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Abstract. In this paper, we construct extensions of mixed Hodge structure coming
from the mixed Hodge structure on the graded quotients of the group ring of the
fundamental group of a smooth projective pointed curve which correspond to the
regulators of certain motivic cohomology cycles on the Jacobian of the curve essentially
constructed by Bloch and Beilinson. This leads to a new iterated integral expression for
the regulator. This is a generalisation of a theorem of Colombo (J. Algebr. Geom. 11(4)
(2002) 761–790) where she constructed the extension corresponding to Collino’s cycles
in the Jacobian of a hyperelliptic curve.
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1. Introduction

A formula, usually called Beilinson’s formula – though independently due to Deligne as
well – describes the motivic cohomology group of a smooth projective variety X over
a number field as the group of extensions in a conjectured category of mixed motives,
MMQ. If i and n are two integers, then [19]

Ext1
MMQ

(Q(−n), hi (X)) =
{
CHn

hom(X) ⊗ Q if i + 1 = 2n,

Hi+1
M (X,Q(n)) if i + 1 �= 2n.

Hence, if one had a way of constructing extensions in the category of mixed motives by
some other method, it would provide a way of constructing motivic cycles.

One way of doing so is by considering the group ring of the fundamental group of the
algebraic variety Z[π1(X, P)]. If JP is the augmentation ideal – the kernel of the map
from Z[π1(X, P)] → Z – then the graded pieces JaP/JbP with a < b are expected to have
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a motivic structure. These give rise to natural extensions of motives – so one could hope
that these extensions could be used to construct natural motivic cycles.

Understanding the motivic structure on the fundamental group is complicated. However,
the Hodge structure on the fundamental group is well understood [9]. The regulator of
a motivic cohomology cycle can be thought of as the realisation of the corresponding
extension of motives as an extension in the category of mixed Hodge structures. So while
we may not be able to construct motivic cycles as extensions of motives coming from
the fundamental group – we can hope to construct their regulators as extensions of mixed
Hodge structures (MHS) coming from the fundamental group.

The aim of this paper is to describe this construction in the case of the motivic cohomol-
ogy group of the Jacobian of a curve. The first work in this direction is due to Harris [10]
and Pulte [9,16]. They showed that the Abel–Jacobi image of the modified diagonal cycle
on the triple product of a pointed curve (C, P), or alternatively the Ceresa cycle in the
Jacobian J (C) of the curve, is the same as an extension class coming from JP/J 3

P , where
JP is the augmentation ideal in the group ring of the fundamental group of C based at P .

In [6], Colombo extended this theorem to show that the regulator of a cycle in the
motivic cohomology of a Jacobian of a hyperelliptic curve, discovered by Collino [5], can
be realised as an extension class coming from JP/J 4

P , where here JP is the augmentation
ideal of a related curve.

In this paper, we extend Colombo’s result to more general curves. If C is a smooth
projective curve of genus g with a function f with divisor div( f ) = NQ − N R for some
points Q and R and some integer N and such that f (P) = 1 for some other point P , there
is a motivic cohomology cycle ZQR,P in H2g−1

M (J (C),Z(g)) discovered by Bloch [2].
We show that the regulator of this cycle can be expressed in terms of extensions coming
from JP/J 4

P . WhenC is hyperelliptic and Q and R are ramification points of the canonical
map to P1, this is Colombo’s result.

A crucial step in Colombo’s work is to use the fact that the modified diagonal cycle
is torsion in the Chow group CH2

hom(C3) when C is a hyperelliptic curve. This means
the extension coming from JP/J 3

P splits and hence does not depend on the base point P .
This allows her to consider the extension for JP/J 4

P . In general, that is not true—in fact
the known examples of non-torsion modified diagonal cycles come from the curves we
consider – namely modular and Fermat curves. Our main contribution is to use an idea of
Rabi [18] to show that Colombo’s arguments can be extended to work in our case as well.
As a result, we have a more general situation—which has some arithmetical applications.

In Colombo’s paper, there were errors in Propositions 3.2 and 3.3 which were pointed
out by a referee of an earlier version of this paper. Hence we had to make some revisions.
As it turned out the statement of the main result still holds under some restricted conditions
and much of the revisions we made were to understand these conditions. Unfortunately,
this has made the paper a little long.

We have the following theorem (Theorem (4.14)).

Theorem 1.1. Let C be a smooth projective curve of genus g over C. Let P , Q and R be
three distinct points such that there is a function fQR with div( fQR) = NQ − N R for
some N and fQR(P) = 1. Let ZQR = ZQR,P be the element of the motivic cohomology

group H2g−1
M (J (C),Z(g)) constructed below in Section 2.3. There exists an extension

class ε4
QR,P in Ext1

MHS(Z(−2),∧2H1(C)) constructed from the mixed Hodge structures

associated to the fundamental groups π1(C\Q, P) and π1(C\R, P) such that ε4
QR,P =

(2g + 1)N regZ(ZQR) in Ext1
MHS(Z(−2),∧2H1(C)).
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In other words, our theorem states that the regulator of a natural cycle in the motivic
cohomology group of the Jacobian of curves, being thought of as an extension class, is the
same as the extension class of a natural extension of mixed Hodge structures coming from
the fundamental group of the curve.

The outline of the proof is as follows. In section 2, we introduce background material
on iterated integrals, regulators, motivic cycles and extensions. We then describe the cycle
ZQR,P and give a formula for its regulator. In section 3, we construct an extension coming
from the MHS on the fundamental group that we expect to be related to the regulator
of our explicit cycle. Finally, we prove that is indeed the case. This is the place where
there was an error in the paper of Colombo [6]. One has to restrict to a certain subspace
of H1(C\{Q, R}) which is isomorphic to H1(C). There is no canonical way in which to
choose this in general, but in our case the function fQR determines such as space.

As a result of this, we have a new iterated integral formula for the regulator which
is more amenable to computation. In a subsequent paper, we apply this in the case of
Fermat curves to get an explicit expression for the regulator in terms of hypergeometric
functions—analogous to the works of Otsubo [14,15]. As the primary requirement is a
nice basis for the homology and the cohomology of the curve, we expect this will also
work in the case of modular curve, though that case is quite well understood.

Darmon et al. [7] used the modified diagonal cycle to construct points on Jacobians of
the curves and used the iterated integral approach to find a formula for the Abel–Jacobi
image of these points. Starting with Bloch [2] and later Collino [5] and Colombo [6], it has
been known that these null homologous cycles degenerate to higher Chow cycles on related
varieties. Recently, Iyer and Müller-Stach [12] showed that the modified diagonal cycle
degenerates to the kind of cycles we consider in some special cases. This degeneration
can be understood from the point of view of extensions and in fact the iterated integral
expression we have for the regulator show that in a rather natural way in terms of the
holomorphic forms degenerating to logarithmic forms.

2. Iterated integrals, cycles, extensions and regulators

2.1 Iterated integrals

Let X be a smooth projective variety over C. Let α : [0, 1] → X be a path and
ω1, ω2, . . . , ωn be 1-forms on X . Suppose α∗(ωi ) = fi (t)dt . The iterated integral of
length n of ω1, ω2 . . . ωn is defined to be∫

α

ω1ω2 . . . ωn :=
∫

0≤t1≤t2≤···≤tn≤1
f1(t1) f2(t2) . . . fn(tn)dt1dt2 . . . dtn .

An iterated integral of length ≤n is a linear combination of integrals of the form above
with lengths ≤n. It is said to be a homotopy functional if it only depends on the homotopy
class of the path α. A homotopy functional gives a functional on the group ring of the
fundamental group or path space.

Iterated integrals can be thought of as integrals on simplices and satisfy the following
basic properties. Here we have only stated the results for length two iterated integrals,
since that is the only type we will encounter in this paper.

Lemma 2.1 (Basic properties). Let ω1 and ω2 be smooth 1-forms on X and α and β

piecewise smooth paths on X with α(1) = β(0). Then
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(1)
∫
α·β ω1ω2 = ∫

α
ω1ω2 + ∫

β
ω1ω2 + ∫

α
ω1

∫
β

ω2,

(2)
∫
α

ω1ω2 + ∫
α

ω2ω1 = ∫
α

ω1
∫
α

ω2,

(3)
∫
α
d f ω1 = ∫

α
f ω1 − f (α(0))

∫
α

ω1,

(4)
∫
α

ω1d f = f (α(1))
∫
α

ω1 − ∫
α
f ω1.

Proof. This can be found in any article on iterated integrals, for instance, Hain’s excellent
article [9]. �

2.2 Motivic cohomology cycles

Let X be a smooth projective algebraic variety of dimension g defined over C. The motivic
cohomology group H2g−1

M (X,Z(g)) has the following presentation: Generators are rep-
resented by finite sums

Z =
∑
i

(Ci , fi ),

whereCi are curves on X and fi : Ci −→ P1 are functions on them subject to the co-cycle
condition ∑

i

div( fi ) = 0.

Relations in this group are defined as follows: If Y is a surface on X and f and g are
functions on Y , one has the Steinberg element { f, g} in K2(C(Y )), where C(Y ) is the
function field of Y . To such an element one can consider the sum, called the tame symbol
of { f, g},

τ({ f, g}) =
∑

W∈Y (1)

(
W, (−1)ordW ( f ) ordW (g) f

ordW (g)

gordW ( f )

)
,

where Y (1) is the collection of curves on Y . This is a finite sum and satisfies the co-cycle
condition, hence lies in the above group. An element is said to be 0 in H2g−1

M (X,Z(g)) if
it lies in the image of the free abelian group generated by the tame symbols of elements of
K2(C(Y )) for some surface Y ⊂ X . The group H2g−1

M (X,Z(g)) ⊗ Q is the same as the
higher Chow group CHg(X, 1) ⊗ Q.

In the group H2g−1
M (X,Z(g)), there are certain decomposable cycles coming from the

product

H2g−1
M (X,Z(g))dec = Im(H2g−2

M (X,Z(g − 1)) ⊗ H1
M(X,Z(1)))

−→ H2g−1
M (X,Z(g)).

This is simply CH1(X) × C∗. The group of indecomposable cycles is defined as the
quotient

H2g−1
M (X,Z(g))ind = H2g−1

M (X,Z(g))/H2g−1
M (X,Z(g))dec.

