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Abstract. Let G = (V, E) be a graph with the vertex-set V and the edge-set E .
Let N (v) denote the set of neighbors of the vertex v of G. The graph G is called
irreducible whenever for every v, w ∈ V if v �= w, then N (v) �= N (w). In this paper,
we present a method for finding automorphism groups of connected bipartite irreducible
graphs. Then, by our method, we determine automorphism groups of some classes of
connected bipartite irreducible graphs, including a class of graphs which are derived from
Grassmann graphs. Let a0 be a fixed positive integer. We show that if G is a connected
non-bipartite irreducible graph such that c(v, w) = |N (v) ∩ N (w)| = a0 when v, w are
adjacent, whereas c(v, w) �= a0, when v, w are not adjacent, then G is a stable graph,
that is, the automorphism group of the bipartite double cover of G is isomorphic with the
group Aut(G) × Z2. Finally, we show that the Johnson graph J (n, k) is a stable graph.

Keywords. Automorphism group; bipartite double cover of a graph; Grassmann
graph; stable graph; Johnson graph.
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1. Introduction

In this paper, a graph G = (V, E) is considered as an undirected simple finite graph,
where V = V (G) is the vertex-set and E = E(G) is the edge-set. For the terminology
and notation not defined here, we follow [1,2,4,7].

Let G = (U ∪ W, E), U ∩ W = ∅ be a bipartite graph with parts U and W . It is
quite possible that we wish to construct some other graphs which are related to G in some
aspects. For instance, there are cases in which we can construct a graph G1 = (U, E1)

such that we have Aut(G) ∼= Aut(G1), where Aut(X) is the automorphism group of the
graph X . For example, note the following cases:

(i) Let n ≥ 3 be an integer and [n] = {1, 2, . . . , n}. Let k be an integer such that
1 ≤ k < n

2 . The graph B(n, k) introduced in [16] is a graph with the vertex-set
V = {v | v ⊂ [n], |v| ∈ {k, k + 1}} and the edge-set E = {{v,w} | v,w ∈ V, v ⊂ w

or w ⊂ v}. It is clear that the graph B(n, k) is a bipartite graph with the vertex-set
V = V1 ∪ V2, where V1 = {v ⊂ [n] | |v| = k} and V2 = {v ⊂ [n] | |v| = k + 1}.
This graph has some interesting properties which have been investigated recently
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[11,16,17,20]. Let G = B(n, k) and let G1 = (V1, E1) be the Johnson graph J (n, k)
which can be constructed on the vertex-set V1. It has been proved that if n �= 2k + 1,
then Aut(G) ∼= Aut(G1), and if n = 2k + 1, then Aut(G) ∼= Aut(G1) × Z2 [16].

(ii) Let n and k be integers with n > 2k, k ≥ 1. Let V be the set of all k-subsets and
(n−k)-subsets of [n]. The bipartite Kneser graph H(n, k) has V as its vertex-set, and
two vertices v,w are adjacent if and only if v ⊂ w or w ⊂ v. It is clear that H(n, k) is
a bipartite graph. In fact, if V1 = {v ⊂ [n] | |v| = k} and V2 = {v ⊂ [n] | |v| = n−k},
then {V1, V2} is a partition of V (H(n, k)) and every edge of H(n, k) has a vertex in
V1 and a vertex in V2 and |V1| = |V2|. Let G = H(n, k) and let G1 = (V1, E1) be
the Johnson graph J (n, k) which can be constructed on the vertex-set V1. It has been
proved that Aut(G) ∼= Aut(G1) × Z2 [18].

(iii) Let n, k and l be integers with 0 < k < l < n. The set-inclusion graph G(n, k, l)
is the graph whose vertex-set consists of all k-subsets and l-subsets of [n], where
two distinct vertices are adjacent if one of them is contained in another. It is clear
that the graph G(n, k, l) is a bipartite graph with the vertex-set V = V1 ∪ V2, where
V1 = {v ⊂ [n] | |v| = k} and V2 = {v ⊂ [n] | |v| = l}. It is easy to show that
G(n, k, l) ∼= G(n, n − k, n − l), hence we assume that k + l ≤ n. It is clear that if
l = k + 1, then G(n, k, l) = B(n, k), where B(n, k) is the graph which is defined
in (i). Also, if l = n − k, then G(n, k, l) = H(n, k), where H(n, k) is the graph
which is introduced in (ii). Let G = G(n, k, l) and let G1 = (V1, E1) be the Johnson
graph J (n, k) which can be constructed on the vertex-set V1. It has been proved that if
n �= k + l, then Aut(G) ∼= Aut(G1), and if n = k + l, then Aut(G) ∼= Aut(G1) × Z2
[9].

Let G = (V, E) be a graph. The bipartite double cover of G which we denote it by
B(G) is a graph with the vertex-set V × {0, 1}, in which vertices (v, a) and (w, b) are
adjacent if and only if a �= b and {v,w} ∈ E . A graph G is called stable if and only if
Aut(B(G)) ∼= Aut(G) × Z2.

In this paper, we generalize the results of our examples to some other classes of bipartite
graphs. In fact, we state some accessible conditions such that if for a bipartite graph
G = (V, E) = (U∪W, E) these conditions hold, then we can determine the automorphism
group of the graph G. Also, we determine the automorphism group of a class of graphs
which are derived from Grassmann graphs. In particular, we determine automorphism
groups of bipartite double covers of some classes of graphs. In fact, we show that if
G is a non-bipartite connected irreducible graph, and a0 is a positive integer such that
c(v,w) = |N (v) ∩ N (w)| = a0, when v and w are adjacent, whereas c(v,w) �= a0 when
v and w are not adjacent, then the graph G is a stable graph. Finally, we show that Johnson
graphs are stable graphs.

