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1. Introduction

Let X = (Xn)n∈N be a discrete stochastic process taking values on a finite alphabet
X = {1, 2, . . . , b} and defined on a probability space (�,F,P). In the sequel, we use the
convention that N∗ = N\{0}. Given two integers m � n, let Xn

m and xnm be the strings
(Xm, . . . , Xn) and (xm, . . . , xn) ∈ Xn−m+1 respectively. The subscript is omitted when it
is 1. Given two strings xm = (x1, . . . , xm) ∈ Xm and yn = (y1, . . . , yn) ∈ Xn , we denote
their concatenation in Xm+n by xm yn . Write

p(xnm) = P(Xn
m = xnm), xk ∈ X, m � k � n

and, if p(xm−1
0 ) > 0, we write

p(a|xm−1
0 ) = P(Xm = a|Xm−1

0 = xm−1
0 ).

For m = 0, p(a|xm−1
0 ) = p(a).

Let (an, φ(n))n∈N be a sequence of pairs of positive integers with φ(n) tending to infinity
as n → ∞. Set

fan ,φ(n)(ω) := − 1

φ(n)
log p(Xan+φ(n)

an+1 ). (1.1)
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The function fan ,φ(n)(ω) will be called the generalized relative entropy density of Xan+φ(n)
an+1 .

In particular, if an ≡ 0 and φ(n) = n, f0,n(ω) denotes the classical relative entropy density
of Xn , i.e.,

f0,n(ω) = −1

n
log p(Xn). (1.2)

Hereafter, log denotes the natural logarithm unless stated otherwise.
The convergence of f0,n(ω) to a constant in the sense of L1 convergence, convergence

in probability or a.e. convergence is called the Shannon–McMillan–Breiman theorem or
the individual ergodic theorem of information or the asymptotic equipartition property
(AEP) in information theory. There is a lot of research on this topic. Shannon [16] gave the
original version for convergence in probability for stationary ergodic information sources
with finite alphabet. McMillan [13] and Breiman [5,6] obtained the entropy ergidic theorem
in L1 and a.e. convergence, respectively, for finite stationary ergodic information sources.
Chung [7] considered the case of countable alphabet. Billingsley [4] extended the result
to stationary nonergodic sequences. The entropy ergodic theorem for general stochastic
processes can be found, for example, in Barron [2], Kieffer [12] or Algoet and Cover [1].
Yang [18] obtained the entropy ergodic theorem for a class of nonhomogeneous Markov
chains. Yang and Liu [19] proved the entropy ergodic theorem for a class of m-th order
nonhomogeneous Markov chains and Zhong et al. [20] proved the entropy ergodic theorem
for a class of asymptotic circular Markov chains.

In this paper, we will consider the convergence of fan ,φ(n)(ω) and call it the generalized
entropy ergodic theorem when fan ,φ(n)(ω) converges to a constant in the sense of P|σ(X)

a.e. convergence. We should mention some recent contributions on this aspect. The first is
the work of Nair [14], in which he established a moving average version of the Shannon–
McMillan–Breiman theorem.

Theorem A. Let (Xn)n∈N be a two-sided stationary process taking values from the finite
set K = {a1, . . . , as} and let p(x0, . . . , xn) denote the joint distribution function of the
variables X0, . . . , Xn. If (nl , kl)l∈N∗ is of Stoltz [10], then there is a constant H such that

lim
l

− 1

kl
log p(Xnl+kl

nl ) = H a.e.

He gave an interesting illustration of this new theorem.

The second is by Wang and Yang [17], which proved that for a non-homogeneous
Markov chain, the generalized relative entropy density fan ,φ(n)(ω) converges a.e. and in
L1 to the entropy rate of the Markov chain.

Theorem B. Let (Xn)n∈N be nonhomogeneous Markov chains with their transition prob-
ability matrices Pn = (pn(i, j))b×b, n ∈ N

∗. Let (an)n∈N, (φ(n))n∈N be two sequences of
nonnegative numbers such that, for every ε > 0, we have

∑∞
n=1 exp[−εφ(n)] < ∞. Let

P = (p(i, j))b×b be another irreducible transition matrix. If

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

|pk(i, j) − p(i, j)| = 0, ∀ i, j ∈ X,
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then

lim
n

fan ,φ(n)(ω) = −
b∑

i=1

b∑

j=1

πi p(i, j) log p(i, j) a.e. and in L1,

where (π1, . . . , πb) is the unique stationarydistributiondeterminedby the transitionmatrix
P.

Before going further, we first consider the notion of a non-null process.

DEFINITION 1

Let X = (Xn)n∈N be a stationary stochastic process with state space X. The process X is
called non-null if, for any k � 0, we have p(Xk−1

0 ) > 0 and in addition,

pinf := inf
k�1

min
a∈X,xk−1

0 ∈Xk
p(a|xk−1

0 ) > 0. (1.3)

The process X is continuous if

β(k) := sup
j�k

max
a∈X max

x j−1
0 ,y j−1

0 ∈X j :x j−1
j−k=y j−1

j−k

|p(a|x j−1
0 ) − p(a|y j−1

0 )| → 0 as k → ∞.

(1.4)

The sequence (β(k))k∈N is called the continuity rate.