In general, it is not easy to find non trivial elements in this group.
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2.3 The cycle ZQR,P on J (C)

In this section, we construct a motivic cohomology cycle on J (C), where C is a smooth
projective curve over C. This was first constructed by Bloch [2] in the case when C is the
modular curve X0(37). The cycle is similar, in fact, generalises, the cycle constructed by
Collino [5]. This section generalises the work of Colombo [6] on constructing the extension
corresponding to the Collino cycle and hence many of the arguments are adapted from her
paper.

Let C be a smooth projective curve defined over C. Let Q and R be two distinct points
on C such that there is a function f = fQR with divisor

div( fQR) = NQ − N R

for some N ∈ N. To determine the function precisely, we choose a distinct third point P
and assume fQR(P) = 1.

There exist notable examples of curves where such functions can easily be found. For
instance, modular curves with Q and R being cusps, Fermat curves with the two points
being among the ‘trivial’ solutions of Fermat’s last theorem, namely the points with one
of the coordinates being 0, and hyperelliptic curves with the two points being Weierstrass
points.

Let CQ denote the image of C under the map C → J (C) given by x → x − Q.
Similarly, let RC denote the image of C under the map x → R − x and let f Q and R f
denote the function f being considered as a function on CQ and RC respectively.

Consider the cycle in J (C) given by

ZQR,P = (CQ, f Q) + (RC,R f ).

We have

divCQ ( f Q) + divRC (R f ) = N (0) − N (R − Q) + N (R − Q) − N (0) = 0.

Hence the cycle ZQR,P gives an element of H2g−1
M (J (C),Z(g)).

2.4 Regulators

Let X be a smooth projective variety of dimension g overC. The regulator map of Beilinson
is a map from the motivic cohomology group to the Deligne cohomology group.

regZ : H2g−1
M (X,Z(g)) → H2g−1

D (X,Z(g)) = (F1H2(X,C))∗

H2(X,Z(1))
,

where ∗ denotes the C-linear dual and F• denotes the Hodge filtration. The group
H2g−1
D (X,Z(g)) is a generalised torus.

The map is defined as follows [5]: Let Z = ∑
i (Ci , fi ) be a cycle in H2g−1

M (X,Z(g)),
so Ci are curves on X and fi are functions on them satisfying the cocycle condition. Let
[0,∞] denote the positive real axis in P1 and γi = f −1

i ([0,∞]). Then
∑

i div( fi ) = 0
implies that the 1-chain

∑
i γi is closed and in fact torsion. If H1(X,Z) has no torsion –

as is in the case of the Jacobian of curves, it is exact. Assuming that we have∑
i

γi = ∂(D)
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for some 2-chain D, for a closed 2-form ω whose cohomology class lies in F1H2
DR(X,C),

regZ(Z)(ω) :=
∑
i

∫
Ci\γi

log( fi )ω + 2π i
∫
D

ω. (1)

Here Ci\γi is the Riemann surface with boundary obtained as follows: Let nε(γi ) be
an open tubular neighbourhood of γi in Ci which is homeomorphic to (−ε, ε) × γi .
Ci\nε(γi ) is a closed subset of Ci with the structure of a manifold with boundary. The
boundary ∂(Ci\nε(γi )) is made up of two copies of γi with opposite orientation as well
as (−ε, ε) × γi (0) and (−ε, ε) × γi (1) with opposite orientations. Ci\γi is the manifold
obtained by letting ε → 0. For a decomposable element (C, a), wherea ∈ C∗, the regulator
is particularly simple as follows:

regZ((C, a))(ω) =
∫
C

log(a)ω = log(a)

∫
C

ω.

2.5 The regulator of ZQR,P

Let ZQR,P be the motivic cohomology cycle in H2g−1
M (J (C),Z(g)). We now obtain a

formula for its regulator. The regulator is a current on forms in F1(H2(J (C)C)). Since
H2(J (C)) = ∧2H1(C) elements are of the form φ ∧ψ where φ and ψ are closed 1-forms
on C and one of φ or ψ is of type (1, 0). We have the following theorem.

Theorem 2.2. Let ZQR,P be the motivic cohomology cycle in H2g−1
M (J (C),Z(g)), φ and

ψ two closed harmonic 1-forms in H1(J (C)) = H1(C) with ψ holomorphic. Then

regZ(ZQR,P )(φ ∧ ψ) = 2
∫
C\γ

log( f )φ ∧ ψ + 2π i
∫

γ

(φψ − ψφ).

Proof. Recall that f = fQR is a function on C with divisor NQ − N R for some N . Let
ω = φ ∧ ψ and γ = f −1([0,∞]). As f is of degree N , γ is the union of N paths each
lying on a different sheet with only the points Q and R in common. We will denote them
by γ i , 1 ≤ i ≤ N . Each γ i is a path from Q to R. Let γ Q and Rγ denote the path γ onCQ ,
RC respectively and similarly for the components γ i . Then from the co-cycle condition
one has

γ Q ·R γ = ∂(D),

where D is a 2-chain on J (C).

From equation (1), one has

regZ(ZQR,P )(ω) =
∫
CQ\γ Q

log( fQ)ω +
∫
RC\Rγ

log(R f )ω + 2π i
∫
D

ω. (2)

Our aim is to find a more explicit expression for regZ(ZQR,P ). For this we need an explicit
description of D. This was done in Lemma 1.2 of [6].
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Lemma 2.3. Let a(s, t) = t and b(s, t) = t (1−s)
1−s(1−t) . Define Fi : [0, 1] × [0, 1] −→ J (C)

by Fi (s, t) = γ i (a(s, t)) − γ i (b(s, t)) for 1 ≤ i ≤ N and let Di = Im(Fi ). Then,
orienting counterclockwise, ∂(Di ) = γ i,Q ·R γ i . In particular, if D = ∪N

i=1Di , then
∂(D) = γ Q ·R γ .

Proof. The proof is essentially identical to Colombo’s Lemma 1.2 – the only change is
that she does it for N = 2 – so we do not repeat it here. �

We can compute the last integral as an iterated integral as follows.

Lemma 2.4. Let φ and ψ be closed harmonic 1-forms on C and let Di be a disc as in the
above lemma. Then∫

Di

φ ∧ ψ =
∫

γ i,Q
φψ −

∫
Rγ i

ψφ =
∫

γ

(φψ − ψφ).

Proof. This again is a slightly modified version of Lemma 1.3 of [6]. �

This completes the proof of Theorem 2.2.

3. Extensions

As stated in the Introduction, conjecturally, there is a canonical description of the motivic
cohomology group as an extension in the category of mixed motives. From now on, Ext will
denote Ext1. Further, we will use H∗(X) to denote the group H∗(X (C),Z), the singular
(Betti) cohomology group with integral coefficients and H∗(X)A to denote H∗(X)⊗Z A,
where A is typically Q,R or C.

In our case, if one has a suitable category of mixed motives over Q, MMQ, one expects
for a variety X [19] and i, n non-negative numbers with i < 2n − 1,

Hi+1
M (X,Q(n)) � ExtMMQ

(Q(−n), hi (X)), (3)

where Q(−n) denotes the twist of the Tate motive and hi (X) denotes the motive whose
Hodge realisation is Hi (X).

One knows that the Deligne cohomology can be considered as an extension in the
category of integral mixed Hodge structures,

Hi+1
D (X,Z(n)) � ExtMHS(Z(−n), Hi (X)).

Assuming (3) holds at the level of integer coefficients, the regulator map above then has
a canonical description as the map induced by the realisation map from the category of
mixed motives to the category of mixed Hodge structures

ExtMMQ
(Z(−n), hi (X))

regZ−→ ExtMHS(Z(−n), Hi (X)).
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3.1 Extensions of mixed Hodge structures coming from the fundamental group

The key point of this paper is that, in some cases, one can also obtain extensions of mixed
Hodge structures in other ways. For instance, if (X, P) is a pointed algebraic variety, it
was shown by Hain [9] that the graded quotients JaP/JbP with a ≤ b, where JP is the
augmentation ideal of the group ring of the fundamental group Z[π1(X, P)], carry mixed
Hodge structures. Hence natural exact sequences involving them lead to extensions of
mixed Hodge structures.

Our aim is to first construct some natural motivic cohomology cycles in the case when
X = J (C), the Jacobian of a curve of genus g. Their regulators will give rise to extensions
of mixed Hodge structures. We will show that there are natural extensions of mixed Hodge
structures coming from the Hodge structure on the graded pieces of Z[π1(C, P)] for some
suitable point P which give the same extensions. In particular, since the constructions can
be carried out at the level of mixed motives, if we had a good category of mixed motives
the cycle itselfwould be an extension in the conjectured category of mixed motives coming
from the fundamental group.

3.2 The mixed Hodge structure on the fundamental group

Let C be a smooth projective curve over C and P , Q and R be three distinct points on
C . Consider the open curve CQ = C − {Q}. Let Z[π1(CQ, P)] be the group ring of the
fundamental group of CQ based at P . Let JQ,P := JCQ ,P denote the augmentation ideal

JQ,P := JCQ ,P = Ker{Z[π1(CQ, P)] deg−→ Z}.
Let H0(Br (CQ; P)) denote the F-vector space, where F is R or C, of homotopy invariant
iterated integrals of length ≤r . Chen [4] showed that

H0(Br (CQ; P)) � HomZ(Z[π1(CQ, P)]/Jr+1
CQ .P , F)

under the map

I −→ I (γ ) =
∫

γ

I.

Using this, Hain [9] was able to put a natural mixed Hodge structure on the graded pieces
JQ,P/JrQ,P .

3.3 The extension E3
Q,P

From this point on, we will use the following notation. For an extension E of mixed Hodge
structures,

E : 0 −→ B −→ H −→ A −→ 0

we use m to denote its class in Ext1
MHS(A, B) and H to denote the middle term. We will

also use the notation N · E to denote N times the extension with respect to the Baer sum,
use N · m to denote its class of this extension in the Ext group and N · H to denote its
middle term .

For r ≥ 3, one can consider the extensions of mixed Hodge structures

Er
Q,P : 0 −→ (JQ,P/Jr−1

Q,P )∗ −→ (JQ,P/JrQ,P )∗ −→ (Jr−1
Q,P/JrQ,P )∗ −→ 0,
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where for a module M , M∗ = Hom(M,Z).
The simplest non-trivial case is when r = 3. In this case, (JQ,P/J 2

Q,P )∗ � H1(CQ) �
H1(C) and (J 2

Q,P/J 3
Q,P )∗ � ⊗2H1(C) and the exact sequence becomes

E3
Q,P : 0 −→ H1(C) −→ (JQ,P/J 3

Q,P )∗ −→ ⊗2H1(C) −→ 0.