2. Preliminaries

The graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic, if there is a bijection
α : V1 −→ V2 such that {a, b} ∈ E1 if and only if {α(a), α(b)} ∈ E2 for all a, b ∈ V1.
In such a case the bijection α is called an isomorphism. An automorphism of a graph G
is an isomorphism of G with itself. The set of automorphisms of � with the operation of
composition of functions is a group called the automorphism group of G and denoted by
Aut(G).
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The group of all permutations of a set V is denoted by Sym(V ) or just Sym(n) when
|V | = n. A permutation group � on V is a subgroup of Sym(V ). In this case, we say that
� acts on V . If � acts on V we say that � is transitive on V (or � acts transitively on V ),
when there is just one orbit. This means that given any two elements u and v of V , there
is an element β of G such that β(u) = v. If X is a graph with vertex-set V then we can
view each automorphism of X as a permutation on V and so Aut(X) = � is a permutation
group on V .

A graph G is called vertex-transitive if Aut(G) acts transitively on V (�). We say that
G is edge-transitive if the group Aut(G) acts transitively on the edge set E , namely, for
any {x, y}, {v,w} ∈ E(G), there is some π in Aut(G), such that π({x, y}) = {v,w}. We
say that G is symmetric (or arc-transitive) if for all vertices u, v, x, y of G such that u
and v are adjacent, and also, x and y are adjacent, there is an automorphism π in Aut(G)

such that π(u) = x and π(v) = y. We say that G is distance-transitive if for all vertices
u, v, x, y of G such that d(u, v) = d(x, y), where d(u, v) denotes the distance between
the vertices u and v in G, there is an automorphism π in Aut(�) such that π(u) = x and
π(v) = y.

Let n, k ∈ N with k < n, and let [n] = {1, . . . , n}. The Johnson graph J (n, k) is defined
as the graph whose vertex set is V = {v | v ⊆ [n], |v| = k} and two vertices v, w are
adjacent if and only if |v ∩ w| = k − 1. The Johnson graph J (n, k) is a distance-transitive
graph [2]. It is easy to show that the set H = { fθ | θ ∈ Sym([n])}, fθ ({x1, . . . , xk}) =
{θ(x1), . . . , θ(xk)} is a subgroup of Aut(J (n, k)). It has been shown that Aut(J (n, k)) ∼=
Sym([n]), if n �= 2k, and Aut(J (n, k)) ∼= Sym([n]) × Z2, if n = 2k, where Z2 is the
cyclic group of order 2 [10,19].

The group � is called a semidirect product of N by Q, denoted by � = N � Q, if �

contains subgroups N and Q such that

(i) N � � (N is a normal subgroup of �);
(ii) NQ = �; and

(iii) N ∩ Q = 1.

Although in most situations it is difficult to determine the automorphism group of a
graph G, there are various papers in the literature dealing with this, and some of the recent
works include [5,6,10,14–16,18,19,24].

3. Main results

The proof of the following lemma is easy but its result is necessary for proving the results
of our work.

Lemma 3.1. Let G = (U ∪ W, E), U ∩ W = ∅ be a connected bipartite graph. If f is
an automorphism of the graph G, then f (U ) = U and f (W ) = W, or f (U ) = W and
f (W ) = U.

Proof. Automorphisms of G preserve distance between vertices and since two vertices are
in the same part if and only if they are at even distance from each other, the result follows.

�

We have the following definition due to Sabidussi [22].
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DEFINITION 3.2

Let G = (V, E) be a graph with the vertex-set V and the edge-set E . Let N (v) denote the
set of neighbors of the vertex v of G. We say that G is an irreducible graph if for every
pare of distinct vertices x, y ∈ V we have N (x) �= N (y).

From Definition 3.2, it follows that the cycle Cn , n �= 4, is irreducible, but the complete
bipartite graph Km,n is not irreducible, when (m, n) �= (1, 1).

Lemma 3.3. Let G = (U ∪ W, E), U ∩ W = ∅ be a bipartite irreducible graph. If f
is an automorphism of G such that f (u) = u for every u ∈ U, then f is the identity
automorphism of G.

Proof. Let w ∈ W be an arbitrary vertex. Since f is an automorphism of the graph G,
then for the set N (w) = {u|u ∈ U, u ↔ w}, we have f (N (w)) = { f (u)|u ∈ U, u ↔
w} = N ( f (w)). On the other hand, since for every u ∈ U , f (u) = u, then we have
f (N (w)) = N (w), and therefore N ( f (w)) = N (w). Now since G is an irreducible graph
we must have f (w) = w. Therefore, for every vertex x in V (G) we have f (x) = x and
thus f is the identity automorphism of the graph G. �

Let G = (U ∪W, E), U ∩W = ∅ be a bipartite graph. We can construct various graphs
on the set U . We show that some of these graphs can help us in finding the automorphism
group of the graph G.

DEFINITION 3.4

Let G = (U ∪W, E), U ∩W = ∅ be a bipartite graph. Let G1 = (U, E1) be a graph with
the vertex-set U such that the following conditions hold:

(i) Every automorphism of the graph G1 can be uniquely extended to an automorphism
of the graph G. In other words, if f is an automorphism of the graph G1, then there
is a unique automorphism e f in the automorphism group of G such that (e f )|U = f ,
where (e f )|U is the restriction of the automorphism e f to the set U .

(ii) If f ∈ Aut(G) is such that f (U ) = U , then the restriction of f to U is an automor-
phism of the graph G1. In other words, if f ∈ Aut(G) is such that f (U ) = U then
f |U ∈ Aut(G1).

When such a graph G1 exists, then we say that the graph G1 is a faithful representation
of G.