Remark 1. A strong notion of continuity, often used in the literature [8], involves the
log-continuity rate, namely

γ (k) := sup
j�k

max
a∈X max

x j−1
0 ,y j−1

0 ∈X j :x j−1
j−k=y j−1

j−k

∣
∣
∣
∣
∣

p(a|x j−1
0 )

p(a|y j−1
0 )

− 1

∣
∣
∣
∣
∣
. (1.5)

The process X is log-continuous if γ (k) → 0 as k → ∞.

By a chain of infinite order, we mean a stationary random processes in which, at each step,
the probability governing the choice of a new state depends on the entire past. It provides
a flexible model that is very useful in diverse areas. For instance, in bioinformation [3] or
liguistics [10]. Chains of infinite order seem to have been first studied by Onicescu and
Mihoc [15], who called them chains with complete connections. Their study was soon
taken up by Doeblin and Fortes [9] who first proved the results on speed of convergence
towards the invariant measure. We refer the reader to Iosifescu and Grigorescu [11] for a
complete survey.

A natural approach to studying stationary processes is to approximate the original pro-
cess by Markov chains of growing order. The conditional probabilities of the canonical
approximation of order m coincide with the order m conditional probabilities of the orig-
inal process. As far as we know, there exists no other results in the literature concerning
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the AEP for non-null stationary process. It is Wang and Yang’s work [17] that will be our
setting. This article addresses the following question: How well can we approximate the
generalized entropy density of non-null stationary stochastic process by a Markov chain of
order m? The significance of this paper is that there are no ergodicity constrains imposed
on the process X . We only assume that the process is stationary and non-null.

In this paper, first an improvement of a strong limit theorem for the moving averages of
the functionals of an m-th order nonhomogeneous Markov chains will be proved by using
Borel–Cantelli lemma. Next, as corollaries, some strong limit theorems for the frequencies
of occurrence of states in the block Xan

an−m+1, . . . , X
an+φ(n)−1
an+φ(n)−m and the convergence of the

generalized relative entropy density for this Markov chains are established. Finally, an
explicit bound relating the relative entropy density of the non-null stationary stochastic
process and that of the canonical m-order Markov approximation are presented.

Our basic tool is the m-th order canonical Markov approximation technique, which
enables us to approximate the non-null stationary stochastic process.

We now briefly state our main result and the detailed description can be found in section 3.

Theorem C. Let X = (Xn)n∈N be a finite non-null stationary stochastic process with
continuity rate (β(k))k∈N. If pinf > 0, we have

H [m] − β(m)

pinf
� lim inf

n
fan ,φ(n)(ω) � lim sup

n
fan ,φ(n)(ω)

� H [m] + β(m)

pinf
P|σ(X) − a.e.

If X is continuous, then

lim
n

fan ,φ(n)(ω) = H∞
P|σ(X) − a.e.,

where H [m] is the entropy of the canonical m-th order Markov approximation of X and
H∞ = limm H(Xm |Xm−1

0 ).

The remainder of this paper is organized as follows: Section 2 gives preliminaries in
the form of several lemmas. Section 3 is the most important part of the paper, where some
limit theorems for m-th order non-homogeneous Markov chains and a new approximation
for the relative entropy density of non-null stationary process are established. The proofs
of the Lemma 3 and Theorem 1 are given in section 4.

2. Some lemmas

We now recall and develop some preliminaries before arriving at the main theorems.

Lemma 1 (Lemma 2 of [17]). Let (an, φ(n))n∈N be a sequences of pairs of natural numbers
with φ(n) tending to infinity as n → ∞. Let h(x) be a bounded function defined on an
interval I, and let (xn)n∈N be a sequence in I. If

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

|xk − x | = 0
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and h(x) is continuous at point x , then

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

|h(xk) − h(x)| = 0.

Lemma 2 (Lemma 3 of [13]). Let X = (Xn)n∈N be a stochastic process taking values in
finite setX, and let fan ,φ(n)(ω) be defined by equation (1.2). Then fan ,φ(n)(ω) is uniformly
integrable.

Let X be an m-th order nonhomogeneous Markov chain. For n � m, let

P(Xn = xn|Xn−1
0 = xn−1

0 ) = P(Xn = xn|Xn−1
n−m = xn−1

n−m).

Set

p(im−1
0 ) = P(Xm−1

0 = im−1
0 ),

and set

pn( j |im) = P(Xn = j |Xn−1
n−m = im).

Here p(im−1
0 ) is called the m-dimensional initial distribution, pn( j |im) are called the

m-th-order transition probabilities and

Pn = (pn( j |im)), j ∈ X, im ∈ Xm, n = 1, 2, . . .

are called the m-th order transition matrices. In this case,

p(xn0 ) = p(xm−1
0 ) ·

n∏

k=m

pk(xk |xk−1
k−m), n � m,

and the generalized relative entropy density can be written as

f [m]
an ,φ(n)(ω) = − 1

φ(n)
[log p(Xan+φ(n)

an+1 )]

= − 1

φ(n)

⎧
⎨

⎩
log p(Xan+m

an+1 ) +
an+φ(n)∑

k=an+m+1

log pk(Xk |Xk−1
k−m)

⎫
⎬

⎭
.

(2.1)

Lemma 3. Let X be an m-th order nonhomogeneous Markov chain with m-th order initial
distribution

p(xm−1
0 ) = P(Xm−1

0 = xm−1
0 ), xm−1

0 ∈ Xm,

and m-th order transition matrices

Pn = (pn( j |im)), j ∈ X, im ∈ Xm .