Hence E3
Q,P gives an element m3

Q,P in Ext(⊗2H1(C), H1(C)). A similar construction

with R in place of Q gives us the extension E3
R,P , which also lies in the same Ext group.

There is a surjection ∪ : ⊗2H1(C) −→ H2(C) � Z(−1) coming from the cup product.
Let K be the kernel of this map. The exact sequence of Hodge structures

0 −→ K −→ ⊗2H1(C)
∪−→ Z(−1) −→ 0

splits over Q but not over Z. This happens as follows: There is a bilinear form [13]

b : ⊗2H1(C) × ⊗2H1(C) −→ Z

defined by

b(x1 ⊗ x2, y1 ⊗ y2) = (x1 ∪ y2) · (x2 ∪ y1).

Let S denote the orthogonal complement of K in ⊗2H1(C) with respect to this bilinear
form. Then, under the cup product S projects to 2gZ(−1) where gC is the genus of C and

⊗2H1(C)Q = KQ ⊕ SQ.

Let m̄3
Q,P denote the class in ExtMHS(S, H1(C)) corresponding to the extension

0 −→ H1(C) −→ Ē3
Q,P −→ S −→ 0

obtained by restricting E3
Q,P to the extension of S by H1(C). From Kaenders [13], one

knows there is a covering map of complex tori,

Ext(⊗2H1(C), H1(C))
φ−→ Ext(K ⊕ S, H1(C))

= Ext(K , H1(C)) × Ext(S, H1(C)).

It is well known that Ext(S, H1(C)) = Ext(Z(−1), H1(C)) � Pic0(C). To understand
the other term, from the work of Hain [9], Pulte [16], Kaenders [13] and Rabi [18] one has
the following theorem.

Theorem 3.1. The image of the class m3
Q,P of E3

Q,P in Ext(⊗2H1(C), H1(C)) is given

by φ(m3
Q,P ) = (m3

P , m̄3
Q,P ), where m3

P ∈ Ext(K , H1(C)) depends only on P and m̄3
Q,P

is given by 2gC Q − 2P − κC ∈ Pic0(C), where κC is the canonical divisor of C and gC
is the genus of C.

Recall that in the group Ext, addition is given by the Baer sum. We will denote this by ⊕B

(or �B if we are taking differences). Letm3
QR,P denote the Baer differencem3

Q,P�Bm3
R,P .

Lemma 3.2. Under the hypothesis that there is a function with divisor div( fQR) = NQ−
N R, the extension class m3

QR,P is torsion in Ext(H1C) ⊗ H1(C), H1(C)). Precisely,

N · H3
QR,P � H1(C)

⊕
⊗2H1(C),
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where by N · H3
QR,P we mean the middle term of the exact sequence obtained by adding

the sequence E3
QR,P to itself N-times using the Baer sum.

Proof. This follows from Theorem 2.5 of [13] which states that the map

Pic0(C) −→ Ext(H1(C) ⊗ H1(C), H1(C))

given by

Q − R −→ m3
Q,P − m3

R,P

is well defined and injective. Hence, since N (Q−R) = 0 in Pic0(C), N (m3
Q,P −m3

R,P ) =
N (m3

QR,P ) = 0 in Ext(H1(C) ⊗ H1(C), H1(C)). �

A consequence of this is that there is a morphism of integral mixed Hodge structures

r3 : N · H3
QR,P −→ H1(C)

given by the projection.

Remark 3.3. This extension represents the class Q− R, at least up to an integral multiple,
and is hence the first example of the theme of this paper – namely the Abel–Jacobi image of
a null-homologous cycle is described in terms of extensions coming from the fundamental
group.

�

3.4 The extensions E4
Q,P and E4

R,P

We know from some of the works that the class m3
P in Ext(K , H1(C)) corresponds to

the extension of mixed Hodge structures determined by the Ceresa cycle in J (C), or
alternately, the modified diagonal cycle in C3. We would like to construct a similar class
corresponding to the motivic cohomology cycle ZQR,P . To that end, we now consider,
with C, P, Q and R as before, the extension corresponding to r = 4,

E4
Q,P : 0 −→ (JQ,P/J 3

Q,P )∗ −→ (JQ,P/J 4
Q,P )∗ −→ (J 3

Q,P/J 4
Q,P )∗ −→ 0.

We have that (J 3
Q,P/J 4

Q,P )∗ � ⊗3H1(C) and this does not depend on P, Q or R. How-

ever, from Theorem 3.1, (JQ.P/J 3
Q,P )∗ depends on Q and P . Similarly (JR.P/J 3

R,P )∗

depends on R and P . Hence we get classes in Ext(⊗3H1(C), (JQ.P/J 3
Q,P )∗) and

Ext(⊗3H1(C), (JR.P/J 3
R,P )∗) – which are different groups – hence we cannot take their

difference.
When C is hyperelliptic and Q, R and P are Weierstrass points, the extension classes

m3
Q,P and m3

R,P are 2-torsion in Ext(⊗2H1(C), H1(C)). Hence one gets two classes

2m4
Q,P , 2m4

R,P ∈ Ext(⊗3H1(C),⊗2H1(C) ⊕ H1(C))

and one can project to get two classes e4
Q,P and e4

R,P in Ext(⊗3H1(C), H1(C)). Colombo
[6] showed that the class

e4
QR,P = e4

Q,P �B e4
R,P ∈ Ext(⊗3H1(C), H1(C))
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corresponds to the extension determined by the cycle ZQR,P—after pulling back and
pushing forward with some standard maps.

Unfortunately, in general, the extension classes m3
Q,P and m3

R,P are not torsion in the
Ext group. They correspond to the instances where the Ceresa cycle is non-torsion—which
is the generic case. In fact, the instances where it is known that the cycles are non-torsion
are precisely the cases we have in mind—modular curves and Fermat curves [1,10]. Hence
we cannot use this argument immediately. However, since we know from Lemma 3.2 that
their difference m3

QR,P is torsion, we would like to get an extension of the form

0 −→ H3
QR,P ⊗ Q −→ “H4

QR,P” ⊗ Q −→ ⊗3H1(C) ⊗ Q −→ 0,

where “H4
QR,P” is the middle term of a sort of generalised Baer difference of the two exten-

sions E4
Q,P and E4

R,P . We could then push-forward this extension using the splitting to get a

class in Ext(⊗3H1(C)Q, H1(C)Q). We cannot simply consider E4
QR,P = E4

Q,P �B E4
R,P

as the two extensions lie in different Ext groups. So we have to consider a generalisation
of Baer sums to not necessarily exact sequences which we came across in a paper of Rabi
[18].

3.5 The Baer sum

This is well known but we recall it to fix notation in order to describe Rabi’s work. Recall
that if we have two exact sequences of modules

E j : 0 −−−−→ A
f j−−−−→ Bj

p j−−−−→ C −−−−→ 0

for j ∈ {1, 2}, the Baer difference E1 �B E2 is constructed as follows: We have

0 −−−−→ A ⊕ A
f1⊕ f2−−−−→ B1 ⊕ B2

p1⊕p2−−−−→ C ⊕ C −−−−→ 0.

Let ψ : B1 ⊕ B2 −→ C be the map

ψ(b1, b2) = p1(b1) − p2(b2)

and let H = Ker(ψ) = {(b1, b2)| p1(b1) = p2(b2)}. Let D be the image of f̃ : A −→
A ⊕ A −→ H ,

f̃ (a) = ( f1(a), f2(a))

Let B = H/D. The map f : A ⊕ A −→ B given by

f (a1, a2) = ( f1(a1), f2(a2))

factors through (A ⊕ A)/A � A and so one has a map f̄ : A −→ B,

a −→ ( f1(a), 0) = (0,− f2(a))

and an exact sequence

0 −−−−→ A
f̄−−−−→ B

p1(or p2)−−−−−→ C −−−−→ 0.

The class of this exact sequence in Ext(C, A) is the Baer difference E1 �B E2. The Baer
sum E1 ⊕B E2 is the sequence obtained when one of the maps f2 or p2 is replaced by its
negative. The Baer sum is essentially the push-out over A in the category of modules.
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3.6 Rabi’s generalisation

Now suppose we have diagrams of the following type:
0⏐⏐�
A1⏐⏐�i j

0 −−−−→ B j
1

f j−−−−→ B j
2

p j−−−−→ B3 −−−−→ 0,⏐⏐�π j

C1⏐⏐�
0

where the vertical and horizontal sequences are exact for j ∈ {1, 2}. Let E j denote the
horizontal exact sequences:

E j : 0 −−−−→ B j
1

f j−−−−→ B j
2

p j−−−−→ B3 −−−−→ 0.

We would like to take the Baer difference of the E j—but since they do not lie in the same
Ext group we cannot quite do that. However, we can still salvage something.

One gets two types of extension classes in Ext groups which do not depend on j . The
vertical exact sequences give classes in Ext(C1, A1). We can form their Baer difference to
get an exact sequence

0 −−−−→ A1 −−−−→ B1 −−−−→ C1 −−−−→ 0.

The horizontal exact sequences give extensions in Ext(B3, B
j

1 ). These depend on j but
their push forward under π j give classes f

B j
2

in Ext(B3,C1).

Define B2 as follows: Let H2 = Ker(ψ), where ψ is the ‘difference’ map

ψ : B1
2 ⊕ B2

2 −→ B3,

ψ((b1
2, b

2
2)) = (p1(b

1
2) − p2(b

2
2)).

Let D2 be the image of the map

A1 −→ B1
1 ⊕ B2

1 −→ H2,

a −→ ( f1(i1(a)), f2(i2(a))).

Define B2 = H2/D2. We call this the generalised Baer difference of E1 and E2 and denote
it by �̃B . Observe that this is almost the Baer difference of E1 and E2 in the sense that
if B1 = B1

1 = B2
1 , then we could take the difference in Ext(B3, B1). Since that is not the

case, we do the best we can—we take the difference of the inexact sequences

0 −−−−→ A1 −−−−→ B j
2 −−−−→ B3 −−−−→ 0.

As a result of this, one has a complex

0 −−−−→ B1
f1⊕ f2−−−−→ B2

p1(or p2)−−−−−→ B3 −−−−→ 0.

