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Abstract. Professor C R Rao has made significant contributions in different areas of
statistics and in related fields particularly in inference, biometrics, design of experiments,
linear models, variance components, econometrics, and most of his contributions are
well known to the statistical community. But it may not be known to many statisticians
that Professor Rao has worked quite extensively, for about six to seven years, on
statistical signal processing and has made some fundamental contributions which has
generated significant interest along that direction. He along with his collaborators have
worked mainly on three classical signal processing problems, and provided theoretical
foundations and efficient estimation procedures. In my opinion, the main contribution
of Professor Rao is that he has provided new insights in all these problems, which has
helped to bring new way of solving these and some related problems. He has guided two
Ph.D. students in the area of Statistical Signal Processing. The main aim of this article is
two-fold. First, we would like to introduce to the statistical community the contribution
of Professor Rao in this area and our second aim is to provide a class of different related
open problems which are of interest and which require sophisticated statistical tools to
provide efficient solutions.
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distribution; chirp model.

Mathematics Subject Classification. 62F10, 62F03, 62H12.

1. Introduction

Signal processing may broadly be considered as the recovery of information from differ-
ent physical observations. The signals can be observed from different sources and they
are usually corrupted by noise due to electrical, mechanical, atmospheric or intentional
interferences. Since the observed signals are random in nature, statistical techniques are
needed to extract the original signals. Statistics is used in the formulation of the proper
models to describe the behavior of the underlying process, developing proper techniques
to estimate the unknown model parameters, and assessment of model performances. Sta-
tistical signal processing broadly refers to the analysis of different random signals using
appropriate statistical procedures.

This article is part of the “Special Issue in Honour of Professor C R Rao on His Birth Centenary”.
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Professor Rao has worked on statistical signal processing in early 90’s for a period
of six to seven years. He along with his collaborators have worked on three fundamen-
tal problems in this area, namely (a) one-dimensional superimposed exponential model,
(b) two-dimensional superimposed exponential model and, (c) direction of arrival (DOA)
model. These are classical problems, and they have applications in several areas including
telecommunications, radio location of objects, seismic signal processing, image process-
ing, computer-assisted medical diagnostics, etc. Although these problems have several
applications, they are highly non-linear in nature. The first two problems can be seen as
non-linear regression problems. Both the problems can be formulated as the estimation
of unknown parameters of a non-linear model in the presence of additive noise. The third
problem involves as the estimation of the unknown parameters in a non-linear random
effect model in the presence of additive noise. It will be seen that finding efficient estima-
tors and deriving properties of these estimators are quite challenging problems due to the
nature of the problems.

It may be mentioned that an extensive amount of work has been done in standard non-
linear regression models, see for example the books by Bates and Watts [8] and Seber
and Wild [52] in this respect. Least squares estimators seem to be the natural choice
in a non-linear regression problem. But finding least squares estimators and establish-
ing their properties are quite non-trivial, in general. Jennrich [20] and later on, Wu [55]
provided several sufficient conditions for establishing the consistency and asymptotic nor-
mality properties of the least squares estimators of a non-linear regression model. The one
dimensional and two-dimensional superimposed exponential models do not satisfy those
sufficient conditions. Therefore, it is not immediate whether the least squares estimators
will be consistent or not in these cases. Professor Rao and his collaborators established
the consistency and asymptotic normality properties in these cases quite differently than
the methods developed by Jennrich [20] and Wu [55] for general non-linear regression
models.

Although the least squares estimators are the most efficient estimators, finding the least
squares estimators in case of superimposed exponential models is well known to be a
numerically difficult problem. The standard Newton–Rahson or Gauss–Newton algorithms
do not work well as the problems are highly non-linear in nature. The least squares surface
has several local minima. Hence, most of the standard iterative procedure converges to the
local minimum rather than the global minimum. Due to this reason, an extensive amount of
work has been done to find efficient estimators which behave like least squares estimators.
Professor Rao and his collaborators established an efficient algorithm which converges
in a finite number of steps and it produces estimates which have the same asymptotic
convergence rates as the least squares estimators.

The main aim of this paper is two-fold. First, we would like to define the three classical
problems from statistical perspective and provide solutions developed by Professor Rao
and his collaborators. Our second aim is to show how his work has influenced the future
research in this area. There are several interesting open problems in statistical signal
processing for which sophisticated statistical techniques are needed to provide efficient
solutions. We will provide several open problems and relevant references for the statistical
community who may not be very familiar in this area.

The rest of the paper is organized as follows. We need some preliminaries for basic
understanding of these problems, and that will be provided in Section 2. In Section 3, we
describe the one-dimensional superimposed exponential models and provide different esti-
mation procedures as provided by Professor Rao and his collaborators. Two-dimensional
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superimposed exponential model will be considered in Section 4 and DOA model will be
described in Section 5. In Section 6, we provide several related problems which have been
considered in the statistical signal processing literature in the last two to three decades and
we conclude the paper.

2. Preliminaries

We provide one important result which has been used quite extensively in the statistical
signal processing literature, and it is well known as Prony’s equation. Prony proposed the
method in 1795 mainly to estimate the unknown parameters of a sum of real exponential
model. It is available in several numerical analysis text books, for example, in [15] or [18].
It can be described as follows. Suppose

μ(t) = α1eβ1t + · · · + αMeβMt , t = 1, . . . , n.

Here α1, . . . , αM are arbitrary real number and β1, . . . , βM are distinct real numbers. Then,
for a given {μ1, . . . , μn}, there exists (M + 1) constants {g0, . . . , gM }, such that

Ag = 0, (1)

where

A =
⎡
⎢⎣

μ(1) · · · μ(M + 1)
...

. . .
...

μ(n − M) · · · μ(n)

⎤
⎥⎦ , g =

⎡
⎢⎣

g0
...

gM

⎤
⎥⎦ and 0 =

⎡
⎢⎣

0
...

0

⎤
⎥⎦ .