Let (gn(xm+1))n∈N bea sequenceof real functions definedonXm+1. Suppose (an, φ(n))n∈N
is a sequence of pairs of natural numbers that, for every ε > 0,

∞∑

n=1

exp[−εφ(n)] < ∞. (2.2)
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If there exists a real number 0 < γ < ∞ such that

lim sup
n

1

φ(n)

an+φ(n)∑

k=an+1

E[g2
k (X

k
k−m)eγ |gk (Xk

k−m )||Xk−1
k−m] = c(γ ;ω) < ∞ a.e.,

(2.3)

then

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

{gk(Xk
k−m) − E[gk(Xk

k−m)|Xk−1
k−m]} = 0 a.e. (2.4)

Remark 2. We first note that condition (2.2) can be easily satisfied. For example, let φ(n) =
[nα](α > 0), where [·] is the usual largest integer function.

Remark 3. Since E[gk(Xk
k−m)|Xk−1

k−m] = ∑b
j=1 gk(X

k−1
k−m, j)pk( j |Xk−1

k−m), equation (2.4)
can be rewritten as

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

⎧
⎨

⎩
gk(X

k
k−m) −

b∑

j=1

gk(X
k−1
k−m, j)pk( j |Xk−1

k−m)

⎫
⎬

⎭
= 0 a.e.

(2.5)

Remark 4. If (gn(xm+1))n∈N are uniformly bounded, then equation (2.3) holds.

By suitable modification to the proof of Lemma 1 in [17], we can give a proof of
Lemma 3. For the convenience of readers, we will present the proof in detail in section 4.

COROLLARY 1

Let X be an m-th order nonhomogeneous Markov chain defined as above, and fan ,φ(n)(ω)

defined as in equation (2.1). Then

lim
n

⎧
⎨

⎩
f [m]
an ,φ(n)(ω) + 1

φ(n)

an+φ(n)∑

k=an+1

b∑

j=1

pk( j |Xk−1
k−m) log pk( j |Xk−1

k−m)

⎫
⎬

⎭
= 0 a.e.

(2.6)

Let H(p1, . . . , pb) be the entropy of the distribution (p1, . . . , pb), i.e.,

H(p1, . . . , pb) = −
b∑

j=1

p j log p j .

Equation (2.6) can also be represented as

lim
n

⎧
⎨

⎩
f [m]
an ,φ(n)(ω) − 1

φ(n)

an+φ(n)∑

k=an+1

H [pk(1|Xk−1
k−m), . . . , pk(b|Xk−1

k−m)]
⎫
⎬

⎭
= 0 a.e. (2.7)
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Proof. Putting gn(xm+1) = − log pn(xm+1|xm) in Lemma 4, by equation (2.5), we have

1

φ(n)

an+φ(n)∑

k=an+1

{gk(Xk
k−m) −

b∑

j=1

gk(X
k−1
k−m, j) · pk( j |Xk−1

k−m)}

= − 1

φ(n)

an+φ(n)∑

k=an+1

⎧
⎨

⎩
log pk(Xk |Xk−1

k−m) −
b∑

j=1

pk( j |Xk−1
k−m) log pk( j |Xk−1

k−m)

⎫
⎬

⎭

= 1

φ(n)
log p(Xan

an−m+1) + fan ,φ(n)(ω)

+ 1

φ(n)

an+φ(n)∑

k=an+1

b∑

j=1

pk( j |Xk−1
k−m) log pk( j |Xk−1

k−m).

Since

Ee| log p(Xan
an−m+1)| =

∑

xanan−m+1∈Xm

e− log p(xanan−m+1) p(xanan−m+1) = mb,

by Markov’s inequality, for any ε > 0, we have

P

{

ω : 1

φ(n)
| log p(Xan

an−m+1)| � ε

}

� mb

eεφ(n)
.

Recalling that
∑∞

n=1
1

eεφ(n) < ∞, we see from Borel–Cantelli lemma that the event

{

ω : 1

φ(n)
| log p(Xan

an−m+1)| � ε

}

occurs only finitely often with probability 1. It follows from the arbitrariness of ε that

lim
n

1

φ(n)
log p(Xan

an−m+1) � 0 a.e. (2.8)

Observe that

E[(log pk(Xk |Xk−1
k−m))2|Xk−1

k−m] =
b∑

j=1

(log pk( j |Xk−1
k−m))2 pk( j |Xk−1

k−m) � 4be−2

and that

an+φ(n)∑

k=an+1

φ(n)−1
E[(log pk(Xk |Xk−1

k−m))2|Xk−1
k−m] < ∞. (2.9)

Equation (2.6) follows from equations (2.8), (2.9) and Lemma 4. �
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Let Nan ,φ(n)(im;ω) denote the number of occurrences of im in the segment sample

Xan+φ(n)
an−m+1, i.e.,

Nan ,φ(n)(i
m;ω) = Card{k : Xk+m

k+1 = im, an − m � k � an + φ(n) − m}.
(2.10)

COROLLARY 2

Let X be an m-th order nonhomogeneous Markov chain defined as in Lemma 4. Then

lim
n

1

φ(n)

⎧
⎨

⎩
Nan ,φ(n)−1(i

m;ω) −
an+φ(n)∑

k=an+1

1{im−1}(Xk−1
k−m+1)pk(im |Xk−1

k−m+1)

⎫
⎬

⎭
= 0 a.e.,

(2.11)

where 1A(·) is the indicator function of set A.