Remark 3.5. Let G = (U ∪ W, E), U ∩ W = ∅ be a bipartite irreducible graph, and
G1 = (U, E1) be a graph. If f ∈ Aut(G1) can be extended to an automorphism g of
the graph G, then g is unique. In fact if g and h are extensions of the automorphism
f ∈ Aut(G1) to automorphisms of G, then i = gh−1 is an automorphism of the graph G
such that the restriction of i to the set U is the identity automorphism. Hence by Lemma
3.3, the automorphism i is the identity automorphism of the graph G, and therefore g = h.
Hence, according to Definition 3.4, the graph G1 is a faithful representation of the graph
G if and only if every automorphism of G1 can be extended to an automorphism of G and
every automorphism of G which fixes U setwise is an automorphism of G1.
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Example 3.6. Let G = H(n, k) = (V1 ∪ V2, E) be the bipartite Kneser graph which
is introduced in (ii) of the Introduction of the present paper. Let G1 = (V1, E1) be the
Johnson graph which can be constructed on the vertex V1. It can be shown that the graph
G1 is a faithful representation of G [18].

In the next theorem, we show that if G = (U ∪ W, E), U ∩ W = ∅ is a connected
bipartite irreducible graph with G1 = (U, E1) as a faithful representation of G, then we
can determine the automorphism group of the graph G, provided the automorphism group
of the graph G1 has been determined.

Let G = (U ∪ W, E), U ∩ W = ∅, be a connected bipartite irreducible graph such
that G1 = (U, E1) is a faithful representation of G. If f ∈ Aut(G1) then we let e f be
its unique extension to Aut(G). It is easy to see that EG1 = {e f | f ∈ Aut(G1)}, with the
operation of composition, is a group. Moreover, it is easy to see that EG1 and Aut(G1) are
isomorphic (as abstract groups).

For the bipartite graph G = (U ∪ W, E) we let S(U ) = { f ∈ Aut(G)| f (U ) =
U }=Aut(G)U , the stabilizer subgroup of the set U in the group Aut(G). The next propo-
sition shows that when G1 = (U, E1) is a faithful representation of G, then S(U ) is a
familiar group.

PROPOSITION 3.7

Let G = (U ∪ W, E), U ∩ W = ∅ be a connected bipartite irreducible graph such
that G1 = (U, E1) is a faithful representation of G. Then S(U ) ∼= Aut(G1), where
S(U ) = { f ∈ Aut(G)| f (U ) = U }.

Proof. Let f be an automorphism of the graph G1. Then by definition of the graph G1 we
deduce that e f is an automorphism of the graph G such that e f (U ) = U . Hence, we have
EG1 ≤ S(U ), where EG1 is the group which is defined preceding this theorem.

On the other hand, if g ∈ S(U ), then g(U ) = U . Thus by the definition of the graph G1,
the restriction of g to U is an automorphism of the graph G1. In other words, h = g|U ∈
Aut(G1). Therefore, by Definition 3.4, there is an automorphism eh of the graphG such that
eh(u) = g(u) for every u ∈ U. Now by Remark 3.5, we deduce that g = eh ∈ EG1 . Hence
we have S(U ) ≤ EG1 . We now deduce that S(U ) = EG1 . Now, since EG1

∼= Aut(G1),
we conclude that S(U ) ∼= Aut(G1). �

Let G = (U ∪ W, E), U ∩ W = ∅ be a connected bipartite graph. It is quite possible
that f (U ) = U, for every automorphism of the graph G. For example, if |U | �= |W |,
or U contains a vertex of degree d, but W does not contain a vertex of degree d, then
we have f (U ) = U for every automorphism f of the graph G. In such a case we have
Aut(G) = S(U ), and hence by Proposition 3.7, we have the following theorem.

Theorem 3.8. Let G = (U ∪ W, E), U ∩ W = ∅ be a connected bipartite irreducible
graph such that G1 = (U, E1) is a faithful representation of G. If Aut(G) = S(U ), then
Aut(G) ∼= Aut(G1).

Let G = (U∪W, E),U∩W = ∅ be a connected bipartite irreducible graph. Concerning
the automorphism group of G, we can say even more if |U | = |W |. When |U | = |W | then
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there is a bijection θ : U → W. Then θ−1 ∪ θ = t is a permutation on the vertex-set of the
graph G such that t (U ) = W and t (W ) = U . In the following theorem, we show that if
the graph G has a faithful representation G1 = (U, E1), and if such a permutation t is an
automorphism of the graph G, then the automorphism group of the graph G is a familiar
group.

Theorem 3.9. Let G = (U∪W, E),U∩W = ∅be a connected bipartite irreducible graph
such that G1 = (U, E1) is a faithful representation of G and |U | = |W |. Suppose that there
is an automorphism t of the graph G such that t (U ) = W. Then Aut(G) = Aut(G1)� H,

where H = 〈t〉 is the subgroup generated by t in the group Aut(G).

Proof. Let S(U ) = { f ∈ Aut(G)| f (U ) = U }. It is clear that S(U ) is a subgroup of
Aut(G).Let g ∈ Aut(G)be such that g(U ) �= U . Then by Lemma 3.1, we have g(U ) = W ,
and hence tg(U ) = t (W ) = U . Therefore, tg ∈ S(U ), and hence there is an element
h ∈ S(U ) such that tg = h. Thus, g = t−1h ∈ 〈t, S(U )〉, where 〈t, S(U )〉 = K is the
subgroup of Aut(G) which is generated by t and S(U ). It follows that Aut(G) ≤ K . Since
K ≤ Aut(G), we deduce that K = Aut(G). If f is an arbitrary element in the subgroup
S(U ) of K , then we have (t−1 f t)(U ) = (t−1 f )(W ) = t−1( f (W )) = (t−1)(W ) = U ,
hence t−1 f t ∈ S(U ). We now deduce that S(U ) is a normal subgroup of the group K .
Therefore, K = 〈t, S(U )〉 = S(U ) � 〈t〉 = S(U ) � H, where H = 〈t〉. We have seen
in Proposition 3.8 that S(U ) ∼= Aut(G1), and hence we conclude that K = Aut(G) ∼=
Aut(G1) � H . �

In the sequel, we will see how Theorems 3.8 and 3.9 can help us in determining the
automorphism groups of some classes of bipartite graphs.