It can be shown that the rank of the matrix A is M . Hence, the null space of the matrix A is
of dimension one. Note that to make g to be unique, we can put restrictions on g0, . . . , gM
such that

∑M
j=0 g

2
j = 1 and g0 > 0. The set of linear equations (1) is known as Prony’s

equations. It can be shown that the roots of the following polynomial equation

p(x) = g0 + g1x + · · · + gMxM = 0 (2)

are eβ1 , . . . , eβM . Therefore, there is a one-to-one correspondence between {β1, . . . , βM }
and {g0, . . . , gM }, such that

∑M
j=0 g

2
j = 1 and g0 > 0. Moreover, {g0, . . . , gM } do not

depend on {α1, . . . , αM }, but depend only on {β1, . . . , βM }.
One natural question is how to recover α1, . . . , αM and β1, . . . , βM for a given

μ(1), . . . , μ(n). Note that

μ = Xα,

where

μ =
⎡
⎢⎣

μ(1)
...

μ(n)

⎤
⎥⎦ , X =

⎡
⎢⎣

eβ1 . . . eβM

...
. . .

...

enβ1 . . . enβM

⎤
⎥⎦ and α =

⎡
⎢⎣

α1
...

αM

⎤
⎥⎦ .

It is immediate that for β1 �= . . . �= βM , the rank of the matrix X is M . Hence, for n > M ,
the matrix X�X is of full rank, and

α = (X�X)−1X�μ. (3)

Therefore, for a given μ(1), . . . , μ(n), first obtain the vector g which satisfies (1). Obtain
β1, . . . , βM from the roots of the polynomial equation p(x) as given in (2). Finally, obtain
α1, . . . , αM from (3).
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Note that although we have described Prony’s equations when α’s and β’s are real
valued, it is still valid when α’s and β’s are complex-valued also. Due to this reason,
Prony’s equations play an important role in the statistical signal processing literature.
Several algorithms have been developed using Prony’s equations. It has been extended to
two-dimensional superimposed exponential model also, see for example, [7].

As it has been mentioned above that Prony’s equations are valid even when α’s and
β’s are complex-valued, let us consider the following special case which is known as the
undamped exponential model:

μ(t) = A1eiω1t + · · · + AMeiωMt , t = 1, . . . , n. (4)

Here, A1, . . . , AM are arbitrary complex number, 0 < ω1 �= . . . �= ωM < 2π , and
i = √−1. In this case also, there exists {g0, . . . , gM }, which are complex-valued, such
that they satisfy (1). Moreover, the roots of the polynomial equation p(z), as in (2), are
z1 = eiω1 , . . . , zM = eiωM . Observe that

|z1| = · · · = |zM | = 1, z̄1 = z−1
1 , . . . , z̄M = z−1

M . (5)

Here, z̄k denotes the complex conjugate of zk , for k = 1, . . . , M . Define the new polyno-
mial

Q(z) = z−M p̄(z) = ḡ0 z̄
−M + · · · + ḡM .

From (5), it is clear that p(z) and Q(z) have the same roots. Hence, by comparing the
coefficients of the two polynomials p(z) and Q(z), we obtain

gk
gM

= ḡM−k

ḡ0
, k = 0, . . . , M. (6)

Therefore, if we denote

bk = gk

(
ḡ0

gM

)− 1
2

, k = 0, . . . , M,

then

bk = b̄M−k, k = 0, . . . , M.

Hence, if we denote

b =
⎡
⎢⎣

b0
...

bM

⎤
⎥⎦ , b̄ =

⎡
⎢⎣

b̄0
...

b̄M

⎤
⎥⎦ , J =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

then b = Jb̄. Therefore, it is immediate that for a given μ(1), . . . , μ(n), as in (4), there
exists a vector g = (g0, . . . , gM )�, such that

∑M
k=0 |gk |2 = 1, which satisfies (1) and also

g = Jḡ. For more details, interested readers are referred to [36].

3. One-dimensional superimposed exponential model

We observe periodic phenomena everyday in our lives. For example, the number of tourists
visiting the famous Taj Mahal, the daily temperature of the capital, New Delhi, the ECG
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Figure 1. ECG Plot of a normal human being.
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Figure 2. UUU-sound of a male.

pattern of a normal human being or the musical sounds, clearly follows a periodic pattern.
Sometimes it may not be exactly periodic but nearly periodic. Moreover, the periodic signal
may not be in one dimension only, it can be in two- or three-dimensions also. One major
problem in statistical signal processing is to analyze periodic or nearly periodic data when
they are observed with noise. Some of the natural questions are: what do you mean by a
periodic signal? and, why do we want to analyze a periodic data? We will not provide a
formal definition of a periodic data, but informally speaking, a periodic data indicates a
repeated pattern in one dimension and a symmetric pattern in two- or three-dimensions.
See for example the following figures which indicate periodic nature. Figure 1 shows the
ECG plot of a normal human being and Figure 2 shows ’UUU’ vowel sound of a male.

Now the second question is: why somebody wants to analyze a periodic data? One
reason might be purely theoretical in nature, otherwise providing a proper periodic model
can be very useful for compression or prediction purposes.
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Note that the simple periodic function is the sinusoidal function and it can be written in
the following form:

y(t) = A cos(ωt) + B sin(ωt).

Clearly, the period of the function y(t) is the shortest time taken for y(t) to repeat itself,
and it is 2π/ω. In general, a smooth periodic function (mean adjusted) with period 2π/ω

can be written in the form

y(t) =
∞∑
k=1

[Ak cos(kωt) + Bk sin(kωt)] , (7)

and it is well known as the Fourier expansion of y(t). From y(t), Ak and Bk can be obtained
uniquely for k ≥ 1 as

∫ 2π/ω

0
cos(kωt)y(t)dt = π Ak

ω
and

∫ 2π/ω

0
sin(kωt)y(t)dt = πBk

ω
.

Since, in practice, y(t) is always corrupted with noise, so it is reasonable to assume that
we have the following observation:

y(t) =
∞∑
k=1

[Ak cos(ωt) + Bk sin(ωt)] + e(t),

where e(t) is the noise component. It is impossible to estimate infinite number of param-
eters. Hence the model is approximated by the following model:

y(t) =
p∑

k=1

[Ak cos(ωk t) + Bk sin(ωk t)] + e(t), (8)

for some p < ∞. The aim is to extract (estimate) the deterministic component μ(t), where

μ(t) =
p∑

k=1

[Ak cos(ωk t) + Bk sin(ωk t)] ,

in the presence of the random error component e(t), based on the available data
y(t), t = 1, . . . , n. Hence, the problem becomes the estimation of p, Ak, Bk and ωk ,
for k = 1, . . . , p.