However, this complex is not exact since Ker(p1) is larger than ( f1 ⊕ f2)(B1). The next
lemma describes this difference.
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Lemma 3.4 [18]. Let F = FB1
2 �̃B B2

2
= B2/B1. Then one has the following diagram, in

which the horizontal and vertical sequences are exact:

0⏐⏐�
C1⏐⏐�φ

0 −−−−→ B1
f−−−−→ B2

η−−−−→ F −−−−→ 0.⏐⏐� p̄

B3⏐⏐�
0

Proof (Appendix B of [17]). We repeat the proof here as it is unpublished. The horizontal
sequence is exact by definition. To show that the vertical sequence is exact we have to first
describe map φ. It is defined as follows. One has maps π j : B j

1 −→ C1. Consider the
natural map

φ̃ : C1 ⊕ C1 −−−−→ (B1
1 ⊕ B2

1 )/�A1

( f1, f2)−−−−→ B2 = H2/D2

(c1, c2)
φ→ (π−1

1 (c1), π
−1
2 (c2)) → ( f1(π

−1
1 (c1)), f2(π

−1
2 (c2))),

where �A1 = {(i1(a), i2(a))|a ∈ A1}. φ gives a well defined map

(C1 ⊕ C1)/�C1 −→ B2/φ̃(�C1),

where �C1 = {(c,−c)|c ∈ C1} is the anti-diagonal. This is well defined as if (b1, b2) and
(b′

1, b
′
2) are in (π−1

1 (c1), π
−1
2 (c2)), we have to show

( f1(b1), f2(b2)) ≡ ( f1(b
′
1), f2(b

′
2)) mod φ̃(�C1)

or

( f1(b1 − b′
1), f2(b2 − b′

2)) ∈ φ̃(�C1).

From exactness, we have b1 − b′
1 = i1(a1) and b2 − b′

2 = i2(a2) with ai ∈ A1. The image
of �C1 under (π−1

1 , π−1
2 ) consists of (b, b′) such that π1(b) = π2(b′). (i1(a1), i2(a2)) lie

in this image, hence

( f1(i1(a1)), f2(i2(a2))) = ( f1(b1 − b′
1), f2(b2 − b′

2)) ∈ φ̃(�C1).
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Note that the pre-image (π−1
1 , π−1

2 )(�C1) in (B1
1 ⊕ B2

1 )/�A1 is the Baer difference B1.
Further, (C1 ⊕ C1)/�C1) � C1. Hence one has a map φ : C1 → F = B2/B1 and we get
an exact sequence

0 −→ C1
φ−→ FB1

2 �̃B B2
2

p̄−→ B3 −→ 0.

This sequence is exact as if b = (b1
2, b

2
2) is in FB1

2 �̃B B2
2

and p̄(b) = 0, then p1(b1
2) =

p2(b2
2) = 0. So b1

2 and b2
2 lie in the image of B1

1 ⊕ B2
1 – say b1

2 = f1(b1
1) and b2

2 = f2(b2
1).

Let ci = π1(b1
1) and c2 = π2(b2

1). Then

b = φ(c1, c2),

so it lies in the image of φ. �

In general, for any Z-linear combination m · B1
2�̃B n · B2

2 of B1
2 and B2

2 , we get an
extension class fm·B1

2 �̃B n·B2
2

in Ext(B3,C1) corresponding to Fm·B1
2 �̃B n·B2

2
. The relation

between this and the extension classes constructed above is given as follows.

COROLLARY 3.5

Let f
B j

2
and fm·B1

2 �̃B n·B2
2
be the extensions in Ext(B3,C1) described above. Then

fm·B1
2 �̃B n·B2

2
= m · fB1

2
�B n · fB2

2
.

Proof. This follows from the construction of the map φ. �

In the next section, we apply these constructions in our particular case to get the extension
class we want.

3.7 The extension e4
QR,P

In this section, we construct an extension e4
QR,P in Ext(⊗3H1(C), H1(C)) which gen-

eralises the element e4
Q,P �B e4

R,P constructed by Colombo [6]. Recall that we have an
exact sequence

E3
Q,P : 0 −→ H1(C) −→ (JQ,P/J 3

Q,P )∗ −→ ⊗2H1(C) −→ 0

and a similar one E3
R,P . Also, we have the exact sequence

E4
Q,P : 0 −→ (JQ,P/J 3

Q,P )∗ −→ (JQ,P/J 4
Q,P )∗ −→ (J 3

Q,P/J 4
Q,P )∗ −→ 0

and a similar E4
R,P . This gives us diagrams as in Lemma 3.4, with B1

1 = (JQ,P/J 3
Q,P )∗,

B2
1 = (JR,P/J 3

R,P )∗, B1
2 = (JQ,P/J 4

Q,P )∗, B2
2 = (JR,P/J 4

R,P )∗ and A1 = H1(C),

B3 = ⊗2H1(C) and finally C1 = ⊗2H1(C).
Let fQ , fR and fQR denote the classes in Ext(⊗3H1(C),⊗2H1(C)) with middle terms

H23
Q,P , H23

R,P and H23
QR,P corresponding to the diagrams for Q, R and their generalised

Baer difference. fQ and fR are the push-forwards of m4
Q,P and m4

R,P respectively. From
Corollary 3.5, one has

fQR = fQ − fR .
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Lemma 3.6. fQR is N-torsion in Ext(⊗3H1(C),⊗2H1(C)). Namely,

N · H23
QR,P = ⊗2H1(C) ⊕ ⊗3H1(C).

Proof. From Corollary 3.3 of [18], one has that the class H23
Q,P in Ext(⊗3H1(C),⊗2H1

(C)) is given by

H23
Q,P = H1(C) ⊗ E3

QP ⊕B E3
QP ⊗ H1(C).

Similarly,

H23
R,P = H1(C) ⊗ E3

RP ⊕B E3
RP ⊗ H1(C).

Taking their difference gives

H23
R,P − H23

Q,P = H1(C) ⊗ (E3
R,P − E3

Q,P ) ⊕B (E3
RP − E3

QP ) ⊗ H1(C)

From Lemma 3.2, we have E3
R,P − E3

Q,P = (0, 2g(Q − R)) ∈ ExtMHS(⊗2H1(C), H1

(C)). As Q − R is N -torsion, we have

N · (H23
R,P − H23

Q,P ) ∼= H1(C) ⊕ ⊗2H1(C).

�

We also know from Lemma 3.2 that m3
QR,P is N -torsion. Hence from Lemma 3.4, we

get an exact sequence

0 −−−−→ ⊗2H1(C) ⊕ H1(C) −−−−→ N · H4
QR,P

−−−−→ ⊗3H1(C) ⊕ ⊗2H1(C) −−−−→ 0.

which gives a class in Ext(⊗3H1(C) ⊕ ⊗2H1(C),⊗2H1(C) ⊕ H1(C)).
From the Künneth theorem,

Ext(⊗3H1(C) ⊕ ⊗2H1(C),⊗2H1(C) ⊕ H1(C))

=
∏

i∈{2,3}, j∈{1,2}
Ext(⊗i H1(C),⊗ j H1(C)).

Define

e4
QR,P ∈ Ext(⊗3H1(C), H1(C)) (4)

to be the projection onto that component. Note that if C is hyperelliptic, this class e4
QR,P

is precisely the class e4
QR,P = e4

Q,P �B e4
R,P constructed by Colombo.

3.8 Statement of the main theorem

Armed with the class e4
QR,P ∈ Ext(⊗3H1(C), H1(C)), we can proceed as in Colombo

[6].
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Let � denote the pullback of the polarisation on J (C) in H2(J (C))(1) to ⊗2H1(C)(1).
There is an injection obtained by tensoring with �,

J� = ⊗� : H1(C)(−1) −→ ⊗3H1(C).

We first pull back the class using the map J� to get a class in

J ∗
�(e4

QR,P ) ∈ Ext(H1(C)(−1), H1(C)).

Tensoring with H1(C), we get a class

J ∗
�(e4

QR,P ) ⊗ H1(C) ∈ Ext(⊗2H1(C)(−1),⊗2H1(C)).

Once again pulling back using the map β : Z(−1) → ⊗2H1(C) gives us a class

ε4
QR,P ∈ Ext(Z(−2),⊗2H1(C)) ⊂ Ext(Z(−2), H2(C × C)) (5)

Our main theorem is as follows.

Theorem 3.7. Let C be a smooth projective curve of genus g and P , Q and R be three dis-
tinct points. Let ZQR,P be the element of the motivic cohomology group H3

M(J (C),Z(2))

constructed above. Let ε4
QR,P be the extension in ExtMHS(Z(−2),∧2H1(C)) constructed

above. Then

ε4
QR,P = (2g + 1)N regZ(ZQR)

in ExtMHS(Z(−2),∧2H1(C)).

In other words, our theorem states that the regulator of a natural cycle in the motivic
cohomology group of a product of curves, being thought of as an extension class is the
same as that as a natural extension of MHS coming from the fundamental group of the
curve. In fact, it is an extension of pure Hodge structures.

Remark 3.8 (Dependence on P). This is not so serious. If we do not normalise fQR

with the condition that fQR(P) = 1, then one has to add an expression of the form
log( fQR(P))

∫
C · to the term—and this corresponds to adding a decomposable element of

the form (�C , log( fQR(P))) to our element ZQR .

4. Carlson’s representatives

The proof of the main theorem will follow by showing that both the algebraic cycle
constructed earlier and the extension class constructed above induce the same current.
For that we have to understand how an extension class induces a current. This comes from
understanding the Carlson representative. In this section, we once again follow Colombo
[6] and adapt her arguments to our situation.

If V is a MHS all of whose weights are negative, then the intermediate Jacobian of V
is defined to be

J0(V ) = VC
F0VC ⊕ VZ

.
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This is a generalised torus – namely a group of the form Ca/Zb � (C∗)b × (C)a−b for
some a and b.

An extension of mixed Hodge structures

0 −→ A
ι−→ H

π−→ B −→ 0

is called separated if the lowest non-zero weight of B is greater than the largest non-zero
weight of A. This implies that HomMHS(B, A) has negative weights. Carlson [3] showed
that

ExtMHS(B, A) � J0(Hom(B, A)).

This is defined as follows: As an extension of Abelian groups, the extension splits. So
one has a map rZ : H → A which is a retraction, rZ ◦ ι = id. Let sF be a section
in Hom(BC, HC) preserving the Hodge filtration. Then the Carlson representative of an
extension is defined to be the class of

rZ ◦ sF ∈ J0(Hom(B, A)).