Proof. Putting gk(xm+1) = 1{im }(xm+1
2 ) in Lemma 4, it is not difficult to verify that

{gk(xm+1)}∞k=0 satisfies the condition (2.3). Notice that

an+φ(n)∑

k=an+1

{gk(Xk
k−m) −

b∑

l=1

gk(X
k−1
k−m, l)pk(l|Xk−1

k−m)}

=
an+φ(n)∑

k=an+1

{1{im }(Xk
k−m+1) −

b∑

l=1

1{im−1}(Xk−1
k−m+1)1{im }(l)pk(l|Xk−1

k−m)}

= Nan ,φ(n)−1(i
m;ω) + 1{im }(Xan+φ(n)

an+φ(n)−m+1) − 1{im }(Xan
an−m+1)

−
an+φ(n)∑

k=an+1

1{im−1}(Xk−1
k−m+1)pk(im |Xk−1

k−m). (2.12)

Equation (2.11) follows from equation (2.12) and Lemma 3 directly. �

Let

P = (p( j |im)), j ∈ X, im ∈ Xm

be an m-th order transition matrix. We define a stochastic matrix as follows:

P̄ = (p( jm |im)), im ∈ Xm, jm ∈ Xm,

p( jm |im) =
{
p( jm |im), if jk = ik+1, k = 1, 2, . . . ,m − 1

0, otherwise.

P̄ is called an m-dimensional stochastic matrix determined by the m-th order transition
matrix P .
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Lemma 4 (Corollary 2 of [17]). Let P̄ be an m-dimensional stochastic matrix determined
by the m-th order transition matrix P. If the elements of P are all positive, i.e.,

P = (p( j |im)), p( j |im) > 0, ∀ j ∈ X, im ∈ Xm,

then P̄ is ergodic.

3. Main results

We are now ready to provide the main results of this article.

Theorem 1. Let X = (Xn)n∈N be an m-th order nonhomogeneous Markov chain defined
as in Lemma 3. Let P = (p( j |im)) be another m-th order transition matrix. Let
(an, φ(n))n∈N and Nan ,φ(n)(im, ω) be defined as above. Let f [m]

an ,φ(n)(ω) be defined as in

equation (2.1). Assume that the m-dimensional transition probability matrix P̄ determined
by P is ergodic. If equation (2.2) holds and

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

|pk( j |im) − p( j |im)| = 0, ∀ j ∈ X, im ∈ Xm, (3.1)

then

lim
n

1

φ(n)
Nan ,φ(n)−1(i

m;ω) = π(im) a.e. ∀im ∈ Xm (3.2)

and

lim
n

f [m]
an ,φ(n)(ω) = −

∑

im∈Xm

π(im) ·
∑

j∈X
p( j |im) log p( j |im) a.e., (3.3)

where {π(im), im ∈ Xm} is the unique stationary distribution determined by the transition
matrix P.

Remark 5. Putting an = 0 and φ(n) = n in Theorem 3, we can obtain the classical
Shannon–McMillian–Breiman theorem for m-th order nonhomogeneous Markov chains.

The proof of this theorem will be given in section 4.

COROLLARY 3

Let X be an m-th order homogeneous Markov chain with m-th order transition matrix

P = (p( j |im)), p( j |im) > 0, ∀im ∈ Xm, j ∈ X.

Then there exists a distribution

{π(im), im ∈ Xm}
such that equations (3.2) and (3.3) hold.
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DEFINITION 2

Assume that X is a stationary chain with distribution P. The canonical m-order Markov
approximation of X is the stationarym-order Markov chain (denoted by X [m]) compatible
with the kernel P [m] defined by (for n � m)

P [m](Xn = i |Xn−1
n−m = jn−1

n−m)) = p[m](i | jn−1
n−m)

= P(Xn = i |Xn−1
n−m = jn−1

n−m)) i ∈ X, jn−1
n−m ∈ Xm .

Set

f [m]
an ,φ(n)(ω) := − 1

φ(n)
log p[m](Xan+φ(n)

an+1 ),

where p[m](Xan+φ(n)
an+1 ) = p(Xan+m

an+1 )
∏an+φ(n)

k=an+m+1 p(Xk |Xk−1
k−m).

Theorem 2. Let X = (Xn)n∈N be a non-null stationary stochastic process with finitely
many values from X on the probability space (�,F,P). For each 1 � m � φ(n), we have

lim
n

f [m]
an ,φ(n)(ω) = H [m]

P|σ(X) − a.e., (3.4)

where H [m] = −∑
im∈Xm π(im) · ∑

j∈X p( j |im) log p( j |im).

Proof. For each m � 1, if n � m, let

p[m](xn0 ) =P(Xm−1
0 = xm−1

0 )

n∏

k=m

P(Xk = xk |Xk−1
k−m = xk−1

k−m)

=p(xm−1
0 )

n∏

k=m

p(xk |xk−1
k−m)

and if 0 � n < m, let p[m](xn0 ) = P(Xn
0 = xn0 ).

The p[m] is a particular Markov measure relevant to P in the sense that it has the
same m-th order transition probabilities as P. Therefore, by the Kolmogorov’s extension
theorem that there exists a probability measure (denoted by P

[m]) on (�,F) such that
P

[m](Xn
0 = xn0 ) = p[m](xn0 ), it is easy to show that, under the probability measure P

[m],
X is an m-th order stationary homogeneous Markov chain with positive transition matrix

P = (p( j |im)), j ∈ X, im ∈ Xm .