It should be mentioned that often, instead of working with the model (8), it might be
more convenient to work with the associated complex-valued model. With the abuse of
notation, we use the corresponding complex-valued model as

y(t) = μ(t) + e(t) =
p∑

k=1

αkeiωk t + e(t). (9)

In the model (9), y(t)’s, αk’s, e(t)’s are all complex valued and i = √−1. The model (9)
can be obtained by taking the Hilbert transformation of (8). Therefore, the two models
are equivalent. Although, any observed signal is always real-valued, by taking the Hilbert
transformation of the signal, the corresponding complex-valued model can be used. Any
analytical result or numerical procedure for model (9) can be used for model (8) and vice-
versa. Although, Rao and his collaborators have mainly dealt with model (9), all the results
are valid for model (8) also, as we have just mentioned. Due to this reason, in this paper,
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Figure 3. Periodogram plot of y(t) obtained from Model (11).

we provide the results either for model (8) or for model (9) and it should be clear from the
context.

Now consider the model (8), and the problem is to estimate the unknown parameters
based on a sample {y(t); t = 1, . . . , n}. It is necessary to make certain assumptions on the
random error component e(t). At this moment, we simply make the assumptions that e(t)
has mean zero and finite variance. We will make it more explicit later when it is needed.
The most used and popular estimation procedure is known as the periodogram estimators
(see for example, [53]). The periodogram at a particular frequency is defined as

I (θ) =
∣∣∣∣∣
1

n

n∑
t=1

y(t) cos(θ t)

∣∣∣∣∣
2

+
∣∣∣∣∣
1

n

n∑
t=1

y(t) sin(θ t)

∣∣∣∣∣
2

. (10)

The main reason to use the periodogram function to estimate the frequencies and the
number of components p is that I (θ) has local maxima at the true frequencies if there is
no noise in the data. Therefore, if the noise variance is not high, it is expected that I (θ)

can be used quite effectively to estimate the frequencies and p also. It may be observed
from the following example. Let us consider the following signal:

y(t) = 3.0 cos(0.2π t) + 3.0 sin(0.2π t) + 3.0 cos(0.5π t)

+3.0 sin(0.5π t) + e(t). (11)

Here e(t)’s are assumed to be independent and identically distributed (i.i.d.) normal random
variables with mean 0 and variance 2. The plot of the periodogram function I (θ) for the
model (11) is provided in Figure 3. From Figure 3, it is clear that p = 2 and the local maxima
are close to the true frequencies. But, the same may not be true always. For example, let
us consider the following signal:

y(t) = 3.0 cos(0.2π t) + 3.0 sin(0.2π t) + 0.25 cos(0.5π t)

+0.25 sin(0.5π t) + e(t). (12)

Here e(t)’s are i.i.d. normal random variables with mean 0 and variance 5.0. The peri-
odogram plot of y(t) obtained from the model (12) is provided in Figure 4. From Figure
4, it is not clear that p = 2 and the true location of the frequencies.

Therefore, the least squares estimators seems to be a natural choice. In case of model
(9) for a given p, the least squares estimators can be obtained by the argument minimum
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Figure 4. Periodogram plot of y(t) obtained from Model (12).

of the sum of residuals as follows:

Q(α,ω) =
n∑

t=1

∣∣∣∣∣y(t) −
p∑

k=1

αkeiωk t

∣∣∣∣∣
2

. (13)

Here α = (α1, . . . , αp)
� and ω = (ω1, . . . , ωp)

�. Note that the model (9) is a complex
valued non-linear regression model. There exists an extensive list of literature related
to non-linear regression models (interested readers may refer to the book by Seber and
Wild [52]). When e(t)’s are i.i.d. random variables with mean zero and finite variance,
Jennrich [20] and later on, Wu [55] have provided several sufficient conditions for the least
squares estimators to be consistent and asymptotically normally distributed. Some of these
results have been generalized to the complex valued models also by Kundu [26]. It can
be easily shown (see for example, [33]) that the model (9) does not satisfy the sufficient
conditions of [20,55] or [26]. Hence, the consistency of the least squares estimators under
the assumptions of i.i.d. errors is not guaranteed.

Rao and Zhao [48] provided the consistency and asymptotic normality properties of the
maximum likelihood estimators of α, ω and σ 2, under the following assumptions on e(t),
for known p. Let us denote α̂ and ω̂ as the least squares estimators of α and ω, respectively,
and

σ̂ 2 = 1

n
Q(α̂, ω̂).

We need the following assumptions for further development.

Assumption 3.1. {{e(t)}, t = 1, 2, . . .} are i.i.d. complex-valued random variables. If
Re(e(t)) and Im(e(t)) denote the real and imaginary parts of e(t), then it is assumed that
Re(e(t))) and Im(e(t))) are independent normal random variables with mean zero and
variance σ 2/2.

Assumption 3.2. αk �= 0, 0 < ωk < 2π , and ω j �= ωk , for j �= k, k = 1, . . . , p.

Theorem 1. If the diagonal matrixD = diag{α1, . . . , αp},we denote A1 = Im D, A2 = Re
D and B = (DHD)−1. Here ‘H’ denotes the complex conjugate transpose of a matrix or of
a vector. If e(t)’s satisfy Assumption 3.1 and the model parameters satisfy Assumption 3.2,
then
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(i) ω̂, α̂ and σ̂ 2 are strongly consistent estimators of ω, α and σ 2, respectively.
(ii) The limiting distribution of

(n3/2(ω̂ − ω), n1/2 Re(α̂ − α), n1/2 Im(α̂ − α), σ̂ 2)�

is a (3p+1)-variate normal distribution with mean vector zero, and covariance matrix
σ 2�, where

� =

⎡
⎢⎢⎣

6B 3A1B −3A2B 0
3A1B 1

2 I + 3
2 A2

1B − 3
2 A2A1B 0

−3A2B − 3
2 A2A1B 1

2 I + 3
2 A2

2B 0
0 0 0 σ 2

⎤
⎥⎥⎦ .