We now describe explicitly the Carlson representative of the extension ε4
QR,P con-

structed in the previous section. This is done in a few steps, first we describe the repre-
sentative for e4

QR,P and then for its various pullbacks and push forwards to obtain that for

ε4
QR,P .

4.1 Preliminaries

As before, let C be a smooth projective curve of genus g. We first describe the Carlson
representative of the extension

e4
QR,P ∈ ExtMHS(⊗3H1(C), H1(C)).

From the above discussion, this is an element of

J0(Hom(⊗3H1(C), H1(C))

= Hom(⊗3H1(C)C, H1(C)C)

F0 Hom(⊗3H1(C)C, H1(C)C) ⊕ Hom(⊗3H1(C), H1(C))
,

so explicitly, given an element of ⊗3H1(C)C we get an element of H1(C)C which we can
think of as a functional on H1(C)C.

Let CQR denote the open curve C\{Q, R}. In fact, we will describe the functional as
an iterated integral made up of forms in H1(CQR)C and will naturally be a functional on
H1(CQR). We have a natural inclusion

i : CQR ↪→ C

which induces i∗ on homology and i∗ on cohomology. In order to consider the iterated
integral as a functional on H1(C), we have to make a choice of an embedding H1(C) ↪→
H1(CQR) which splits the map i∗. There are many ways of doing this, but for our formula
to work, we need to make a particular choice. In this section, we first construct a ‘natural’
splitting of the map i∗ – namely a subgroup of H1(CQR) which maps isomorphically to
H1(C) under i∗.

Consider the groupπ1(CQR; P). This is a free group on 2g+1 generators. The generators
have the following description. The fundamental polygon of C is a 4g-sided polygon with
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the edges ei and ei+g identified. The end points of the edges are identified and so they give
2g loops α′

i in CQR which we consider as loops based at P . Let βQ be a small simple loop
around Q based at P . Then π1(CQR; P) = 〈α′

1, . . . , α
′
2g, βQ〉.

The map f : C → P1 restricts to give f : CQR → P1 − {0,∞} and this induces

f∗ : π1(CQR; P) −→ π1(P
1 − {0,∞}; 1).

One knows π1(P
1 − {0,∞}) � Z. Let β0 denote the generator. Let H = Ker( f∗). Then

f∗(π1(CQR; P)) is a subgroup of Z. In a deleted neighbourhood of 0 the map looks like
z → zN , where N is the degree. Hence loop βQ is taken to βN

0 . Let f∗(α′
i ) = β

mi
0 for

some mi ∈ Z. Then αi = α′
i
N
β

−mi
Q satisfies f∗(αi ) = 0. Let G denote the subgroup of

H = Ker( f∗) generated by the {αi }.
The inclusion map i also induces i∗ on the fundamental groups. Since i∗(βQ) = 0,

i∗(αi ) = i∗(α′
i )
N . The fundamental group of C is π1(C; P) = {〈i∗(α′

1), . . . , i∗(α′
2g)〉/∏[i∗(α′

i ), i∗(α′
i+g)] = 0}. Hence one has a map G → π1(C; P) whose image is the

subgroup generated by the N -th powers of α′
i .

Lemma 4.1. The abelianization of G is isomorphic to the subgroup of index N 2g of the
abelianization of π1(C; P),

G/[G,G] � N · π1(C)/[π1(C), π1(C)],

where N · denotes multiplication by N.

Proof. Let α = ∏
α
bi
ai be a word in G. For a generator αi of G, define

ordαi (α) =
∑
ai=i

bi

namely, the number of times αi appears in the word. Define

� : G → Z2g,

�(α) = (ordαi (α), . . . , ordα2g (α)).

Let K = ker(�). Clearly [G,G] ⊂ K . Further, the map � factors through i∗ and is
surjective. We claim K = [G,G]. To see this, observe that if a, b ∈ G,

ab ≡ ba mod [G,G].

By repeatedly applying this, one can see that any word

α =
∏

αbi
ai ≡

2g∏
i=1

α
ordαi (α)

i mod [G,G].

In particular, if ordαi (α) = 0 for all i , α ∈ [G,G]. Hence K = [G,G]. Hence

G/[G,G] � Z2g.
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The map i∗ takes αi to α′N
i . One has a similar map � ′ : π1(C; P) → Z2g using α′

i instead
of αi which shows that the abelianization of π1(C; P) is Z2g as well. However, under this
map � ′(αi ) = N and hence G/[G,G] is carried to the subgroup N · Z2g . Multiplication
by N is an isomorphism so the map

iN := 1

N
◦ i∗ : G/[G,G] −→ π1(C)/[π1(C), π1(C)]

is an isomorphism between the two abelianizations. �

Let V = G/[G,G]. The abelianization of the fundamental group of CQR is H1(CQR)

and so V is a subgroup of H1(CQR). The abelianization of π1(C) is H1(C). Hence the
map iN is an isomorphism between V and H1(C). Let jN : H1(C) −→ V be the inverse
isomorphism. This gives an embedding of H1(C) in H1(CQR). As discussed above, the
Carlson representative is a functional on H1(C). However, we will obtain a functional on
H1(CQR) which will be the Carlson representative of the extension when considered as a
functional on V .

Let [α] denote the homology class of a loop α. The collection {[α′
i ]} has the property that

their images {[i∗(α′
i )]} in H1(C) form a symplectic basis. Since i∗([βQ]) = 0, i∗([αi ]) =

Ni∗([α′
i ]). Hence under the isomorphism, iN ([αi ]) = [i∗(α′

i )]. Let {dxi } be the dual basis
of harmonic forms in H1(C,C) satisfying∫

[i∗(α′
i )]

dx j = δi j ,

where δi j is the Kronecker delta function. With this choice of {[α′
i ]}s and {dxi }s, the

volume form on H2(C) can be expressed as follows: Let

c(i) =
{

1 if i ≤ g

−1 if i > g

and σ(i) = i + c(i)g. The volume form is

2g∑
i=1

c(i)dxi ∧ dxσ(i).

From that one gets that a Poincaré dual of c(i)dxσ(i) is [i∗(α′
i )].

The group V is a subgroup of H1(CQR). Recall that for the non-compact manifoldCQR ,
Poincaré duality states that

H1
c (CQR) � H1(CQR),

where H1
c (CQR) is the cohomology with compact support of CQR . This group has a

mixed Hodge structure determined by identifying it with the relative cohomology group
H1(CQR, {Q, R}). Unlike H1(CQR) which has nontrivial weight 1 and weight 2 pieces,
cohomology with compact support has weight 0 and weight 1 pieces and is covariant.
However, we have an isomorphism of the weight 1 graded pieces,

GrW1 H1
c (CQR)Q � GrW1 H1(CQR)Q � H1(C)Q.

Here the first isomorphism is induced by id∗, the identity map and the second by i∗.
The space V determines a splitting of the Hodge structure on H1(CQR). The space V ∗ of

Poincaré duals of element of V is a subspace of H1
c (CQR) which determines a splitting of
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the Hodge structure on H1
c (CQR). Further, V ∗ is isomorphic to H1(C). Hence if η is a form

in H1(C) it is cohomologous in CQR to a compactly supported form in V ∗ ⊂ H1
c (CQR).

One has

H1
c (VQR)Q = VQ ⊕ Q · ωQ,

where ωQ is a Poincaré dual of βQ . Thus Q · ωQ � Q(0). Note that∫
[α j ]

ωQ =
∫
CQR

i∗(c( j)dxσ( j)) ∧ ωQ

= −
∫
CQR

ωQ ∧ i∗(c( j)dxσ( j)) = −
∫

βQ

i∗(c( j)dxσ( j))

= −
∫
i∗([βQ ])

c( j)dxσ( j) = 0,

since i∗(βQ) = 0. Further∫
[αi ]

i∗(dx j ) =
∫
i∗([αi ])

dx j =
∫
Ni∗([α′

i ])
dx j = Nδi j .

Hence the dual of [αi ] is i∗(dxi )
N and under the dual map dxi is taken to be dxi

N in V ∗ =
Hom(V,Z). Further, note that∫

[αi ]
d f

f
=

∫
f∗(c(k)ασ(k))

dz

z
= 0,

since [αi ] ∈ Ker( f∗).
We now construct a cover of CQR which has the property that its first homology group

is G/[G,G] and the form d f
f is exact. Further, the loops αi lift to loops on this cover.

We do that as follows: Let u : X → CQR denote the universal cover of CQR . The group
G acts on X as a group of deck transformations. Let C̃ = X/G denote the quotient and
q : C̃ → CQR denote the covering map. This is a cover

q : (C̃, P̃) −→ (CQR, P) (6)

such that π1(C̃; P̃) = G, where P̃ is a point in q−1(P). Now by homotopy lifting ([11],
Proposition 1.31), loops based at P whose homotopy class lie in G ⊂ π1(CQR,P ) will lift
to loops in C̃ based at P̃ . Thus αi ∈ G will lift to a unique up to homotopy loop α̃i based
at P̃ such that q∗(α̃i ) = αi .

PROPOSITION 4.2

q∗( d ff ) = 0 in H1(C̃). Hence there is a function which we call log(q∗( f )), defined on C̃

such that d log(q∗( f )) = q∗( d ff ).

Proof. From Lemma 4.1,

H1(C̃) � G/[G,G] � V � N · π1(C)/[π1(C; P), π1(C; P)]
� N · H1(C) � H1(C).



Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:18 Page 21 of 36 18

By the de Rham isomorphism, H1(C̃) � H1(C).
The maps q∗ and q∗ are adjoint with respect to the de Rham pairing – namely, if

σ ∈ H1(C̃) and ω ∈ H1(CQR,C), then

∫
q∗(σ )

ω =
∫

σ

q∗(ω).

Further, q∗(ω) is 0 in H1(C̃) if and only if
∫
q∗(σ )

ω = 0 for all σ ∈ H1(C̃). Applying this

to ω = d f
f and using the fact that [α̃i ], 1 ≤ i ≤ 2g give a basis for H1(C̃), we have

q∗
(
d f

f

)
= 0 ∈ H1(C̃) ⇔

∫
[α̃i ]

q∗
(
d f

f

)
= 0 for all i ⇔

∫
[αi ]

d f

f
= 0 for all i.