Since p( j |im) > 0, j ∈ X, im ∈ Xm , by Corollary 3, we have

lim
n

f [m]
an ,φ(n)(ω) = lim

n
− 1

φ(n)
log p[m](Xan+φ(n)

an+1 ) = a constant P
[m] − a.e.

(3.5)
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Note that

EP[m] f [m]
an ,φ(n)(ω)

= EP[m]

⎧
⎨

⎩
− 1

φ(n)
log p[m](Xan+m

an+1 ) − 1

φ(n)

an+φ(n)∑

k=m

log p(Xk |Xk−1
k−m)

⎫
⎬

⎭

= EP[m] {− log p(Xm−1
0 )}

φ(n)
+ φ(n) − m

φ(n)
EP[m] {− log p(X0|X−1

m )} (by stationarity)

→ EP[m] {− log p(X0|X−1
m )} as n → ∞,

where EP[m] denotes taking expectation under the probability measure P
[m].

From Lemma 2, f [m]
an ,φ(n)(ω) is uniformly integrable under the measure P

[m], we have

lim
n

∫

�

f [m]
an ,φ(n)(ω)dP[m] = lim

n
EP[m] f [m]

an ,φ(n)(ω) = the constant.

Therefore, the constant in equation (3.5) is equal to EP[m] {− log p(X0|X−1
m )}, i.e.,

lim
n

f [m]
an ,φ(n)(ω) = EP[m] {− log p(X0|X−1

m )} P
[m] − a.e. (3.6)

Restricting the measure P to the trajectory space of X (denoted by P|σ(X)), it is not difficult
to verify that P|σ(X) � P

[m], therefore, we have by equations (3.5) and (3.6) and the fact
that EP[m] {− log p(X0|X−1

m )} = E{− log p(X0|X−1
m )} = H [m], that

lim
n

f [m]
an ,φ(n)(ω) = E{− log p(Xm |Xm−1

0 } = H [m]
P|σ(X) − a.e.,

which concludes the proof of the theorem. �

We remark that the measures P and P
[m] cannot be compared with each other.

In classical information theory, the following equation

lim
n

−1

n
log p(Xn) = a constant a.e. (3.7)

holds for finite stationary ergodic sequences of random variables, which is the famous
Shannon–MacMillan theorem. A natural problem is whether the equation also holds for
non-null stationary process? The following two examples show that the notations of non-
null and ergodicity do not coincide, i.e., a stationary ergodic sequence of random variables
may not be non-null and a non-null stationary sequence of random variables may not be
ergodic and, unfortunately, equation (3.7) does not hold for non-null stationary process.

Example 1. Let X (1) = (X (1)
n )n∈N∗ and X (2) = (X (2)

n )n∈N∗ be two non-null stationary
ergodic processes with values in X. By the Shannon–McMillan–Breiman theorem [1],

lim
n

−1

n
log p(X (1)

1 , . . . , X (1)
n ) = H1 a.e.,

lim
n

−1

n
log p(X (2)

1 , . . . , X (2)
n ) = H2 a.e.,
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where H1, H2 are the entropies of X (1) and X (2) respectively. Assume that H1 	= H2.
Suppose A ∈ F with 0 < P(A) < 1 and suppose that A is independent of the processes
X (1) and X (2). Define a new process X (3) = (X (3)

n )n∈N∗ on (�,F,P) as follows: If ω ∈ A,
let X (3)

n = X (1)
n for all n ∈ N

∗, and if ω ∈ Ac, let X (3)
n = X (2)

n for all n ∈ N
∗. It is obvious

that the set {A, Ac} is invariant. Next, we shall show that the process X (3) defined above
is non-null and stationary but not ergodic.

Note that for any k, n � 1, xn ∈ Xn . Then

P{(X (3)
1 , . . . , X (3)

n ) = xn}
= P(A)P{(X (3)

1 , . . . , X (3)
n ) = xn|A} + P(Ac)P{(X (3)

1 , . . . , X (3)
n ) = xn|Ac}

= P(A)P{(X (1)
1 , . . . , X (1)

n ) = xn|A} + P(Ac)P{(X (2)
1 , . . . , X (2)

n ) = xn|Ac}
= P(A)P{(X (1)

1 , . . . , X (1)
n ) = xn} + P(Ac)P{(X (2)

1 , . . . , X (2)
n ) = xn} (3.8)

= P(A)P{(X (1)
1+k, . . . , X

(1)
n+k) = xn} + P(Ac)P{(X (2)

1+k, . . . , X
(2)
n+k) = xn}

= P(A)P{(X (1)
1+k, . . . , X

(1)
n+k) = xn|A} + P(Ac)P{(X (2)

1+k, . . . , X
(2)
n+k) = xn|Ac}

= P(A)P{(X (3)
1+k, . . . , X

(3)
n+k) = xn|A} + P(Ac)P{(X (3)

1+k, . . . , X
(3)
n+k) = xn|Ac}

= P{(X (3)
1+k, . . . , X

(3)
n+k) = xn}. (3.9)

It is easy to see from equations (3.8) and (3.9) that the process X (3) is non-null and
stationary and that

lim
n

−1

n
log p(X (3)

1 , . . . , X (3)
n ) = H1 a.e. ω ∈ A,

lim
n

−1

n
log p(X (3)

1 , . . . , X (3)
n ) = H2 a.e. ω ∈ Ac.