Note that Theorem 1 provides the strong consistency and asymptotic normality of the
least squares estimators under the assumptions that the errors are normally distributed
even if the model does not satisfy some of the standard sufficient conditions which are
available for a general non-linear regression model. The results can be used for constructing
asymptotic confidence intervals of the unknown parameters or for testing of hypothesis
purposes also. The most important point of Theorem 1 is that the rates of convergence of
the linear parameters are of the order Op(n−1/2), which is quite common, whereas for the
frequencies it is Op(n−3/2), which is quite uncommon for a general non-linear regression
model. It implies that the least squares estimators of the frequencies are more efficient
than the least squares estimators of the linear parameters. The results of Rao and Zhao [48]
were extended by Kundu and Mitra [34] when the errors are i.i.d. random variables with
mean zero and finite variance. It has been further extended in case of stationary errors also
(for details, see for example the monograph by Kundu and Nandi [36]).

Now we will discuss how to compute the least squares estimators of the unknown
parameters of the model (9). The model (9) can be written as follows:

Y = Xα + e. (14)

Here

Y =
⎡
⎢⎣
y(1)

...

y(n)

⎤
⎥⎦ , X =

⎡
⎢⎣

eiω1 . . . eiωp

...
. . .

...

einω1 . . . einωp

⎤
⎥⎦ , α =

⎡
⎢⎣

α1
...

αp

⎤
⎥⎦ , e =

⎡
⎢⎣
e(1)

...

e(n)

⎤
⎥⎦ .

Therefore, Q(α,ω) as in (13) can be written as

Q(α,ω) = (Y − X(ω)α)H (Y − X(ω)α) . (15)

For a given ω, the least squares estimators of α, say α̂(ω), can be obtained as

α̂(ω) = (
XH (ω)X(ω)

)−1XH (ω)Y.

Hence,

Q(α̂(ω),ω) = YH (
I − PX(ω)

)H (
I − PX(ω)

)
Y = YH (

I − PX(ω)

)
Y.

Here PX(ω) = X(ω)(XH (ω)X(ω))−1XH (ω) is the projection matrix on the column space
of X(ω). Hence, the least squares estimator of ω, say ω̂ can be obtained as

ω̂ = argmin YH (
I − PX(ω)

)
Y = argmax YHPX(ω)Y. (16)

The problem to find ω̂ from (16) is a non-linear optimization problem. It has been observed
by Bresler and Macovski [10] that the standard Newton–Raphson algorithm or its variants
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does not work in this case because the problem is a highly non-linear in nature. Using (1)
it can be easily seen that there exists a n × (n − p) matrix G(g), such that GH (g)μ = 0,
where

GH (g) =

⎡
⎢⎢⎢⎣

g0 g1 . . . gp 0 0 . . . 0
0 g0 . . . gp 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 . . . g0 . . . gp

⎤
⎥⎥⎥⎦ ,

and g = (g0, . . . , gp)�. Since, GH (g)μ = 0, it implies GH (g)X(ω) = 0. Hence,

YHPX(ω)Y = YH (I − PG(g))Y.

Therefore, if

ĝ = argmin YHPG(g)Y,

and ĝ = (ĝ0, . . . , ĝp)�, then ω̂ can be obtained from the roots of the polynomial equation
(2) by replacing gi ’s by ĝi , for i = 0, 1, . . . , p. Kundu [27] converted this problem as
a non-linear eigenvalue problem and provided an efficient estimation procedures of the
frequencies.

Since it is difficult to obtain the least squares estimators or the maximum likelihood
estimators when the errors are normally distributed, an extensive amount of work has been
done in the signal processing literature to develop several sub-optimal algorithms, which
are non-iterative in nature and which behave like the maximum likelihood estimators. Most
of these algorithms have used Prony’s equations in some way or the other. It is difficult to
list all the algorithms in a limited space, which are available till today. Among the different
algorithms, the most popular ones are FBLP and MUSIC algorithms. Interested readers
are referred to the monograph by Kundu and Nandi [36] in this respect. We provide a non-
iterative procedure which was proposed by Bai et al. [2] based on Prony’s equations and
it is very easy to implement in practice. Moreover, it does not require the assumptions of
normality on the error term. It only needs that the errors should be i.i.d. random variables
with mean zero and finite variance. Consider the following (n − p) × (p + 1) data matrix
E and (p + 1) × (p + 1) data matrix F as follows:

E =
⎡
⎢⎣

y(1) . . . y(p + 1)
...

...
...

y(n − p) . . . y(n)

⎤
⎥⎦ , F = 1

n − p
EHE.

Obtain the eigenvector corresponding to the minimum eigenvalue of F. It gives an estimator
g̃ = (g̃0, . . . , g̃p)� of g. Construct a polynomial equation of the form

g̃0 + g̃1z + · · · + g̃pz
p = 0, (17)

and obtain the roots of the form ρ̃1e−iω̃1 , . . . , ρ̃1e−iω̃p . Take ω̃1, . . . , ω̃p as the estimates
of ω1, . . . , ωp, respectively. It has been shown by Bai et al. [2] that ω̃ j is a consistent
estimate of ω j , and ω̃ j − ω j = Op(n−1/2), for j = 1, . . . , p. Using the conjugate
symmetric properties of the polynomial coefficients as described in (6), the method has
been modified by Kannan and Kundu [23].

Now we describe an efficient estimation procedure developed by Professor Rao and his
colleagues, see Bai et al. [5], which is iterative in nature, but it is guaranteed that it stops in
a fixed number of iteration. It also does not need the assumptions of normality on the error
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terms similar to the EVLP method as described above. Moreover, the most salient feature
of this algorithm is that it produces frequency estimators which have the same asymptotic
efficiency as the least squares estimators. It is quite an unique algorithm in the sense that
no other iterative procedure available today, guarantees convergence in a fixed number
of steps. It does not use the whole data set at each step. It starts with a smaller data set,
and then gradually increases to the complete data set. The algorithm can be described as
follows:

Let ω̃ j be a consistent estimator of ω j , for j = 1, . . . , p, and compute ω̂ j for j = 1, . . . , p
as follows:

ω̂ j = ω̃ j + 12

n2 Im

[
Cn

Dn

]
,

where

Cn =
n∑

t=1

y(t)(t − n/2)e−iω̂ j t , Dn =
n∑

t=1

y(t)e−iω̂ j t .

Then we have the following result whose proof can be found in Bai et al. [5].