The map f induces

f∗ : H1(CQR) −→ H1(P
1 − {0,∞}).

The form d f
f = f ∗( dzz ). Hence, one has

∫
[αi ]

d f

f
=

∫
[αi ]

f ∗
(
dz

z

)
=

∫
f∗([αi ])

dz

z
.

However, since αi ∈ G and by choice G ⊂ Ker( f∗), we have f∗(αi ) = 0, so f∗([αi ]) = 0
and finally

∫
f∗([αi ])

dz

z
= 0.

Hence q∗( d ff ) = 0 ∈ H1(C̃). Therefore, integration of d f
f is path independent and we

have a well defined function

log(q∗( f ))(x) =
∫ x

P̃
q∗

(
d f

f

)

on C̃ . Note that log(q∗( f )(P̃)) = 0. �

Hence the space V can be understood as the homology of the space C̃ and the map q∗
gives a rational splitting of the map i∗. We also have the following description of VQ.

Lemma 4.3. Let f : CQR −→ P1 −{0,∞} be the map with divisor div( f ) = NQ− N R
and f (P) = 1 and V = G/[G,G] as above. Let WQ = Ker( f∗ : H1(CQR)Q −→
H1(P

1 − {0,∞}Q)). Then VQ = WQ.

Proof. Since V ⊂ Ker( f∗), VQ ⊂ WQ. However, both VQ and WQ are subspaces of
codimension 1 in H1(CQR)Q. Hence they are isomorphic. �
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Note that it does not appear to be true that V = Ker( f∗) as Z-modules. Intrinsically,
the reason why there is such a V is the following. If C and CQR are as above, there is an
exact sequence of mixed Hodge structures

0 −→ Z(1) −→ H1(CQR) −→ H1(C) −→ 0

induced by the inclusion map. Hence H1(CQR) determines a class in Ext(H1(C),Z(1)).
From the Carlson isomorphism one knows

ExtMHS(H1(C),Z(1)) � ExtMHS(Z(−1), H1(C)) � CH1
hom(C)

and the class determined by H1(CQR) is nothing but the class of Q − R in CH1
hom(C).

Since there exists a function f with div( f ) = NQ − N R, it implies that this sequence
splits rationally. Hence there is a map

p : H1(CQR)Q −→ Q(1)

which splits the exact sequence. This map can be seen to be

p(σ ) =
∫

σ

d f

f
=

∫
f∗(σ )

dz

z

and if VQ is the kernel, then VQ � H1(C)Q. Clearly, σ ∈ Ker(p) ⇔ σ ∈ Ker( f∗). Hence
Ker( f∗) is isomorphic to H1(C)Q. The V defined above is only contained in Ker( f∗) but
is a subgroup of the integral homology H1(C) – so has a little more information.

4.2 The Carlson representative of e4
QR,P

The Carlson representative of e4
QR,P is given by p1 ◦ rZ ◦ sF ◦ i3, where

• p1 is the projection of N · H3
QR,P � H1(C) ⊕ ⊗2H1(C)

p1−→ H1(C),

• i3 is the inclusion map ⊗3H1(C)
i3
↪→ ⊗3H1(C) ⊕ ⊗2H1(C).

To describe sF , we need a little more. Let C• = C − {•} for • ∈ {Q, R}. The inclusion
map

i• : C• ↪→ C

induces isomorphisms on the first homology and cohomology groups – and in what follows,
we will identify elements of H1(C•) with their images in H1(C) and similarly elements
of H1(C) with their images in H1(C•).

Recall �̃B denotes the generalised Baer difference. Let

sF ◦ i3 : ⊗3H1(C) −→ N · H4
QR,P � N · ((JQ,P/J 4

Q,P )∗�̃B(JR,P/J 4
R,P )∗)

be the section preserving the Hodge filtration given by

sF (dxi ⊗ dx j ⊗ dxk) = (I i jkQ , I i jkR ).

Here I i jk• ∈ (J•,P/J 4•,P )∗ for • ∈ {Q, R} are iterated integrals with

I i jk• = N

(∫
dxidx j dxk + dxiμ jk,• + μi j,•dxk + μi jk,•

)
, (7)

where μi j,•, μ jk,• and μi jk,• are smooth, logarithmic 1-forms on C• such that
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(1) dμ jk,• + dx j ∧ dxk = 0,
(2) dμi j,• + dxi ∧ dx j = 0,
(3) dxi ∧ μ jk,• + μi j,• ∧ dxk + dμi jk,• = 0.

There are inclusion maps of CQR into CQ and CR and we can pull back the forms dxi ,
μi j,• and μi jk,• to CQR and consider all the forms as forms on CQR . To compute the
element of Hom(⊗3H1(C)C, H1(C)C) obtained as the projection under p1, we describe
it as an element of H1(C)∗C = Hom(H1(C),C) = H1(C,C). The integrands I i jk• are
made up of forms on CQR and so to compute it on elements of H1(C), we have to choose
an embedding of H1(C) in H1(CQR). This is precisely what the subgroup V gives us.

Hence from now on, if α is a homology class in H1(C), we think of it as an element of
H1(CQR) by identifying it with its image in V = q∗(H1(C̃)). Let V ∗ denote its dual in
H1
c (CQR). The Poincaré dual of an element of V also lies in V ∗.
The map from

H1(C) −→ (H1(C) ⊕ H1(C))/�H1(C)

is given by

x −→ (x,−x).

Further, if α is a loop based at P on CQR , the class in H1(C) = J•,P/J 2•,P corresponding

to it is 1 − α. So one has p1 ◦ rZ ◦ sF ◦ i3 ∈ Hom(⊗3H1(C)C, H1(C)C). As an integral,
it is

p1 ◦ rZ ◦ sF ◦ i3(dxi ⊗ dx j ⊗ dxk)(α) =
∫

1−α

I i jkQ −
∫

1−α

I i jkR ,

where the first 1−α is the class in H1(CQ) and the second is the class in H1(CR). They are
both carried to the same class in V under the isomorphism, so we can take the difference of
the integrals when we consider α as a loop in CQR whose corresponding homology class
lies in V . This resulting expression is∫

1−α

I i jkQ −
∫

1−α

I i jkR = N

(∫
1−α

dxi
(
μ jk,Q − μ jk,R

) + (
μi j,Q − μi j,R

)
dxk

+ (
μi jk,Q − μi jk,R

))
.

We can choose the logarithmic forms μi j,• and μi jk,• for • ∈ {Q, R}, satisfying the
following:

• μi j,• = −μ j i,•.
• For |i− j | �= g, μi j,• is smooth onC , as dμi j,• = dx j ∧dxi = 0. As H2(CQR,Z) = 0

and μi j,• is smooth, it is orthogonal to all closed forms, that is, μi j,• ∧ dxk is exact.
• μiσ(i),• has a logarithmic singularity at • with residue c(i).
• μi j,Q − μi j,R = 0 if |i − j | �= g as forms on CQR .
• μiσ(i),Q − μiσ(i),R = c(i)

N
d f
f , where f = fQR is a function such that div( fQR) =

NQ − N R. We can normalise fQR once again by requiring that fQR(P) = 1.

In terms of our basis of forms of H1(C), � ∈ ⊗2H1(C) is

� =
g∑

i=1

dxi ⊗ dx(i+g) − dx(i+g) ⊗ dxi =
2g∑
i=1

c(i)dxi ⊗ dxσ(i).

With these choices of μi j,• and μi jk,•, we have the following theorem.
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Theorem 4.4. Let GQR,P ∈ Hom(H1(C)(−1)C, H1(C)C) be the Carlson representa-
tive corresponding to the extension class J ∗

�(e4
QR,P ). It is given by

GQR,P (dxk)(α j ) = p1 ◦ rZ ◦ sF ◦ i3(dxk ⊗ �)(α j )

= (2g + 1)

∫
α j

d f

f
dxk − N

∫
α j

W (dxk)

in J (Hom(H1(C)(−1), H1(C))), where

W (dxk) =
2g∑
i=1

c(i)(μkiσ(i),Q − μkiσ(i),R)

is a 1-form on CQR which satisfies

dW (dxk) = (2g + 1)
dxk
N

∧ d f

f
.

Proof. Let SF denote the map SF = sF ◦ i3 ◦ J� : H1(C)(−1) → N · H4
QR,P . This is

given by

SF (dxk) =
2g∑
i=1

c(i)sF (dxk ⊗ dxi ⊗ dxσ(i)).

From (7), one has

SF (dxk) =
⎛
⎝ 2g∑

i=1

c(i)
∫

I kiσ(i)
Q ,

2g∑
i=1

c(i)
∫

I kiσ(i)
R

⎞
⎠ .

Evaluating on a loop α j based at P using the maps described above, this is

2g∑
i=1

∫
1−α j

c(i)(I kiσ(i)
Q − I kiσ(i)

R )

2g∑
i=1

N

(∫
1−α j

c(i)dxk(μiσ(i),Q − μi,σ (i),R) + (μki,Q − μki,R)dxσ(i)

+ (μkiσ(i),Q − μkiσ(i),R)

)
.

From the choice of the forms μi j,• and μi jk,• above, the leading terms and several of the
lower order terms cancel out and

μki,Q − μki,R = c(k)δkσ(i)
1

N

d f

f

and

μiσ(i),Q − μiσ(i),R = c(i)
1

N

d f

f
.
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Since c(i)2 = 1, what remains is
2g∑
i=1

∫
1−α j

dxk
d f

f
−

∫
1−α j

d f

f
dxk + N

2g∑
i=1

c(i)
∫

1−α j

(
μkiσ(i),Q − μkiσ(i),R

)
.

Let

W (dxk) =
2g∑
i=1

c(i)
(
μkiσ(i),Q − μkiσ(i),R

)
.

Since integration over a point, which corresponds to the constant loop 1 is 0 and
∫
α j

d f
f = 0,

by choice of α j , using Lemma 2.1(2), the integral becomes

GQR,P (dxk)(α j ) = 2g
∫

1−α j

dxk
d f

f
−

∫
1−α j

d f

f
dxk + N

∫
1−α j

W (dxk).

= −(2g + 1)

∫
α j

dxk
d f

f
− N

∫
α j

W (dxk).

Now consider

dW (dxk) =
2g∑
i=1

c(i)d
(
μkiσ(i),Q − μkiσ(i),R

)
.

From the choice of μi jk,•, one has

dμi jk,• = −dxi ∧ μ jk,• − μi j,• ∧ dxk .