Notice that H1 	= H2, and hence X (3) cannot be ergodic.

Example 2. Consider a homogeneous Markov chain X = (Xn)n∈N∗ with state space
{1, 2, 3} and transition matrix

P =
⎛

⎝
0 2/3 1/3

1/3 0 2/3
2/3 1/3 0

⎞

⎠ .

It is not difficult to check that the unique invariant probability of the chain is π =
(1/3, 1/3, 1/3), hence it is ergodic, but P(X1 = 1, X2 = 1) = 0.

Example 1 indicates that under the assumption of being non-null and stationary can not
guarantee the existence of limn − 1

n log p(Xn). In the following Theorem 3, we will try to
fill this gap to some extent. We give the upper and lower bounds of fan ,φ(n)(ω) expressed
using the concepts of continuous rate and log-continuous rate. At the same time, under
some mild assumptions, we establish a weak form of the generalized ergodic theorem.

Theorem 3. Let X = (Xn)n∈N be a finite non-null stationary stochastic process with
continuity rate (β(k))k∈N and X [m] be the canonical m-order Markov approximation of
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the process. Under the strong non-nullness assumption, infn,xn−1
0

p(i |xn−1
0 ) � pinf > 0

for φ(n) > m, and we have

H [m] − β(m)

pinf
� lim inf

n
fan ,φ(n)(ω) � lim sup

n
fan ,φ(n)(ω)

� H [m] + β(m)

pinf
P|σ(X) − a.e. (3.10)

Furthermore, if X is continuous, then

lim
n

fan ,φ(n)(ω) = H∞
P|σ(X) − a.e., (3.11)

where H [m] = −∑
im∈Xm π(im) · ∑

j∈X p( j |im) log p( j |im) and H∞ = limm

H(Xm |Xm−1
0 ).

Proof. Applying the inequality log x � x − 1 (x > 0) and equation (1.4), we have for
φ(n) > m,

1

φ(n)
| log p(xan+φ(n)

an+1 ) − log p[m](xan+φ(n)
an+1 )|

= 1

φ(n)

∣
∣
∣
∣
∣
∣
log p(xan+m

an+1 )

an+φ(n)∏

k=an+m+1

p(xk |xk−1
an+1) − log p(xan+m

an+1 )

an+φ(n)∏

k=an+m+1

p(xk |xk−1
k−m)

∣
∣
∣
∣
∣
∣

� 1

φ(n)
{| log[p(xan+m+2|Xan+m+1

an+1 )/p(xan+m+2|xan+m+1
an+2 )]|

+ | log[p(xan+m+3|xan+m+2
an+1 )/p(xan+m+3|xan+m+2

an+3 )]|
+ · · · + | log[p(xan+φ(n)|xan+φ(n)−1

an+1 )/p(xan+φ(n)|xan+φ(n)−1
an+φ(n)−m)]|}

≤ 1

φ(n)

[ |p(xan+m+2|xan+m+1
an+1 ) − p(xan+m+2|xan+m+1

an+2 )|
p(xan+m+2|xan+m+1

an+1 )

+ · · · + |p(xan+φ(n)|xan+φ(n)−1
an+1 ) − p(xan+φ(n)|xan+φ(n)−1

an+φ(n)−m)|
p(xan+φ(n)|xan+φ(n)−1

an+1 )

⎤

⎦

= 1

φ(n)

×
[ |P(X0 = xan+m+2|X−1

−m−1 = xan+m+1
an+1 ) − P(X0 = xan+m+2|X−1−m = xan+m+1

an+2 )|
P(X0 = xan+m+2|X−1

−m−1 = xan+m+1
an+1 )

+ · · · +
|P(X0=xan+φ(n)|X−1

−φ(n)−1=xan+φ(n)−1
an+1 ) − P(X0=xan+φ(n)|X−1−m=xan+φ(n)−1

an+φ(n)−m)|
P(X0=xan+φ(n)|X−1

−φ(n)−1=xan+φ(n)−1
an+1 )

⎤

⎦
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� 1

φ(n)

[
β(m)

pin f
+ · · · + β(m)

pinf

]

(by equation (1.3) and the stationarity)

= β(m)

pinf
,

that is,

| fan ,φ(n)(ω) − f [m]
an ,φ(n)(ω)| � β(m)

pinf
. (3.12)

Thus, based on the above bound for finite samples of size n, equation (3.10) follows
immediately from equation (3.6).

It is well known that limm H(Xm |Xm−1
0 ) always exists (denoted by H∞) for finite

stationary processes. Let m → +∞ on both sides of equation (3.10), then equation (3.11)
follows. �

Remark 6. It is easy to see that if the continuity rate (β(k))k∈N in Theorem 2 is substituted
by log-continuity rate (γ (k))k∈N, then we have

H [m] − γ (m) � lim inf
n

fan ,φ(n)(ω) � lim sup
n

fan ,φ(n)(ω)

� H [m] + γ (m) P|σ(X) − a.e. (3.13)

Moreover, if X is log-continuous, then equation (3.11) also holds.