Theorem 2. If ω̃ j − ω j = Op(n−1−δ) for δ ∈ (0, 1/2], and for j = 1, . . . , p, then

(1) ω̂ j − ω j = Op(n−1−2δ), for δ ≤ 1/4.
(2) n3/2(ω̂ − ω) → Np(0, 6σ 2(DHD)−1 if δ > 1/4.

Here D is p × p diagonal matrix as D = diag{α1, . . . , αp}.

We start with a consistent estimate of ω j , and improve it step by step by a recursive

algorithm. The m-th stage estimate of ω̂
(m)
j is computed from the (m−1)-th stage estimate

ω̂
(m−1)
j , by the formula

ω̂
(m)
j = ω̂

(m−1)
j + 12

n2
m

Im

[
Cnm

Dnm

]
, (18)

where Cnm and Dnm can be obtained from Cn and Dn by replacing n and ω̃ j with nm and

ω̂
(m−1)
j , respectively. We apply the formula (18) repeatedly choosing nm at each stage as

follows:

Step 1. With m = 1, choose n1 = n0.40 and ω̂
(0)
j = ω̃ j , the FBLP estimator. Note that

ω̃ j − ω j = OP
(
n−1/2) = Op

(
n−1−1/4

1

)
.

Then substituting n1 = n0.40, ω̂
(0)
j = ω̃ j in (18) and applying Theorem 2, we obtain

ω̂
(1)
j − ω j = Op

(
n−1−1/2

1

) = Op
(
n−0.60).

Step 2. With m = 2, choose n2 = n0.48 and compute ω̂
(2)
j from ω̂

(1)
j using (18). Since

ω̂
(1)
j − ω j = Op(n−0.60) = Op(n

−1−1/4
2 ) and using Theorem 2, we obtain

ω̂
(2)
j − ω j = Op

(
n−1−1/2

2

) = Op
(
n−0.72).

Choosing n3, . . . , n6 as given below and applying the main theorem in the same way as
above, we have
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Step 3. n3 = n0.57 provides ω̂
(3)
j − ω j = Op

(
n−0.87

)
.

Step 4. n4 = n0.70 provides ω̂
(4)
j − ω j = Op

(
n−1.04

)
.

Step 5. n5 = n0.83 provides ω̂
(5)
j − ω j = Op

(
n−1.25

)
.

Step 6. n6 = n0.92, provides ω̂
(6)
j − ω j = Op

(
n−1.58

)
.

Finally take n7 = n, and compute ω̂
(7)
j from ω̂

(6)
j . Now applying Theorem 2, we have

n3/2(ω̂
(7)
j − ω) → Np(0, 6σ 2(DHD)−1).

So far, all the methods we have discussed are based on the assumptions that the number
of exponential components is known and also the data are equispaced, namely at t =
1, . . . , n. Professor Rao and his colleagues, see Bai et al. [6], provided a method to estimate
the number of components and frequencies simultaneously when some observations are
missing, i.e. the data need not be equispaced. Clearly, this method is applicable when the
complete data are available. The method is developed based on the following assumptions
on the error terms. The error random variables e(t)’s are i.i.d. and

E(e(1)) = 0, E |e(1)|2 = σ 2, E |e(1)|4 < ∞. (19)

It is further assumed that p is also unknown and 0 ≤ p ≤ P < ∞, where P is known.
The method can be described as follows: For a given p, consider the (n − p) × (p + 1)

data matrix Z as given below:

Z =

⎡
⎢⎢⎢⎣

y(p + 1) y(p) . . . y(1)

y(p + 2) y(p + 1) . . . y(2)
...

...
...

...

y(n) y(n − 1) . . . y(n − p)

⎤
⎥⎥⎥⎦ = [y1, y2, . . . , yn−p]�.

It is assumed that the observations {y(k); k ∈ κn} are missing. Here κn ⊂ {1, 2, . . . , n}.
Let Ap be the matrix obtained from the matrix Z after removing the rows having missing
observations. Let rp be the number of rows of Ap. Let us define

�̂(p) = 1

rp
AH

p Ap = ((
γ̂

(p)
mj

))

and

Sp = min
{
r−1
p ||Apg(p)||2 : ||g(p)|| = 1

}
, (20)

for p = 0, . . . , P , where g(p) = (g(p)
0 , g(p)

1 , . . . , g(p)
p )�. Note that Sp is the smallest

eigenvalue of �̂(p). Consider

Rp = SP + pCn, p = 0, 1, . . . , P,

where Cn satisfies the following assumptions:

lim
n→∞Cn = 0 and lim

n→∞

√
rpCn√

ln ln rP
= ∞.

Then find p̂ ≤ P , such that Rp̂ = min0≤p≤P Rp, and p̂ is an estimate of p. Once p̂ is
obtained ĝ( p̂) can be obtained from (20), by replacing p with p̂. Once ĝ( p̂) is obtained
the estimates of ω1, . . . , ω p̂ can be obtained from the polynomial equation (17). It has
been shown by the authors that based on the error assumptions (19), the above method
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provides consistent estimates for p as well as for ω1, . . . , ωp. If p is known, the consistent
estimates of the frequencies when some observations are missing can be obtained in a
slightly weaker conditions, namely

E(e(1)) = 0, E |e(1)|2 = σ 2 < ∞
(see for example, [32]).

So far, we have discussed mainly one-dimensional superimposed exponential model.
Now we will discuss about the contributions of Professor Rao for two-dimensional super-
imposed exponential signals.

4. Two-dimensional superimposed exponential model

Rao et al. [49] considered the two dimensional superimposed exponential signals which
has the following form:

y(s, t) =
p∑

j=1

q∑
k=1

γ jkei(sμ j+tνk ) + w(s, t), s = 1, . . . ,m, t = 1, . . . , n. (21)

Here, y(s, t) is the observed signal, μ j ∈ (0, 2π) and νk ∈ (0, 2π) are the unknown
frequencies of the signals, γ jk is the unknown complex-valued linear parameters, w(s, t)
is an array of two-dimensional random variables with mean 0. The explicit assumptions
of w(s, t) will be explained later. The problem is to extract the original signal from the
noise corrupted data.