So the sum becomes

dW (dxk) =
2g∑
i=1

−c(i)
((
dxk ∧ μiσ(i),Q + μki,Q ∧ dxσ(i)

)
− (

dxk ∧ μiσ(i),R + μki,R ∧ dxσ(i)
))

=
2g∑
i=1

−c(i)
(
dxk ∧ (μiσ(i),Q − μiσ(i),R)

+ (μki,Q − μki,R) ∧ dxσ(i)
)
.

In the second sum, only one term survives and one has

dW (dxk) = −c(k)(μkσ(k),Q − μkσ(k),R) ∧ dxk

+
2g∑
i=1

−c(i)

(
dxk ∧ c(i)

N

d f

f

)

= −c(k)(
c(σ (k))

N

d f

f
) ∧ dxk +

2g∑
i=1

−c(i)

(
dxk ∧ c(i)

N

d f

f

)

= − (2g + 1)

N

d f

f
∧ dxk = (2g + 1)

N
dxk ∧ d f

f
.
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We have computed the Carlson representativeGQR,P of our class in Ext(H1(C)(−1), H1

(C)). We now tensor with H1(C) and pull back using the map ⊗� : Z(−1) −→
⊗2H1(C). This gives us an element of Ext(Z(−2),⊗2H1(C)). We denote its Carlson
representative by FQR,P .

Lemma 4.5. The Carlson representative of the class in Ext(Z(−2),⊗2H1(C)) is given
by

FQR,P = (GQR,P ⊗ I d) ◦ ⊗�

in (⊗2H1(C)C)∗. On an element α j ⊗ αk , it is given by

FQR,P (�)(α j ⊗ αk) = c(σ (k))N

(∫
α j

(2g + 1)
d f

f
dxσ(k) − NW (dxσ(k))

)
.

(8)

Proof. Recall that � = ∑2g
1 c(i)dxi ⊗ dxσ(i).

From above, we have

(GQR,P ⊗ I d)(�)(α j ⊗ αk) =
2g∑
1

c(i)GQR,P (dxi )(α j ) · I d(dxσ(i))(αk).

From the choice of αk , one has

I d(dxσ(i))(αk) = Nδkσ(i).

Hence, in the sum above, precisely one term survives at i = σ(k). Therefore,

(GQR,P ⊗ I d)(�)(α j ⊗ αk) = Nc(σ (k))GQR,P (dxσ(k))(α j ).

In particular,

FQR,P (�)(α j ⊗ αk) =Nc(σ (k))GQR,P (dxσ(k))(α j )

=Nc(σ (k))

(∫
α j

(2g + 1)
d f

f
dxσ(k) − NW (dxσ(k))

)
.

�

We now use Proposition 4.2 to convert the iterated integral into an ordinary integral.
The iterated integral term of length 2 in (8) is

Nc(σ (k))(2g + 1)

∫
α j

d f

f
dxk

which we can evaluate using Lemma 2.1(3) if d f
f is exact. However, d f

f is not exact on

CQR but it is exact on C̃ , using Proposition 4.2. So we do the integration on C̃ . Precisely,
we do that as follows.
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Let α be a loop such that [α] ∈ q∗(H1(C̃)), where q : C̃ −→ CQR is the cover. Let
α = q∗(α̃), where α̃ is a loop based at P̃ lying over the base point P of α. Let ψ be another
closed 1-form on CQR .

We have∫
α

d f

f
ψ =

∫
α̃

q∗
(
d f

f

)
q∗(ψ).

From Proposition 4.2, q∗( d ff ) is exact on α̃. In other words, q∗( d ff ) = d log(q∗( f )).
Choose a primitive log(q∗( f )) such that log(q∗( f )(P̃)) = 0. Using Lemma 2.1(3) and
the fact that we have chosen log(q∗( f )) with log(q∗( f )(P̃)) = 0,∫

α̃

q∗
(
d f

f

)
q∗(ψ) =

∫
α̃

log(q∗( f ))q∗(ψ).

Hence we have∫
α

d f

f
ψ =

∫
α̃

log(q∗( f ))q∗(ψ).

Applying this to the case at hand, we have

FQR,P (�)(α j ⊗ αk) = Nc(σ (k))

(∫
α̃ j

(2g + 1) log(q∗( f ))q∗(dxσ (k))

− Nq∗(W (dxσ(k)))

)
. (9)

We have made a choice of α̃ j . If we chose a different base point, the value of log(q∗( f ))
will change by 2π iM for some M ∈ Z. This will change the integral by 2π iM

∫
α j

dxσ(k).
This does not affect the class in the intermediate Jacobian.

We would like to connect the expression above, which is the Carlson representative of
the extension class ε4

QR,P , to the regulator of an explicit cycle on the Jacobian of the curve.
This is done by the following revised version of Colombo’s Proposition 3.3. Recall that
by C\γ , we mean

lim
ε→0

C\nε(γ ),

where nε(γ ) is an open tubular neighbourhood of γ homeomorphic to (−ε, ε) × γ .

PROPOSITION 4.6 (Colombo Proposition 3.3)

Let f = fQR be as before and ψ a closed 1-form on CQR. Let W (ψ) be a 1-form such
that dW (ψ) = ψ ∧ d f

f . Hence � = log( f )ψ + W (ψ) is a closed 1 form on CQR\γ . Let
α be a loop in CQR such that [α] ∈ V and let ηα ∈ H1

c (CQR) be the Poincaré dual of [α]
constructed below. Then we have the iterated integral

∫
α

d f

f
ψ + W (ψ) =

∫
C\γ

ηα ∧ � + 2π i
∫

γ

ηαψ

(
mod 2π i

∫
α

ψZ

)
.

Proof. We first need the following useful lemma.



18 Page 28 of 36 Proc. Indian Acad. Sci. (Math. Sci.) (2020) 130:18

Lemma 4.7. Let � and ψ be as above. Then∫
γ

ψ = 0.

Proof. Let C\nε(γ ) be the manifold with boundary as before. This is a closed set so the
form � is closed and compactly supported on C\nε(γ ). The boundary

∂(C\nε(γ )) = Q × (−ε, ε) ∪ γ1 ∪ γ −1
2 ∪ (ε,−ε) × R,

where γ1 and γ2 are copies of γ . Applying Stokes theorem to d�, we get

0 =
∫
C\nε (γ )

d� =
∫

∂(C\nε (γ ))

� =
∫

γ1

� −
∫

γ2

�

+
∫
Q×(−ε,ε)

� −
∫
R×(−ε,ε)

�.

Recall � = log( f )ψ +W (ψ). The function log( f ) differs by 2π i on γ1 and γ2. The form
W (ψ) is defined on all of CQR so the integrals over γ1 and γ2 cancel. Keeping track of
orientations, we have

0 = −2π i
∫

γ1

ψ +
∫
Q×(−ε,ε)

� −
∫
R×(−ε,ε)

�.

As ε → 0, it shows that −2π i
∫
γ

ψ = 0. �

The subgroup V is generated by the classes of αi = α′N
i β

−mi
Q , where α′

i is one of the
‘standard’ generators of π1(C) coming from the edges of the fundamental polygon and
βQ is a small simple loop around Q. These loops satisfy f∗(αi ) = 0.

It suffices to prove the theorem for αi and extend linearly, so from this point on, we let
α = αi , α′ = α′

i . Let ηα be the compactly supported Poincaré dual of [α] constructed as in
[8] as follows: Suppose δ is a simple loop inCQR . Let D = Dδ be a tubular neighbourhood
of δ. We can write Dδ − δ = D+

δ ∪ D−
δ with D−

δ to the left and D+
δ to the right of δ. Let

D0 be a sub-tubular neighbourhood of δ in D and D±
0 = D0 ∩ D±

δ . Let Gδ be a function
such that it is smooth on CQR − δ and

Gδ ≡
{

1 on D−
0 ∪ δ,

0 outside D−
δ .

Define

ηδ =
{
dGδ on Dδ − δ,

0 elsewhere,

so the support Supp(ηδ) ⊂ D−
δ . One can then see that if ψ is a closed 1-form on CQR ,∫

CQR

ηδ ∧ ψ =
∫
D−

δ

dGδ ∧ ψ =
∫
D−

δ

dGδψ =
∫

∂(D−
δ )

Gδψ =
∫

[δ]
ψ

since Gδ ≡ 1 on δ and with this choice of orientation ∂(D−
δ ) = δ.
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In our case, in general, α = αi = α′Nβ
−mi
Q is not a simple loop. However, α′ and βQ

are. Let D−
α = D−

α′ ∪ D−
βQ

. Define

ηα = Nηα′ − miηβQ .

ηα is supported in D−
α and is a Poincaré dual of [α] and as for a 1-form ψ ,∫

CQR

ηα ∧ ψ = N
∫
CQR

ηα′ ∧ ψ − mi

∫
CQR

ηβQ ∧ ψ

=
∫
N [α′]−mi [βQ ]

ψ =
∫

[α]
ψ.

Let �̃ = q∗(�) = log(q∗( f ))q∗(ψ) + q∗(W (ψ)). From the discussion above,∫
α

d f

f
ψ + W (ψ) =

∫
α̃

�̃,

where α̃ is a lifting of α to a loop in C̃ such that it is based at P̃ and log(q∗( f )) is chosen
such that log(q∗( f )(P̃) = 0. We would like to compute this integral.

Let nε(γ ) be as above and C\nε(γ ) be as before. Choosing ε and the tubular neigh-
bourhoods carefully, we can assume, without loss of generality that α′ and βQ do not pass
through the points Q and R and that the tubular neighbourhoods Dα′ and DβQ do not
intersect (−ε, ε) × Q and (−ε, ε) × R.

We have α = α′Nβ
−mi
Q . Let α̃′ be the lift of α′ and β̃Q the lift of βQ . The restriction

α′|CQR\nε (γ ) = ⋃
j α

′ j is a union of a finite number of paths α′ j . The covering map q

induces a homeomorphism from each α′ j to a path α̃′ j such that
⋃

α̃′ j = α̃′|C̃\q−1(nε (γ ))
.

Let Dα′ j , and similarly, D−
α′ j denote the restriction of the tubular neighbourhood Dα′ of α′

to a tubular neighbourhood of the path α′ j . We have

D−
α′ \nε(γ ) =

⋃
j

D−
α′ j .