In this paper, we consider statistical estimates based on a sample Xan+φ(n)
an+1 of length

φ(n) of the process. For φ(n) � m, the generalized empirical probability of the string im

is

π̂(im) := Nan ,φ(n)(im)

φ(n)
,

where Nan ,φ(n)(im) is defined as in equation (2.10). The generalized empirical conditional
probability of j ∈ X given by im is

p̂( j |im) := Nan ,φ(n)(im j)

Nan ,φ(n)−1(im)
.

Replacing in equation (3.3) the probabilities by their estimators, we get the following
estimator of m-order blockwise empirical entropy

Ĥ [m]
an ,φ(n)(ω) := − 1

φ(n)

∑

im∈Xm

π̂(im)
∑

j∈X
p̂( j |im) log p̂( j |im).

4. The proofs

Proof of Lemma 3. Let s be a nonzero real number and define

�an ,φ(n)(s, ω) = exp{s ∑an+φ(n)
k=an+1 gk(Xk

k−m)}
∏an+φ(n)

k=an+1 E[esgk (Xk
k−m )|Xk−1

k−m]
, n = 1, 2, . . . ,
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and note that

E�an ,φ(n)(s, ω)

= E{E[�an ,φ(n)(s, ω)|Xan+φ(n)−1
0 ]}

= E

⎧
⎨

⎩
E

⎡

⎣�an ,φ(n)−1(s, ω) · esgan+φ(n)(X
an+φ(n)
an+φ(n)−m )

E[esgan+φ(n)(X
an+φ(n)
an+φ(n)−m )|Xan+φ(n)−1

an+φ(n)−m]
|Xan+φ(n)−1

0

⎤

⎦

⎫
⎬

⎭

= E

⎡

⎣
�an ,φ(n)−1(s, ω)E[esgan+φ(n)(X

an+φ(n)
an+φ(n)−m )|Xan+φ(n)−1

an+φ(n)−m]
E[esgan+φ(n)(X

an+φ(n)
an+φ(n)−m )|Xan+φ(n)−1

an+φ(n)−m]

⎤

⎦ (by Markov property)

= E�an ,φ(n)−1(s, ω) = · · · = E�an ,1(s, ω) = 1.

By a similar argument of equation (2.8), we get

lim sup
n

1

φ(n)
log �an ,φ(n)(s, ω) � 0 a.e. (4.1)

Note that

1

φ(n)
log �an ,φ(n)(s, ω)

= 1

φ(n)

an+φ(n)∑

k=an+1

{sgk(Xk
k−m) − logE[esgk (Xk

k−m )|Xk−1
k−m]}. (4.2)

Equations (4.1) and (4.2) imply that

lim sup
n

1

φ(n)

an+φ(n)∑

k=an+1

{sgk(Xk
k−m) − logE[esgk (Xk

k−m )|Xk−1
k−m]} � 0 a.e. (4.3)

Letting 0 < s < γ and dividing both sides of equation (4.3) by s, we obtain that

lim sup
n

1

φ(n)

an+φ(n)∑

k=an+1

{gk(Xk
k−m) − 1

s
logE[esgk (Xk

k−m )|Xk−1
k−m]} � 0 a.e.

(4.4)

Using the elementary inequalities log x � x−1 (x > 0) and 0 � ex−1−x � 1
2 x

2e|x | (x ∈
R), by equation (4.4), we obtain that

lim sup
n

1

φ(n)

an+φ(n)∑

k=an+1

{gk(Xk
k−m) − E[gk(Xk

k−m)|Xk−1
k−m]}

� lim sup
n

1

φ(n)

an+φ(n)∑

k=an+1

{
1

s
logE[esgk (Xk

k−m )|Xk−1
k−m] − E[gk(Xk

k−m)|Xk−1
k−m]

}
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� lim sup
n

1

φ(n)

an+φ(n)∑

k=an+1

⎧
⎨

⎩

E[(esgk (Xk
k−m ) − 1 − sgk(Xk

k−m))|Xk−1
k−m]

s

⎫
⎬

⎭

� s

2
lim sup

n

1

φ(n)

an+φ(n)∑

k=an+1

E[g2
k (X

k
k−m)es|gk (X

k
k−m )||Xk−1

k−m]

� 1

2
sc(γ ;ω) < ∞ a.e. (4.5)

Letting s ↓ 0+ in equation (4.5), we have

lim sup
n

1

φ(n)

an+φ(n)∑

k=an+1

[gk(Xk
k−m) − E(gk(X

k
k−m)|Xk−1

k−m)] � 0 a.e. (4.6)

Letting −γ < s < 0 in equation (4.3), and proceeding as in the proof of equation (4.6),
we have that

lim inf
n

1

φ(n)

an+φ(n)∑

k=an+1

[gk(Xk
k−m) − E(gk(X

k
k−m)|Xk−1

k−m)] � 0 a.e. (4.7)

Equation (2.4) now follows immediately from equations (4.6) and (4.7). �

Proof of Theorem 1. From Corollary 2, we have that

lim
n

1

φ(n)

⎧
⎨

⎩
Nan ,φ(n)−1(i

m) −
an+φ(n)∑

k=an+1

b∑

l=1

1{l}(Xk−m)1{im−1}(Xk−1
k−m+1)pk(im |l, im−1)

⎫
⎬

⎭

= 0 a.e. (4.8)

It is not difficult to see from equation (3.1) that

lim
n

∣
∣
∣
∣
∣
∣

1

φ(n)

an+φ(n)∑

k=an+1

b∑

l=1

1{l}(Xk−m)1{im−1}(Xk−1
k−m+1)[pk( j |l, im−1) − p( j |l, im−1)]

∣
∣
∣
∣
∣
∣

�
b∑

l=1

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

|pk( j |l, im−1) − p( j |l, im−1)| = 0, ∀ j ∈ X.