The problem had a long history. It was first considered by McClellan [38] to analyze
two-dimensional symmetric images. Since then several other authors also considered this
model (see for example, [7,19,24] and see the references cited therein). The corresponding
real two-dimensional sum of sinusoidal model can be written as follows

y(s, t) =
p∑

j=1

q∑
k=1

γ jk cos(sμ j + tνk)

+ sin(sμ j + tνk) + w(s, t), s = 1, . . . ,m, t = 1, . . . , n. (22)

In this case, similar to the one-dimensional model, y(s, t), γ jk and w(s, t) are all real-
valued. Some two-dimensional plots based on model (22) are provided in Figures 5 and 6.

In this case also, the most popular method to estimate the frequencies is obtained through
the periodogram function approach. The two-dimensional periodogram function can be
written as follows:

I (μ, ν) =
∣∣∣∣∣

1

mn

m∑
s=1

n∑
t=1

ei(sμ+tν)

∣∣∣∣∣
2

, (23)

and the estimate of the frequencies can be obtained from the local maxima of I (μ, ν).
Similar to the one-dimensional model, it can be easily shown that when there is no noise,
then the two-dimensional periodogram function has local maxima at the true frequencies.
Therefore, when there is no noise or the noise variance is small, the true frequencies can
be easily estimated, but the same is not true when the error variance is high. Due to this
reason, several methods have been proposed in the literature and most of the methods are
based on two-dimensional extension of the Prony’s equations.
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Figure 5. Two dimensional plot obtained from Model (22).

Figure 6. Another two dimensional plot obtained from Model (22).

In this case also, the most reasonable estimators will be the least squares estimators, and
they can be obtained by minimizing

Q(γ,μ, ν) = 1

mn

m∑
s=1

n∑
t=1

⎛
⎝y(s, t) −

p∑
j=1

q∑
k=1

γ jkei(sμ j+tνk )

⎞
⎠

2

, (24)

with respect to γ, μ and ν, where γ = (γ11, . . . , γpq)
�, μ = (μ1, . . . , μp)

� and ν =
(ν1, . . . , νq)

�. If the least squares estimators of γ jk , μ j and νk are denoted by γ̂ jk , μ̂ j and
ν̂k , respectively, then an estimator of σ 2 becomes

σ̂ 2 = 1

mn

m∑
s=1

n∑
t=1

⎛
⎝y(s, t) −

p∑
j=1

q∑
k=1

γ̂ jkei(sμ̂ j+t ν̂k )

⎞
⎠

2

.

The model (21) is also a non-linear regression model, but it can be shown (see for exam-
ple, [31]) that the model does not satisfy some of the standard sufficient conditions which
are available in the literature for the least squares estimators to be consistent and asymp-
totically normally distributed, similar to the one-dimensional model. Hence, although the
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least squares estimators seem to be the most reasonable estimators, the consistency cannot
be guaranteed. Rao et al. [49] provided the consistency and asymptotic normality results
of the least squares estimators of the complex linear parameters and the frequencies under
the following assumptions.

Assumption 4.1. {w(s, t)} is an array of complex-valued i.i.d. random variables. Moreover,
Re(w(s, t)) and Im(w(s, t)) are normal random variables with mean 0 and variance σ 2/2
each, and they are independently distributed.

Assumption 4.2. The frequencies μ1, . . . , μp are different from each other and so are
ν1, . . . , νq .

Assumption 4.3. ||γ j ·||2 = ∑q
k=1 |γ jk |2 > 0, ||γ·k ||2 = ∑q

k=1 |γ jk |2 > 0, where γ j · =
(γ j1, . . . , γ jq)

�, γ·k = (γ1k, . . . , γqk)
� and || · || denotes the L2 norm of a vector or a

matrix.

Assumption 4.4. There are positive constants c1, c2, α1 and α2, such that

c1n
α1 ≤ m ≤ c2n

α2 .

We need the following notations:

� j = μ̂ j − μ j , δk = ν̂k − νk, � = (�1, . . . ,�p)
�, δ = (δ1, . . . , δq)

�,

�� = diag(||γ1·, . . . , ||γp·||)�; p × p,

�δ = diag(||γ·1, . . . , ||γ·q ||)�; q × q,

G� = diag(γ1·, . . . , γp·)�; pq × p,

Gδ = (diag(γ11, . . . , γ1q), . . . , diag(γp1, . . . , γpq))
�; pq × q.

Now based on the above notations we can state the main result without the proof.

Theorem 3. If Assumptions 4.1–4.4 are met, then γ̂ and σ̂ 2 are strongly consistent esti-
mates of γ and σ 2, respectively, as n → ∞. Moreover, the limiting distribution of

(
m3/2n1/2��, m1/2n3/2δ�,

√
mn Re(γ̂ − γ)�,

√
mn Im

(
γ̂ − γ

)�
,
√
mn

(
σ̂ 2 − σ 2))�

is a (2pq + p+q + 1)-variate normal distribution with mean vector zero, and the covari-
ance matrix σ 2� = σ 2(�kl), k, l = 1, . . . , 5, where

�11 = 6γ−2
� , �13 = ��

31 = 3 Im
(
�−2

� G�
�

)
, �14 = ��

41 = −3 Re
(
�−2

� G�
�

)
,

�22 = 6 �−2
δ

, �23 = ��
32 = 3 Im

(
γ−2

δ
G�

δ

)
, �24 = ��

42 = 3 Re
(
�−2

δ
G�

δ

)
,

�33 = 3

2

(
Im(G�)�−2

� Im
(
G�

�

)) + (
Im

(
Gδ

)
�−2

δ
Im

(
G�

δ

)) + 1

2
Ipq ,
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�34 = ��
43 = −3

2

(
Im

(
G�

)
�−2

� Re
(
G�

�

)) + (
Im(Gδ)�

−2
δ

Re
(
G�

δ

))
,

�44 = 3

2

(
Re

(
G�

)
�−2

� Re
(
G�

�

)) + (
Re

(
Gδ

)
�−2

δ
Re

(
G�

δ

)) + 1

2
Ipq ,

�55 = σ 2,

and the remaining �kl ’s are zeros.

In this case also, the most interesting feature is that the maximum likelihood estimators of
the linear parameters have the convergence rate as Op(m−1/2n−1/2), whereas the maximum
likelihood estimators of the frequencies have the convergence rate as Op(m−3/2n−1/2)

and OP (m−1/2n−3/2). Rao et al. [49] provided the results when the errors follow normal
distributions. The results have been extended by Kundu and Gupta [31] for i.i.d. errors and
further it has been extended by Zhang and Mandrekar [56] and Kundu and Nandi [35] for
stationary random fields.