Some applications Let G = (U ∪W ) = G(n, k, l) be the bipartite graph which is defined
in (iii) of the Introduction of the present paper. Then U = {v ⊂ [n] | |v| = k} and
W = {v ⊂ [n] | |v| = l}. It is easy to show that G is connected and irreducible. Let
G1 = (U, E1) be the Johnson graph which can be constructed on the set U . By a proof
exactly similar to what appeared in [16,18] and later [9], it can be shown that G1 is a
faithful representation of G. We know that Aut(G1) = H = { fθ |θ ∈ Sym([n])}, where
fθ (v) = {θ(x)|x ∈ v} for every v ∈ U , because k < l and k + l ≤ n imply that k < n

2 .
When k+l = n, then the mapping t : V (G) → V (G), defined by the rule t (v) = vc, where
vc is the complement of the set v in the set [n] = {1, 2, 3, . . . , n}, is an automorphism
of G. It is clear that t (U ) = W and t (W ) = U . Moreover, t is of order 2, and hence
〈t〉 ∼= Z2. It is easy to show that if f ∈ H , then f t = t f [16,19]. Now, from Theorem 3.8
and Theorem 3.9, we obtain the following theorem which has been given in [9].

Theorem 3.10. Let n, k and l be integers with 1 ≤ k < l ≤ n − 1 and G = G(n, k, l).
If n �= k + l, then Aut(G) ∼= Sym([n]), and if n = k + l, then Aut(G) = H � 〈t〉 ∼=
H × 〈t〉 ∼= Sym([n]) × Z2, where H and t are the group and automorphism which are
defined preceding this theorem.

We now consider a class of graphs which are in some combinatorial aspects similar to
Johnson graphs.
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DEFINITION 3.11

Let p be a positive prime integer and q = pm , where m is a positive integer. Let n, k be
positive integers with k < n. Let V (q, n) be a vector space of dimension n over the finite
field Fq . Let Vk be the family of all subspaces of V (q, n) of dimension k. Every element
of Vk is also called a k-subspace. The Grassmann graph G(q, n, k) is the graph with the
vertex-set Vk , in which two vertices u and w are adjacent if and only if dim(u∩w) = k−1.

Note that if k = 1, we have a complete graph, so we shall assume that k > 1. It is
clear that the number of vertices of the Grassmann graph G(q, n, k), that is, |Vk |, is the
Gaussian binomial coefficient,

[
n

k

]
q

= (qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
= (qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
.

Noting that
[n
k

]
q = [ n

n−k

]
q
, it follows that |Vk | = |Vn−k |. It is easy to show that if

1 ≤ i < j ≤ n
2 , then |Vi | < |Vj |. Let (, ) be any nondegenerate symmetric bilinear form

on V (q, n). For each X ⊂ V (q, n), we let X⊥ = {w ∈ V (q, n)|(x, w) = 0, for every
x ∈ X}. It can be shown that if v is a subspace of V (q, n), then v⊥ is also a subspace of
V (q, n) and dim(v⊥) = n − dim(v). It can be shown that G(n, q, k) ∼= G(n, q, n − k)
[2], and hence in the sequel we assume that k ≤ n

2 .
It is easy to see that the distance between two vertices v and w in this graph is k −

dim(v ∩ w). The Grassmann graph is a distance-regular graph of diameter k [2]. Let K be
a field and V (n) be a vector space of dimension n over the field K . Let τ : K −→ K be
a field automorphism. A semilinear operator on V (n) is a mapping f : V (n) −→ V (n)

such that

f (c1v1 + c2v2) = τ(c1) f (v1) + τ(c2) f (v2) (c1, c2 ∈ K and v1, v2 ∈ V (n)).

A semilinear operator f : V (n) −→ V (n) is a semilinear automorphism if it is a bijection.
Let �Ln(K ) be the group of semilinear automorphisms on V (n). Note that this group
contains A(V (n)), where A(V (n)) is the group of non-singular linear mappings on the
space V (n). Also, this group contains a normal subgroup isomorphic to K ∗, namely, the
group Z = {k IV (n)|k ∈ K }, where IV (n) is the identity mapping on V (n). We denote the
quotient group �Ln(K )

Z by P�Ln(K ).
Note that if (a + Z) ∈ P�Ln(K ) and x is an m-subspace of V (n), then (a + Z)(x) =

{a(u)|u ∈ x} is anm-subspace of V (n). In the sequel, we also denote (a+Z) ∈ P�Ln(K )

by a. Now, if a ∈ P�Ln(Fq), it is easy to see that the mapping fa : Vk −→ Vk , defined
by the rule fa(v) = a(v), is an automorphism of the Grassmann graph G = G(q, n, k).
Therefore, if we let

A = { fa |a ∈ P�Ln(Fq)}, (1)

then A is a group isomorphic to the group P�Ln(Fq)) (as abstract groups), and we have
A ≤ Aut(G).
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When n = 2k, then the Grassmann graph G = G(q, n, k) has some other automor-
phisms. In fact if n = 2k, then the mapping θ : Vk −→ Vk , which is defined by
this rule θ(v) = v⊥, for every k-subspace of V (2k), is an automorphism of the graph
G = G(q, 2k, k). Hence M = 〈A, θ〉 ≤ Aut(G). It can be shown that A is a normal
subgroup of the group M . Therefore M = A� 〈θ〉. Note that the order of θ is 2 and hence
〈θ〉 ∼= Z2. Concerning the automorphism groups of Grassmann graphs, from a known fact
which appeared in [3], we have the following result [2].

Theorem 3.12. Let G be the Grassmann graph G = G(q, n, k), where n > 3 and k ≤ n
2 .

If n �= 2k, then we have Aut(G) = A ∼= P�Ln(Fq), and if n = 2k, then we have
Aut(G) = 〈A, θ〉 ∼= A � 〈θ〉 ∼= P�Ln(Fq) � Z2, where A is the group which is defined
in (1) and θ is the mapping which is defined preceding this theorem.