(4.9)

Combining equations (4.8) and (4.9), we obtain

lim
n

1

φ(n)

[

Nan ,φ(n)−1(i
m;ω) −

b∑

l=1

Nan ,φ(n)−1(l, i
m−1;ω)p(im |l, im−1)

]
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= lim
n

1

φ(n)

an+φ(n)∑

k=an+1

b∑

l=1

1{l}(Xk−m)[pk(im |l, im−1) − p(im |l, im−1)]

= 0, a.e. (4.10)

Set km = (k1, . . . , km), by equation (4.10), we have

lim
n

{
Nan ,φ(n)−1(im)

φ(n)
−

∑

km∈Xm

Nan ,φ(n)−1(km) − 1

φ(n)
p(im |km)

}

= 0 a.e.

(4.11)

Multiplying both sides of equation (4.11) by p( jm |im) and adding them together for
im ∈ Xm , we have by equation (4.7) that

0 = lim
n

1

φ(n)

[
∑

im∈Xm

Nan ,φ(n)−1(i
m;ω)p( jm |im)

−
∑

im∈Xm

∑

km∈Xm

Nan ,φ(n)−1(k
m;ω)p(im |km)p( jm |im)

]

= lim
n

[
∑

im∈Xm

1

φ(n)
Nan ,φ(n)−1(i

m;ω)p( jm |im) − 1

φ(n)
Nan ,φ(n)−1( j

m;ω)

]

+ lim
n

[
1

φ(n)
Nan ,φ(n)−1( j

m;ω)

−
∑

km∈Xm

∑

im∈Xm

1

φ(n)
Nan ,φ(n)−1(k

m;ω)p( jm |im)p(im |km)

]

= lim
n

[
1

φ(n)
Nan ,φ(n)−1( j

m;ω) −
∑

km∈Xm

1

φ(n)
Nan ,φ(n)−1(k

m;ω)p(2)( jm |km)

]

a.e.,

(4.12)

where p(l)( jm |im) (l is a positive integer) is the l-step transition probability determined
by the transition matrix P̄ . By induction, we have for any positive integer h that

lim
n

1

φ(n)

⎡

⎣Nan ,φ(n)−1( j
m;ω) −

∑

km1 ∈Xm

Nan ,φ(n)−1(k
m;ω)p(h)( jm |km)

⎤

⎦ = 0, a.e.

(4.13)

It is easy to see that
∑

km∈Xm Nan ,φ(n)−1(km, ω) = φ(n). Since P̄ is ergodic, we have

lim
h

p(h)( jm |km) = π( jm), ∀ km ∈ Xm . (4.14)

Equation (3.2) follows from equations (4.13) and (4.14).
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If equation (3.1) holds, it is easy to see from Lemma 2 that

lim
n

1

φ(n)

an+φ(n)∑

k=an+1

|pk( j |im) log pk( j |im) − p( j |im) log p( j |im)| = 0,

∀ j ∈ X, im ∈ Xm . (4.15)

Notice that

1

φ(n)

an+φ(n)∑

k=an+1

b∑

j=1

pk( j |Xk−1
k−m) log pk( j |Xk−1

k−m)

= 1

φ(n)

an+φ(n)∑

k=an+1

b∑

j=1

∑

im∈Xm

1{im }(Xk−1
k−m) · pk( j |im) log pk( j |im)

implies that

∣
∣
∣
∣
∣
∣
f [m]
an ,φ(n)(ω) +

∑

im∈Xm

π(im)

b∑

j=1

p( j |im) log p( j |im)

∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣
f [m]
an ,φ(n)(ω) + 1

φ(n)

an+φ(n)∑

k=an+1

b∑

j=1

∑

im∈Xm

1{im }(Xk−1
k−m) · pk( j |im) log pk( j |im)

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

1

φ(n)

an+φ(n)∑

k=an+1

b∑

j=1

∑

im∈Xm

1{im }(Xk−1
k−m) · [pk( j |im)

log pk( j |im) − p( j |im) log p( j |im)]∣∣

+
∣
∣
∣
∣
∣
∣

∑

im∈Xm

⎡

⎣ 1

φ(n)

an+φ(n)∑

k=an+1

1{im }(Xk−1
k−m) − π(im)

⎤

⎦ ·
b∑

j=1

p( j |im) log p( j |im)

∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣
f [m]
an ,φ(n)(ω) + 1

φ(n)

an+φ(n)∑

k=an+1

b∑

j=1

pk( j |Xk−1
k−m)

∣
∣
∣
∣
∣
∣

+
b∑

j=1

1

φ(n)

an+φ(n)∑

k=an+1

∑

im∈Xm

|pk( j |im) log pk( j |im) − p( j |im) log p( j |im)|

+
∑

im∈Xm

∣
∣
∣
∣
Nan ,φ(n)−1(im)

φ(n)
− π(im)

∣
∣
∣
∣ ·

∣
∣
∣
∣
∣
∣

b∑

j=1

p( j |im) log p( j |im)

∣
∣
∣
∣
∣
∣
. (4.16)

Equation (3.3) now follows from equations (2.1), (3.2), (4.15) and (4.16) as required. �
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