Although the theoretical properties of the least squares estimators have been established,
finding the least squares estimates is a numerically challenging problem. Due to this reason,
several sub-optimal estimators have been proposed by several authors (see for example,
[7,12,13,19,24] and the references cited therein). But none of these authors discussed
the convergence rates of the estimators theoretically. Miao et al. [39] and Nandi et al.
[40] provided two efficient algorithms which produce estimators, which have the same
convergence rates as the least squares estimators.

Professor Rao has worked on another important signal processing model and it is known
as the direction of arrival (DOA) model. Now we will provide his contribution briefly in
the next section.

5. Direction of arrival (DOA) model

The DOA model can be written as follows:

x(t) = As(t) + n(t), t = 1, . . . , n. (25)

Here at time t , x(t) is a p × 1 complex vector of observations received by p sensors
uniformly spaced, s(t) is a q × 1 complex vector of unobservable signals emitted from
q sources, and n(t) is a p × 1 complex-valued noise vector. The number of sources is
less than the number of sensors. The matrix A has a special structure with its k-th column
ak = a(τk) of the form

a�
k = a(τk)

� = (1, e−iω0τk , . . . , e−iω0(p−1)τk ),

here as before, i = √−1, τk = c−1� sin θk , c = speed of propagation, θk is the DOA from
the k-th source, and � is the inter sensor distance. Without loss of generality, ω0 is taken
to be unity. It is assumed that {s(t)} and {n(t)} are independent sequences of i.i.d. random
variables with

E[n(t)n(t)H ] = σ 2Ip, E[s(t)s(t)H ] = � and Rank(�) = q. (26)

There are two important problems connected with this model. One is the estimation of q,
the number of sources and the other is the estimation of τ1, . . . , τq , providing the estimates
of θ1, . . . , θq , the DOA of signals.
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This model has been used in censor array processing [11,21,25], in harmonic analysis
[41], in retrieving the poles of a system from natural responses [54] and also in retrieving
overlapping echoes from radar backscatter [43]. This model has received considerable
amount of attention in the signal processing literature. Estimation of τ1, . . . , τq assuming q
known is usually solved by some eigen-decomposition methods available in the literature
(for example, MUSIC [9,51], ESPRIT, TLS-ESPRIT [50], GEESE [43]. For detailed
discussions of the different eigen-decomposition methods, interested readers are referred
to the Ph.D. thesis of Kannan [22] or the review article of Paulraj et al. [42]. The estimation
of q is obtained by using some information theoretic criterion (see for example, [57,58]
in this respect).

First, let us address the estimation of q, and then we provide the estimation of the DOA
of signals. In addition to the assumption (26), if it is further assumed that {n(t)} has a
p-variate complex normal distribution, then the sample variance covariance matrix

S = 1

n

n∑
t=1

x(t)x(t)H

has a complex Wishart distribution with n degrees of freedom and the covariance matrix

� = A�AH + σ 2I.

Since � is non-singular, then the number of signals is q = p−s, where s is the multiplicity
of the smallest eigenvalue of �. Hence, the problem of estimation of q can be studied within
the framework of testing the equality of the given number of smallest eigenvalues of �.

The log-likelihood function of the observed data without the additive constant can be
written as

l(q)
n = −n

2
(ln |�| + tr �−1S).

The maximum of l(q)
n for a given q is

l̂(q)
n = −n

2

( q∑
i=1

ln λ̂i + (p − q) ln
λ̂q+1 + · · · + λ̂p

p − q

)
,

where λ̂1 > · · · > λ̂p are the ordered eigenvalues of S and they are distinct with probability
1. The likelihood ratio test statistic for testing the equality of the last p− q eigenvalues of
� is

G(q)
n = 2(l(p)n − l(q)

n ) = n(p − q) ln
λ̂q+1 + · · · + λ̂p

p − q
− ln(λ̂q+1 + · · · + λ̂p)

and it is asymptotically distributed as χ2 with (p − q)2 − 1 degrees of freedom. Let

q̂ = max{q : G(q)
n ≤ cα},

where cα is the upper α-th percentile point of a χ2 distribution with (p − q)2 − 1 degrees
of freedom, then an upper 100(1 − α)% confidence limit to q is q̂ .

Further, to get a point estimate of q, a general information theoretic criterion can be
used as follows. Consider

GIC(k) = 2 ln(k)
n −ν(k)cn,

where ν(k) is the number of free parameters in the model and cn is a function of n, such
that as n → ∞,

cn
n

→ 0 and
cn

ln ln n
→ ∞. (27)
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In this case, ν(k) = q(2p − q) + 1 and the estimate of q is q̂ , where

GIC(q̂) = max
k

GIC(k).

It has been shown that q̂ is a strongly consistent estimate of q. Note that the choice of cn
is quite arbitrary except that it satisfies (27). Moreover, the performance of the method
depends on the choice of cn . Not enough studies have been performed to choose cn . Some
attempt has been made by Kundu [30] in this direction.

Now we discuss about the estimation of DOA of signals. From now on, it is assumed
that q is known. Note that for a given q, the eigenvalues of � are of the form

λ1 ≥ · · · ≥ λq > λq+1 = · · · = λp = σ 2.

Let e1, . . . , eq , eq+1, . . . , ep be the corresponding eigenvectors and define matrices

Es = (e1, . . . , eq) and En = (eq+1, . . . , ep).

The vector space generated by Es is called the signal space and by En is called the noise
space. Observe that

a(τ )�En = 0 ⇔ D(τ ) = a(τ )�EnE�
n a(τ ) = 0,

for τ = τi , i = 1, 2, . . . , q. In practice we do not have �, we only have an estimate of �,
i.e. S. Let the eigenvalues and the corresponding eigenvectors of S be

λ̂1 > · · · > λ̂q > · · · > λ̂p,

ê1, . . . , êq . . . , êq

and they provide consistent estimates of the corresponding eigenvalues and eigenvectors
of �. Moreover, an estimate of En , spanning the noise eigenspace is

Ên = (êq+1 . . . , êq).