We now proceed to determine the automorphism group of a class of bipartite graphs
which are similar in some aspects to the graphs B(n, k)

DEFINITION 3.13

Let n, k be positive integers such that n ≥ 3, k ≤ n − 1. Let q be a power of a prime and
Fq be the finite field of order q. Let V (q, n) be a vector space of dimension n over Fq . We
define the graph S(q, n, k) as a graph with the vertex-set V = Vk ∪ Vk+1, in which two
vertices v and w are adjacent whenever v is a subspace of w or w is a subspace of v, where
Vk and Vk+1 are the sets of subspaces in V (q, n) of dimension k and k + 1, respectively.

When n = 2k+1, then the graph S(q, n, k) is known as a doubled Grassmann graph [2].
Noting that

[n
k

]
q = [ n

n−k

]
q
, it is easy to show that S(n, q, k) ∼= S(n, q, n − k − 1). Hence

in the sequel we assume k < n
2 . It can be shown that the graph S(q, n, k) is a connected

bipartite irreducible graph. We formally state and prove these facts.

PROPOSITION 3.14

The graph G = S(q, n, k) which is defined in Definition 3.13, is a connected bipartite
irreducible graph.

Proof. It is clear that the graph G = S(q, n, k) is a bipartite graph with partition Vk∪Vk+1.
It is easy to show that G is an irreducible graph. We now show that G is a connected graph.
It is sufficient to show that if v1, v2 are two vertices in Vk , then there is a path in G
between v1 and v2. Let dim(v1 ∩ v2) = k − j , 1 ≤ j ≤ k. We prove our assertion
by induction on j . If j = 1, then u = v1 + v2 is a subspace of V (n, q) of dimension
k + k − (k − 1) = k + 1, which contains both of v1 and v2. Hence, u ∈ Vk+1 is adjacent
to both of the vertices v1 and v2. Thus, if j = 1, then there is a path between v1 and v2
in the graph G. Assume when j = i , 0 < i < k, then there is a path in G between v1
and v2. We now assume j = i + 1. Let v1 ∩ v2 = w, and let B = {b1, . . . , bk−i−1} be a
basis for the subspace w in the space V (q, n). We can extend B to bases B1 and B2 for
the subspaces v1 and v2, respectively. Let B1 = {b1, . . . , bk−i−1, c1, . . . , ci+1} be a basis
for v1 and B2 = {b1, . . . , bk−i−1, d1, . . . , di+1} be a basis for v2. Consider the subspace
s = 〈b1, . . . , bk−i−1, c1, d2, . . . , di+1〉. Then s is a k-subspace of the space V (q, n) such
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that dim(s ∩ v2) = k − 1 and dim(s ∩ v1) = k − i . Hence by the induction assumption,
there is a path P1 between vertices v2 and s, and a path P2 between vertices s and v1. We
now conclude that there is a path in the graph G between vertices v1 and v2. �

Theorem 3.15. Let G = S(q, n, k) be the graph which is defined in Definition 3.13.
If n �= 2k + 1, then we have Aut(G) ∼= P�Ln(Fq). If n = 2k + 1, then Aut(G) ∼=
P�Ln(Fq) � Z2.

Proof. From Proposition 3.14, it follows that the graph G = S(q, n, k) is connected, bipar-
tite and irreducible with the vertex-set Vk ∪ Vk+1, Vk ∩ Vk+1 = ∅. Let G1 = G(q, n, k) =
(Vk, E) be the Grassmann graph with the vertex-set Vk when k > 1 and the vertex-set V2,

when k = 1. We show that G1 is a faithful representation of the graph G.
Firstly, the condition (i) of Definition 3.4 holds because k < n

2 and every automorphism
of the Grassmann graph G(q, n, r) is of the form fa , a ∈ P�Ln(Fq), and is an automor-
phism of the graph G(q, n, s) when r, s < n

2 . Also, note that if X,Y are subspaces of
V (q, n) such that X ≤ Y , then fa(X) ≤ fa(Y ).

Now, suppose that f is an automorphism of the graph G such that f (Vk) = Vk . We
show that the restriction of f to the set Vk , namely g = f |Vk , is an automorphism of the
graph G1. It is trivial that g is a permutation of the vertex-set Vk . Let v and w be adjacent
vertices in the graph G1. We show that g(v) and g(w) are adjacent in the graph G1. We
assert that there is exactly one vertex u in the graph G such that u is adjacent to both of
the vertices v and w. If the vertex u is adjacent to both of the vertices v and w, then v

and w are k-subspaces of the (k + 1)-space u. Hence u contains the space v + w. Since
dim(v + w)=dim(v) + dim(w) − dim(v ∩ w) = k + k − (k − 1) = k + 1, we have
u = v + w. In other words, the vertex u = v + w is the unique vertex in the graph G such
that u is adjacent to both of the vertices v and w. Also, note that our discussion shows that
if x, y ∈ Vk are such that dim(x ∩ y) �= (k − 1), then x and y have no common neighbor
in the graph G.

Now since the vertices v and w have exactly 1 common neighbor in the graph G,
therefore, f (v) = g(v) and f (w) = g(w) have exactly 1 common neighbor in the graph
G. It follows that dim(g(v) ∩ g(w)) = k − 1, and hence g(v) and g(w) are adjacent
vertices in the Grassmann graph G1.

We now conclude that the graph G1 is a faithful representation of the graph G. There
are two possible cases, namely, (1) 2k + 1 �= n or (2) 2k + 1 = n.

