ − 1)

)2
}

x2 >

(
29

16
(λ − 1)

)2

,

which is equivalent to

x2 >
292(λ − 1)2

242(2 − λ)2 + 292(λ − 1)2 .

Hence if 1 ≤ λ < 2 and cos α >
29(λ−1)√

(48−24λ)2+(29λ−29)2
, we have fλ(cos α) > 0,

that is, Ric(Je1, e2) > 0. Furthermore, if cos α ≥ δ >
29(λ−1)√

(48−24λ)2+(29λ−29)2
, then

fλ(cos α) ≥ fλ(δ) > 0. Then by the maximum principle, the condition cos α ≥ δ >
29(λ−1)√

(48−24λ)2+(29λ−29)2
is preserved by the mean curvature flow. Hence we obtain the theo-

rem. �

Remark 3.1. For the estimate of the term R1213 + R4243, we use more better estimate of
R1213 and R4243 than the Li–Yang’s estimate [10], which is the key point to improve the
Li–Yang’s main result.

We also have the following corollary and theorem as Corollary 1.2 and Theorem 1.3 in
[10]. Using the same argument as in [5], we have the following.

COROLLARY 3.1

Suppose M is a Kähler surface with positive holomorphic sectional curvatures and 1 ≤
λ < 2. Then every symplectic minimal surface satisfying

cos α >
29(λ − 1)√

(48 − 24λ)2 + (29λ − 29)2

in M is a holomorphic curve.
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Using the same argument as in [4] or [14], we have as follows.

Theorem 3.2. Under the same condition of Theorem 3.1, the symplectic mean curvature
flow has no type I singularity at any T > 0.

4. When cos α is close to 1

In this section, we use the same argument of Han and Li [6]. We prove Kähler manifold M
with positive holomorphic sectional curvature and 1 ≤ λ < 2, when cos α is close enough
to 1. Then the mean curvature flow exists globally and converges to a holomorphic curve.

PROPOSITION 4.1

Suppose that M is a Kähler surface with positive holomorphic sectional curvature and
1 ≤ λ < 2. Let α be the Kähler angle of the surface �t which evolves by the mean
curvature flow. Suppose that cos α(·, 0) >

58(λ−1)√
(48−24)2+(58λ−58)2

. Then

∫
�t

sin2 α

cos α
dμt ≤ C0e− 3

4 (2−λ)k1t ,

∫ t+1

t

∫
�t

|H |2dμt dt ≤ C0e− 3
4 (2−λ)k1t ,

(29)

where C0 is defined by C0 = ∫
�0

sin2 α(x,0)
cos α(x,0)

dμ0.

Proof. By Theorem 3.1, we know cos α(·, t) >
58(λ−1)√

(48−24)2+(58λ−58)2
is preserved along

the mean curvature flow. Since cos α >
58(λ−1)√

(48−24)2+(58λ−58)2
, then by (27), we have

Ric(Je1, e2) >
3

4
(2 − λ)k1 cos α.

Hence

(
∂

∂t
− �

)
cos α > |∇̄ J�t |2 cos α + 3

4
(2 − λ)k1 cos α sin2 α

≥ 3

4
(2 − λ)k1 cos α sin2 α.

Then using the same argument as in the proof of Proposition 2.1 in [6], we get the propo-
sition. �

Using the same argument as in the proof of Proposition 2.2 in [6], we also get the
following.



29 Page 12 of 14 Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:29

PROPOSITION 4.2

Suppose that M is a Kähler surface with positive holomorphic sectional curvature and
1 ≤ λ < 2. Let α be the Kähler angle of the surface �t which evolves by the mean

curvature flow. Suppose that cos α(·, 0) >
29(λ−1)√

(48−24)2+(29λ−29)2
. Then

∫ T

0

∫
�t

|H |dμt dt ≤ (C0)
1/2 Area(�0)

1/2

1 − e− 3
8 (2−λ)k1

, (30)

where the constant C0 is defined in Proposition 4.1.

Remark 4.1. Han and Li [6] proved the above propositions in the case of Kähler–Einstein
manifold M with positive scalar curvature R. They obtained

∫
�t

sin2 α

cos α
dμt ≤ C0e−Rt ,

∫ t+1

t

∫
�t

|H |2dμt dt ≤ C0e−Rt ,

∫ T

0

∫
�t

|H |dμt dt ≤ (C0)
1/2 Area(�0)

1/2

1 − e−R/2 .

We recall White’s local regularity theorem. Let H(X, X0, t) be the backward heat kernel
on R

4. Define

ρ(X, t) = 4π(t0 − t)H(X, X0, t) = 1

4π(t0 − t)
exp

(
−|X − X0|2

4(t0 − t)

)
(31)

for t < t0. Let iM be the injective radius of M4. We choose a cutoff function φ ∈
C∞

0 (B2r (X0)) with φ ≡ 1 in Br (X0), where X0 ∈ M, 0 < 2r < iM . Choose normal
coordinates in B2r (X0) and express F using the coordinates (F1, F2, F3, F4) as a surface
in R

4. The parabolic density of the mean curvature flow is defined by

�(X0, t0, t) =
∫

�t

φ(F)ρ(F, t)dμt . (32)

The following local regularity theorem was proved by White (see Theorems 3.1 and 4.1
in [15]).

Theorem 4.1. There is a positive constant ε0 > 0 such that if

�(X0, t0, t0 − r2) ≤ 1 + ε0, (33)

then the second fundamental form A(t) of �t in M is bounded in Br/2(X0), that is,

sup
Br/2×(t0−r2/4,t0]

|A| ≤ C, (34)

where C is a positive constant depending only on M.
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Remark 4.2. Since �0 is smooth, it is well known that

lim
r→0

∫
�0

φ(F)
e−(|F−X0|2/4r2)

4πr2 dμ0 = 1

for any X0 ∈ �0. So we can find a sufficiently small r0 such that

∫
�0

φ(F)
e−(|F−X0|2/4r2

0 )

4πr2
0

dμ0 ≤ 1 + ε0

2
,

i.e.,

�(X0, r2
0 , 0) ≤ 1 + ε0

2

for all X0 ∈ M , where ε0 is the constant in White’s theorem.

Using the same argument as in the proof of Theorem 2.5 in [6], we get the following
theorem.

Theorem 4.2. Suppose that M is a Kähler surface with positive holomorphic sectional
curvature and 1 ≤ λ < 2. Let α be the Kähler angle of the surface �t which evolves by
the mean curvature flow. Suppose that cos α(·, 0) >

29(λ−1)√
(48−24)2+(29λ−29)2

. C0, r0, ε0 are

defined as in Proposition 4.1, Remark 4.2 and Theorem 4.1, respectively. We denote

ε1 = π2ε2
0r6

0 (1 − e− 3
8 (2−λ)k1)2

4 Area(�0)
.

Then if C0 ≤ ε1, the mean curvature flow with initial surface �0 exists globally and it
converges to a holomorphic curve.
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