The function

D̂(τ ) = a(τ )�ÊnÊ�
n a(τ )

may not vanish at any τ , but in the neighborhood of τ1, . . . , τq , it is expected to be small.
This is the main idea of the MUSIC algorithm as proposed by Bienvenu and Kopp [9].
Using the conjugate symmetry property of the polynomial coefficients, as described in
Section 2, the MUSIC algorithm has been modified by Kundu [28]. It is important to note
that in both MUSIC or modified MUSIC algorithms, the solutions are obtained by a search
method. Hence, although the consistency property of the estimators can be established,
the asymptotic distributions are difficult to study. The following approach may be used to
study the asymptotic properties of the estimators.

Note that there exists a matrix G of order p × (p − q),

G = (G1, . . . , Gp−q), (28)

where the p × 1 vector Gk for k = 1, . . . , (p − q) is of the form

Gk = (0, . . . , 0, g0, . . . , gq , 0, . . . , 0)�,

with the first k and the last (p−k−q−1) elements are zeros, gq > 0, g0 ḡ0+· · ·+gq ḡq = 1,
such that a(τ )�G = 0, for τ = τ1, . . . , τq , and eiτ1 , . . . , eiτq are the solutions of the
polynomial equation

g0 + g1z + · · · + gqz
q = 0.
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Therefore, the statistical problem is to estimate the vector g = (g0, . . . , gq)� from the
given observation. Since the columns of G generate the noise eigenspace of En , the problem
of estimating G can be thought of fitting a basis of the type G1, . . . , Gp−q to the estimated
noise eigenspace Ên . Mathematically, it can be formulated as minimizing the Euclidean
norm

||Ên − ĜB̂||
with respect to a matrix G of the form (28) and an arbitrary matrix B of order (p − q) ×
(p − q). Since this optimization problem is quite complicated numerically and explicit
solutions do not exist, Bai and Rao [4] proposed the following method. By Householder
transformation, i.e. multiplying by an unitary matrix O of order (p−q)× (p−q), convert
Ên into the form

ÊnO = (uq+1, . . . , up),

where uq+i = (u0,q+i , . . . , uq+i−1,qi , 0, . . . , 0)�, for i = 1, . . . , (p − q) with
uq+i−1,q+i �= 0 (with probability one). Solve the equation

u0,q+1 + · · · + uq,q+1z
q = 0,

obtain the roots of the form ρ̂1ei τ̂1 , . . . , ρ̂qei τ̂q and choose τ̂1, . . . , τ̂q as estimates of
τ1, . . . , τq .

We need the following assumptions to establish the asymptotic properties of the proposed
estimators:

Assumption 5.1. The second moment of x(t) exists.

Assumption 5.2. The fourth moment of x(t) exists.

Assumption 5.3. Var[Re s(t)] = Var[Im s(t)] = 2−1 Re �, E[(Re s(t))(Im s(t))�] = −E[(Im
s(t))(Re s(t))�] = 2−1 Im �.

Assumption 5.4. Var[Re n(t)] = Var[Im n(t)] = 2−1 σ 2Ip, Cov[(Re n(t), Im n(t))] = 0.

Assumption 5.5. E[Re nk(t)]4 = E[Im nk(t)]4 = 3
4σ 2, k = 1, . . . , p; E(Re nk(t))2(Re

nh(t))2 = E(Im nk(t))2(Im nh(t))2 = 4−1σ 4, k �= h = 1, . . . , p; E(Re nk(t))2(Im nh(t))2

= 4−1σ 4, k, h = 1, . . . , p, all other kinds of fourth moments are zero.

The following results regarding the asymptotic properties of the proposed estimators
have been obtained by Bai et al. [3].

Theorem 4. Under Assumption 5.1, (τ̂1, . . . , τ̂q)
� is a strongly consistent estimator of

(τ1, . . . , τq)
�.

Theorem 5. Under Assumptions 5.2–5.4, the limiting distribution of
√
n(τ̂1−τ1, . . . , τ̂q−

τq)
� is a q-variate normal with mean vector zero and covariance matrix

2−1Re[G−1(σ 4�−1(AHA)−1�−1 + σ 2�−1)G−1],
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where

G = diag(D(τ1), . . . , D(τq)),

D(τk) = gq+1

q∏
j=1, j �=k

(eiτk − eiτ j )eiτk , k = 1, . . . , q.

Using the conjugate symmetric properties of the polynomial coefficients as discussed in
Section 2, the method has been modified and the associated asymptotic results have been
established by Kundu [29]. The method has been extended for the multiple moving targets
in a sequence of papers by Rao et al. [44–47].

6. Some recent developments and conclusions

Professor Rao has worked in this area of statistical signal processing for about 6–7 years.
But it has left a long lasting impact among some of the statisticians who are working in
this field. In recent time one related model has received a considerable attention in the area
of signal processing and it is known as the chirp model. A one dimensional multiple chirp
model can be expressed as

y(t) =
p∑

k=1

αkei(ωk t+θk t2) + e(t). (29)

Here also as before, y(t)’s, αk’s and e(t)’s are complex valued. As the multiple expo-
nential model ωk’s are known as frequency, and θk’s are known as frequency rate. This
model appears in many areas of signal processing, one of the most important one being the
radar problem. It can also appear in active sonar and passive sonar system. The problem of
parameter estimation of chirp signal has received a considerable amount of attention in the
signal processing literature (see for example, [1,14,17] and the references cited therein for
different estimation procedures). Several statistical aspects related to this model, asymp-
totic properties of different estimators of this model and efficient estimation procedures
have been developed by Lahiri [37] and Grover [16]. It should be mentioned that both
Lahiri [37] and Grover [16] have successfully extended many of the methods proposed by
Rao and his collaborators to establish their results.

Grover [16] has proposed a chirp-like model which has the following form:

y(t) =
p∑

k=1

αkeiωk t +
q∑

k=1

βkeiθk t
2 + e(t). (30)

It is observed that the proposed chirp-like model (30) behaves very similarly to the tradi-
tional chirp model (29). On the other hand, estimation of the parameters for the model (30)
is less challenging compared to the model (29). Efficient estimation procedure has been
developed by Grover [16] for the model (30). In principle, it should be possible to gener-
alize for two-dimensional case also, which has several applications in image processing,
particularly in finger printing. More work is needed along this direction.
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