(1) Let 2k + 1 �= n. Noting that
[n
k

]
q <

[ n
k+1

]
q
, it follows that |Vk | �= |Vk+1|. Therefore

by Theorems 3.8, and 3.12, we have Aut(G) ∼= Aut(G1) ∼= P�Ln(Fq).
(2) If 2k + 1 = n, since

[n
k

]
q = [ n

k+1

]
q
, then |Vk | = |Vk+1|. Hence, the mapping

θ : V (G) −→ V (G) defined by the rule θ(v) = v⊥ is an automorphism of the graph
G of order 2 such that θ(Vk) = Vk+1. Hence, by Theorems 3.9 and 3.12, we have
Aut(G) ∼= Aut(G1) � 〈θ〉 ∼= P�Ln(Fq) � Z2.

�

We now show another application of Theorem 3.9, in determining the automorphism
groups of some classes of graphs which are important in algebraic graph theory.

If G1,G2 are graphs, then their direct product (or tensor product) is the graph G1 ×G2
with vertex set {(v1, v2) | v1 ∈ G1, v2 ∈ G2}, and for which vertices (v1, v2) and (w1, w2)
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are adjacent precisely if v1 is adjacent to w1 in G1 and v2 is adjacent to w2 in G2. It can be
shown that the direct product is commutative and associative [8]. The following theorem,
first was proved by Weichsel (1962), characterizes connectedness in direct products of two
factors.

Theorem 3.16 [8]. Suppose G1 and G2 are connected nontrivial graphs. If at least one of
G1 or G2 has an odd cycle, then G1 × G2 is connected. If both G1 and G2 are bipartite,
then G1 × G2 has exactly two components.

Thus, if one of the graphs G1 or G2 is a connected non-bipartite graph, then the graph
G1 ×G2 is a connected graph. If K2 is the complete graph on the set {0, 1}, then the direct
product B(G) = G × K2 is a bipartite graph, and is called the bipartite double cover of G
(or the bipartite double of G). Then

V (B(G)) = {(v, i)|v ∈ V (G), i ∈ {0, 1}},
and two vertices (x, a) and (y, b) are adjacent in the graph B(G) if and only if a �= b and
x is adjacent to y in the graph G. The notion of the bipartite double cover of G has many
applications in algebraic graph theory [2].

Consider the bipartite double cover of G, namely, the graph B(G) = G × K2. It is
easy to see that the group Aut(B(G)) contains the group Aut(G) × Z2 as a subgroup.
In fact, if for g ∈ Aut(G), we define the mapping eg by the rule eg(v, i) = (g(v), i),
i ∈ {0, 1}, v ∈ V (G), then eg ∈ Aut(B(G)). It is easy to see that H = {eg|g ∈ Aut(G)} ∼=
Aut(G) is a subgroup of Aut(B(G)). Let t be the mapping defined on V (B(G)) by the
rule t (v, i) = (v, i c), where i c = 1 if i = 0 and i c = 0 if i = 1. It is clear that t is
an automorphism of the graph B(G). Hence, 〈H, t〉 ≤ Aut(B(G)). Noting that for every
eg ∈ H we have egt = teg, we deduce that 〈H, t〉 ∼= H × 〈t〉. We now conclude that
Aut(G) × Z2 ∼= H × Z2 ≤ Aut(B(G)).

Let G be a graph. G is called a stable graph when we have Aut(B(G)) ∼= Aut(G)×Z2.
Concerning the notion and some properties of stable graphs, see [12,13,21,23].

Let n, k ∈ N with k < n
2 and let [n] = {1, . . . , n}. The Kneser graph K (n, k) is

defined as the graph whose vertex set is V = {v | v ⊆ [n], |v| = k} and two vertices v,w
are adjacent if and only if |v ∩ w|=0. It is easy to see that if H(n, k) is a bipartite Kneser
graph, then H(n, k) ∼= K (n, k) × K2. Now, it follows from Theorem 3.9 (or [18]) that
Kneser graphs are stable graphs.

The next theorem provides a sufficient condition such that when a connected non-
bipartite irreducible graph G satisfies this condition, then G is a stable graph.

Theorem 3.17. Let G = (V, E) be a connected non-bipartite irreducible graph. Let
v,w ∈ V be arbitrary. Let c(v,w) be the number of common neighbors of v and w in the
graph G. Let a0 > 0 be a fixed integer. If c(v,w) = a0, when v and w are adjacent and
c(v,w) �= a0 when v and w are non-adjacent, then we have

Aut(G × K2) = Aut(B(G)) ∼= Aut(G) × Z2.

In other words, G is a stable graph.

Proof. Note that the graph G × K2 is a bipartite graph with the vertex set V = U ∪ W ,
where U = {(v, 0)|v ∈ V (G)} and W = {(v, 1)|v ∈ V (G)}. Since G is an irreducible
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graph, then the graphG×K2 is an irreducible graph. In fact if the vertices x, y ∈ V are such
that N (x) = N (y), then x, y ∈ U or x, y ∈ W. Without loss of generality, we can assume
that x, y ∈ U. Let x = (u1, 0) and y = (u2, 0). Let N (x) = {(v1, 1), (v2, 1), . . . , (vm, 1)}
and N (y) = {(t1, 1), (t2, 1), . . . , (tp, 1)}, where vi s and t j s are in V (G). Thus m = p
and N (u1) = {u1, . . . , um}={t1, . . . , tm} = N (u2). Now since G is an irreducible graph,
it follows that u1 = u2 and therefore x = y.

Let G1 = (U, E1) be the graph with vertex-setU in which two vertices (v, 0) and (w, 0)

are adjacent if and only if v1 and v2 are adjacent in the graph G. It is clear that G1 ∼= G.
Therefore we have Aut(G1) ∼= Aut(G). For every f ∈ Aut(G), we let

d f : U → U, d f (v, 0) = ( f (v), 0), for every (v, 0) ∈ U.

Then d f is an automorphism of the graph G1. If we let A = {d f | f ∈ Aut(G)}, then
A with the operation of composition is a group, and it is easy to see that A ∼= Aut(G1)

(as abstract groups). We now assert that the graph G1 is a faithful representation of the
bipartite graph B = G × K2. Let g ∈ Aut(B) be such that g(U ) = U. We assert that
h = g|U , the restriction of g to U , is an automorphism of the graph G1. It is clear that
h is a permutation of U . Let (v, 0) and (w, 0) be adjacent vertices in G1. Then v,w are
adjacent in the graph G. Hence there are vertices u1, . . . , ua0 in the graph G such that
the set of common neighbor(s) of v and w in G is {u1, . . . , ua0}. Noting that (x, 1) is
a common neighbor of (v, 0) and (w, 0) in the graph B if and only if x is a common
neighbor of v,w in the graph G, we deduce that the set {(u1, 1), . . . , (ua0 , 1)} is the set
of common neighbor(s) of (v, 0) and (w, 0) in the graph B. Since g is an automorphism
of the graph B, g(v, 0) and g(w, 0) have a0 common neighbor(s) in the graph B. Note
that if dG1(g(v, 0), g(w, 0)) > 2, then these vertices have no common neighbor in the
graph B. Also, if dG1(g(v, 0), g(w, 0)) = 2, then dG(v,w) = 2, and hence v,w have
c(v,w) �= a0 common neighbor(s) in the graph G. Hence (v, 0) and (w, 0) have c(v,w)

common neighbor(s) in the graph B, and therefore g(v, 0), g(w, 0) have c(v,w) �= a0
common neighbor(s) in the graph B. We now deduce that dG1(g(v, 0), g(w, 0)) = 1. It
follows that h = g|U is an automorphism of the graph G1. Thus, the condition (ii) of
Definition 3.4 holds for the graph G1.

Now, suppose that φ is an automorphism of the graphG1. Then there is an automorphism
f of the graph G such that φ = d f . We now define the mapping eφ on the set V (B) by
the following rule:

(∗) eφ(v, i) =
{

( f (v), 0), if i = 0

( f (v), 1), if i = 1.

It is easy to see that eφ is an extension of the automorphism φ to an automorphism of the
graph B. We now deduce that the graph G1 is a faithful representation of the graph B.

On the other hand, it is easy to see that the mapping t : V (B) → V (B), which is defined
by the rule,

(∗∗) t (v, i) =
{

(v, 0), if i = 1

(v, 1), if i = 0,

is an automorphism of the graph B of order 2. Hence 〈t〉 ∼= Z2. Also, it is easy to see
that for every automorphism φ of the graph G1 we have teφ = eφ t . We now conclude by
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Theorem 3.9, that

Aut(G × K2) = Aut(B) ∼= Aut(G1) � 〈t〉 ∼= Aut(G) × 〈t〉 ∼= Aut(G) × Z2.

�

As an application of Theorem 3.17, we show that the Johnson graph J (n, k) is a stable
graph. Since J (n, k) ∼= J (n, n − k) in the sequel, we assume that k ≤ n

2 .

Theorem 3.18. Let n, k be positive integers with k ≤ n
2 . If n �= 6, then the Johnson graph

J (n, k) is a stable graph.

Proof. We know that the vertex set of the graph J (n, k) is the set of k-subsets of [n] =
{1, 2, 3, . . . , n} in which two vertices v and w are adjacent if and only if |v ∩ w| = k − 1.
If k = 1, then J (n, k) ∼= Kn , the complete graph on n vertices. It is easy to see that if
X = Kn , then the bipartite double cover of X is isomorphic with the bipartite Kneser graph
H(n, 1). From Theorem 3.9 (or [18]), we know that Aut(H(n, 1)) ∼= Sym([n]) × Z2 ∼=
Aut(Kn) × Z2. Hence the Johnson graph J (n, k) is a stable graph when k = 1. We now
assume that k ≥ 2. We let G = J (n, k). It is easy to see that G is an irreducible graph.
It can be shown that if v,w are vertices in G, then d(v,w) = k − |v ∩ w| [2]. Hence,
G is a connected graph. It is easy to see that the girth of the Johnson graph J (n, k) is 3.
Therefore, G is a non-bipartite graph. It is clear that when d(v,w) ≥ 3, then v,w have
no common neighbors. We now consider two other possible cases, that is, (i) d(v,w) = 2
or (ii) d(v,w) = 1. Let c(v,w) denote the number of common neighbors of v,w in G.
In the sequel, we show that if d(v,w) = 2, then c(v,w) = 4, and if d(v,w) = 1, then
c(v,w) = n − 2.

(i) If d(v,w) = 2, then |v ∩ w| = k − 2. Let v ∩ w = u. Then v = u ∪ {i1, i2},
w = u ∪ { j1, j2}, where i1, i2, j1, j2 ∈ [n], {i1, i2} ∩ { j1, j2} = ∅. Let x ∈ V (G). It
is easy to see that if |x ∩ u| < k − 2, then x can not be a common neighbor of v,w.
Hence, if x is a common neighbor of v and w, then x is of the form x = u ∪ {r, s},
where r ∈ {i1, i2} and s ∈ { j1, j2}. We now deduce that the number of common
neighbors of v and w in the graph G is 4.

(ii) We now assume that d(v,w) = 1. Then |v ∩ w| = k − 1. Let v ∩ w = u. Then
v = u ∪ {r}, w = u ∪ {s}, where r, s ∈ [n], r �= s. Let x ∈ V (G). It is easy to see
that if |x ∩ u| < k − 2, then x can not be a common neighbor of v,w. Hence, if x
is a common neighbor of v and w, then |x ∩ u| = k − 1 or |x ∩ u| = k − 2. In the
first step, we assume that |x ∩ u| = k − 1. Then x is of the form x = u ∪ {y}, where
y ∈ [n] − (v ∪ w). Since, |v ∪ w| = k + 1, then the number of such x’s is n − k − 1.
We now assume that |x ∩ u| = k − 2. Hence, x is of the form x = t ∪ {r, s},
where t is a (k − 2)-subset of the (k − 1)-set u. Therefore the number of such x’s
is

(k−1
k−2

) = k − 1. Our argument follows that if v and w are adjacent, then we have
c(v,w) = n − k − 1 + k − 1 = n − 2.

Noting that n − 2 �= 4, we conclude from Theorem 3.18 that the Johnson graph J (n, k)
is a stable graph when n �= 6. �

Although, Theorem 3.18, does not say anything about the stability of the Johnson graph
J (6, k), we show by the next result that this graph is a stable graph.
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PROPOSITION 3.19

The Johnson graph J (6, k) is a stable graph.

Proof. When k = 1 the assertion is true, and hence we assume that k ∈ {2, 3}. In the first
step, we show that the Johnson graph J (6, 2) is a stable graph. Let B = J (6, 2) × K2.
We show that Aut(B) ∼= Sym([6]) × Z2, where [6] = {1, 2, . . . , 6}. It is clear that B
is a bipartite irreducible graph. Let V = V (B) be the vertex-set of the graph B. Then
V = V0 ∪ V1, where Vi = {(v, i)|v ⊂ [6], |v| = 2}, i ∈ {0, 1}. Let G1 = (V0, E1) be the
graph with the vertex-set V0 in which two vertices (v, 0), (w, 0) are adjacent whenever
|v ∩ w| = 1. It is clear that G1 is isomorphic with the Johnson graph J (6, 2). Hence, we
have Aut(G1) ∼= Sym([6]). We show that G1 is a faithful representation of the graph B.
By what we saw in (*) of the proof of Theorem 3.17, it is clear that if h is an automorphism
of the graph G1, then h can be extended to an automorphism eh of the graph B. Thus, the
condition (i) of Definition 3.4, holds for the graph G1.

Let a = (v, 0) and b = (w, 0) be two adjacent vertices in the graph G1, that is,
|v ∩ w| = 1. Let N (a, b) denote the set of common neighbors of a and b in the graph
B. Let X (a, b) = {a, b} ∪ N (a, b) ∪ t (N (a, b)), where t is the automorphism of the
graph B defined by the rule t (v, i) = (v, i c), i c ∈ {0, 1}, i c �= i . Let 〈X (a, b)〉 be the
subgraph induced by the set X (a, b) in the graph B. It can be shown that if a, b are adja-
cent vertices in G1, that is, |v ∩ w| = 1, then 〈X (a, b)〉 has a vertex of degree 0. On the
other hand, when a, b are not adjacent vertices in G1, that is, |v ∩ w| = 0, then 〈X (a, b)〉
has no vertices of degree 0. In the rest of the proof, we let {x, y} = xy. For exam-
ple, let r = (12, 0) and s = (13, 0) be two adjacent vertices of G1. Then X (r, s) =
{(12, 0), (13, 0), (14, 1), (15, 1), (16, 1), (23, 1), (14, 0), (15, 0), (16, 0), (23, 0)}. Now,
in the graph 〈X (r, s)〉 the vertex (23, 0) is a vertex of degree 0. Whereas, if we let
r = (12, 0), u = (34, 0), then r, u are not adjacent in the graph G1. Then X (r, u) =
{(12, 0), (34, 0), (13, 1), (14, 1), (23, 1), (24, 1), (13, 0), (14, 0), (23, 0), (24, 0)}. Now,
it is clear that the graph 〈X (r, u)〉 has no vertices of degree 0.

Note that the graph G1 is isomorphic with the Johnson graph J (6, 2), and hence G1 is a
distance-transitive graph. Now if c, d are two adjacent vertices in the graphG1, then there is
an automorphism f in Aut(G1) such that f (r) = c and f (s) = d. Let e f be the extension
of f to an automorphism of the graph B. Therefore, 〈X (c, d)〉 = 〈X (e f (r), e f (s))〉 =
e f (〈X (r, s)〉) has a vertex of degree 0. This argument also shows that if p, q are non-
adjacent vertices in the graph G1, then 〈X (p, q)〉 has no vertices of degree 0.

Now, let g be an automorphism of the graph B such that g(V0) = V0. We show that
g|V0 is an automorphism of the graph G1. Let a = (v, 0) and b = (w, 0) be two adjacent
vertices of the graph G1, that is, |v ∩ w| = 1. Then 〈X (a, b)〉 has a vertex of degree 0.
Hence, g(〈X (a, b)〉) = 〈X (g(a), g(b))〉 has a vertex of degree 0. Then g(a) and g(b) are
adjacent in the graph G1. We now deduce that if g is an automorphism of the graph B such
that g(V0) = V0, then g|V0 is an automorphism of the graph G1. Therefore, the condition
(ii) of Definition 3.4, holds for the graph G1. Therefore, G1 is a faithful representation of
the graph B. Note that t is an automorphism of the graph B of order 2 such that t (V0) = V1
and t (V1) = V0. Also, we have t f = f t, f ∈ Aut(G1). We now conclude by Theorem
3.9 that

Aut(B) ∼= Aut(G1) � 〈t〉 ∼= Aut(G1) × 〈t〉 ∼= Aut(G) × Z2 ∼= Sym([6]) × Z2.
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Therefore, the graph G = J (6, 2) is a stable graph.
By a similar argument, we can show that the graph J (6, 3) is a stable graph. �

Combining Theorem 3.18 and Proposition 3.19, we obtain the following result.

Theorem 3.20. The Johnson graph J (n, k) is a stable graph.

4. Conclusion

In this paper, we gave a method for finding the automorphism groups of connected bipartite
irreducible graphs (Theorems 3.8 and 3.9). Then by our method, we explicitly determined
the automorphism groups of some classes of bipartite irreducible graphs, including the
graph S(q, n, k) which is a derived graph from the Grassman graph G(q, n, k) (Theorem
3.15). Also, we provided a sufficient ascertainable condition such that when a connected
non-bipartite irreducible graphG satisfies this condition, thenG is a stable graph (Theorem
3.17). Finally, we showed that the Johnson graph J (n, k) is a stable graph (Theorem 3.20).
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