Hence we have∫
CQR\nε (γ )

ηα′ ∧ � =
∫
D′−

α \nε (γ )

ηα′ ∧ � =
∑
j

∫
D−

α′ j
ηα′ ∧ �.

The boundary of the tubular neighbourhood D−
α′ j is

∂(D−
α′ j ) = α′ j ∪ (γ1 ∩ D−

α′ j ) ∪ (γ −1
2 ∩ D−

α′ j ).

Applying Stokes’ theorem, we get∫
D−

α′ j
ηα′ ∧ � =

∫
D−

α′ j
dGα′� =

∫
∂(D−

α′ j )
Gα′�

=
∫

α′ j
� +

∫
γ1∩D−

α′ j
Gα′� −

∫
γ2∩D−

α′ j
Gα′�.

Summing up over j , we have

∑
j

(∫
γ1∩D−

α′ j
Gα′� −

∫
γ2∩D−

α′ j
Gα′�

)
=

∫
γ1

Gα′� −
∫

γ2

Gα′�
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as Gα′ is supported in D−
α′ . Recall that the value of log( f ) on γ1 and γ2 differ by −2π i . The

value ofGα′W (ψ) is the same on both γ1 and γ2, hence
∫
γ1
Gα′W (ψ)−∫

γ2
Gα′W (ψ) = 0.

Hence we get∫
γ1

Gα′� −
∫

γ2

Gα′� = −2π i
∫

γ

Gα′ψ.

Lemmas 4.7 and 2.1(3) shows that the integral simplifies to∫
γ1

Gα′� −
∫

γ2

Gα′� = −2π i
∫

γ

Gα′ψ = −2π i
∫

γ

ηα′ψ.

So we get ∫
CQR\nε (γ )

ηα′ ∧ � =
∑
j

∫
α′ j

� − 2π i
∫

γ

ηα′ψ.

We can make a similar argument for βQ .
Combining the two we get

N
∑
j

∫
α′ j

� − mi

∑
s

∫
βs
Q

� =
∫
CQR\nε (γ )

ηα ∧ � + 2π i
∫

γ

ηαψ.

Finally, since ηα is compactly supported inCQR , we can replaceCQR\nε(γ ) withC\nε(γ )

to get

N
∑
j

∫
α′ j

� − mi

∑
s

∫
βs
Q

� =
∫
C\γ

ηα ∧ � + 2π i
∫

γ

ηαψ.

To link this to the integral over α̃, we observe the following. The loop α′N lifts to a path
in α̃′N in C̃ which is made up of copies of α̃′. Let α̃′

k denote the lift of the k-th copy of α′,
so α̃′

k(1) = α̃′
k+1(0). We can choose the homeomorphisms between α′ j and α̃′ j such that

the k-th copy of α′ j is homeomorphic to a path α̃
′ j
k in α̃′

k . So we have homeomorphisms

N⋃
k=1

⋃
j

α′ j �
N⋃

k=1

⋃
j

α̃
′ j
k � α̃′N − ∂(C̃\q−1(nε(γ ))).

A similar situation holds for βQ . Via these homeomorphisms

N
∑
j

∫
α′ j

� − mi

∑
s

∫
βs
Q

� =
N∑

k=1

∑
j

∫
α̃

′ j
k

�̃ −
mi∑
r=1

∑
s

∫
β̃s
Q,r

�̃

which is ∫
˜

α′Nβ
−mi
Q −∂(C̃\q−1(nε (γ )))

�̃ =
∫

α̃−∂(C̃\q−1(nε (γ )))

�̃.

Finally, as ε → 0, the set α̃ ∩ ∂(C̃\q−1(nε(γ ))) becomes a set of measure 0, so we have

lim
ε→0

∫
α̃−∂(C̃\q−1(nε (γ )))

�̃ =
∫

α̃

�̃.

We have made a choice of a lifting α̃ of α. A different choice of base point P̃ ′ would change
the value of log(q∗( f )) by 2π iM for some M ∈ Z. This would change the integral by
2π iM

∫
α

ψ . Hence this equality holds only up to 2π i
∫
α

ψZ. �
We have the following useful corollary to the above proposition, which says that in fact,

we can replace ηα by any form on C which is cohomologous to i∗([ηα]).
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COROLLARY 4.8

Let f , ψ and W (ψ) be as above and φα a closed 1 form on C which is cohomologous in
H1(C) to i∗([ηα]) for some α in V . Then∫

α

d f

f
ψ + W (ψ) =

∫
C\γ

φα ∧ � + 2π i
∫

γ

φαψ

(
mod 2π i

∫
α

ψZ

)
.

Proof. Let φα denote such a form. Both φα and ηα are Poincaré duals of the same homology
class, so φα − ηα = dg. Let nε(γ ) be as before. One has∫

C\nε (γ )

φα ∧ � =
∫
C\nε (γ )

dg ∧ � +
∫
C\nε (γ )

ηα ∧ �.

So it suffices to compute the two terms separately.
Any closed form φ onC is compactly supported on the manifold with boundaryC\nε(γ )

as C\nε(γ ) is a closed subset of C and C is compact. Further, by choice of V , it will be
cohomologous to [i∗(ηα)] for some α ∈ V . In particular, we know that [c(i) dxσ(i)

N ] is
cohomologous to a Poincaré dual of [αi ].

Since both φα and ηα are compactly supported on C\nε(γ ), so is dg and hence g and
dg ∧ � are compactly supported as well. From Stokes’ theorem, we get∫

C\nε (γ )

dg ∧ � =
∫
C\nε (γ )

d(g�) =
∫

∂(C\nε (γ ))

g�.

If we choose a different function h such that dh = dg, then h − g = c for some constant
c. Hence, from Lemma 4.7, we see∫

∂(C\nε (γ ))

g� −
∫

∂(C\nε (γ ))

h� = c
∫

∂(C\nε (γ ))

� =
∫
C\nε (γ )

d� = 0

so it does not depend on the choice of primitive.
An argument similar to Lemma 4.7 with g� in place of � shows that∫

∂(C\nε (γ ))

g� = −2π i
∫

γ

gψ.

Lemma 4.7 along with Lemma 2.1(3) shows further that∫
C\nε (γ )

dg ∧ � =
∫

∂(C\nε (γ ))

g� = −2π i
∫

γ

gψ = −2π i
∫

γ

dgψ.

Taking the limit as ε → 0, one gets∫
C\γ

dg ∧ � = −2π i
∫

γ

dgψ.

From Proposition 4.6, we have∫
α

d f

f
ψ + W (ψ) =

∫
C\γ

ηα ∧ � + 2π i
∫

γ

ηαψ

(
mod 2π i

∫
α

ψZ

)
.
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Since the integral of dg ∧ � cancels the iterated integral term, we have∫
C\γ

φα ∧ � + 2π i
∫

γ

φαψ

=
∫
C\γ

(ηα ∧ � + dg ∧ �) + 2π i
∫

γ

(ηαψ + dgψ)

=
∫
C\γ

ηα ∧ � + 2π i
∫

γ

ηαψ =
∫

α

d f

f
ψ + W (ψ)

(
mod 2π i

∫
α

ψZ

)
.

�

Remark 4.9. We will apply this to compute the Carlson representative of an extension
class. This is an element of the intermediate Jacobian associated to the extension, hence
the two expressions, while they possibly differ by and element of (2π i

∫
α

ψ)Z will have
the same class in HomZ(Z(−2),⊗2H1(C)) keeping in mind isomorphism of H1(C) with
q∗(H1(C̃)) ⊂ H1(CQR). We will use ≡ to keep in mind the fact that all equalities hold
only in the intermediate Jacobian.

We now apply this in the case of interest to us.

COROLLARY 4.10

Let α j be as above. Then

FQR,P (�)(α j ⊗ αk) ≡ N (2g + 1)c( j)c(σ (k))(∫
C\γ

dxσ( j) ∧
(

log( f )dxσ(k) − N

(2g + 1)
W (dxσ(k))

)

+ 2π i
∫

γ

dxσ( j)dxσ(k)

)
.

Proof. This is a straightforward application of Corollary 4.8 to the expression in
Lemma 4.5. �

FQR,P (�) determines an element of the intermediate Jacobian of (⊗2VC)∗,

J (⊗2V ∗
C) � F1(⊗2V ∗

C)

(⊗2V )∗
,

so to determine FQR,P (�), it suffices to evaluate it on elements of F1(⊗2VC)∗. From the
above Corollary, we can compute it on F1(⊗2H1(C)).

Let {dzi } be a basis of the holomorphic 1-forms on C such that∫
i∗(αi )

dz j = Nδi j , 1 ≤ i ≤ g

where {αi } is the basis V .

dz j = dx j +
g∑

i=1

A ji dxi+g, where A ji = 1

N

∫
i∗(αi+g)

dz j
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coming from the fact that c( j)
dxσ( j)
N is dual to α j . This expression continues to hold when

we consider them as forms in CQR .
Let ζ j = c(σ ( j))ασ( j) + ∑

1≤i≤g A ji c(i)αi , where j ≤ g. Then dz j is cohomologous

in H1(CQR) to a Poincaré dual of ζ j . We have the following proposition.

PROPOSITION 4.11

The map FQR,P (�) evaluated on elements of the form ζi ⊗ α j is

FQR,P (�)(ζi ⊗ c(σ ( j))ασ( j))

≡ (2g + 1)N

(∫
C\γ

log( f )dzi ∧ dx j + 2π i
∫

γ

dzidx j

)
.

In other words,

dzi ∧ W (dx j ) = 0.

Proof. This is Proposition 3.4 of [6]. The point is that W (dx j ) and dzi are both of type
(1, 0), hence dzi ∧ W (dx j ) = 0. �

In fact, the theorem holds for the other term as well.

PROPOSITION 4.12

For a suitable choice of μi jk,Q and μi jk,R , one has

W (dzi ) :=W (dxi ) +
∑
k

AkiW (dxi+g) = 0.

Proof. It follows from Lemma 3.1 of [6]. �

Hence we have as follows.

PROPOSITION 4.13

FQR,P (�)(c(σ ( j))ασ( j) ⊗ ζi )

≡ (2g + 1)N

(∫
C\γ

log( f )dx j ∧ dzi + 2π i
∫

γ

dx jdzi

)
.

Comparing this with the regulator term in Theorem 2.2, we get the following.

Theorem 4.14. Let ZQR be the motivic cohomology cycle constructed above and ε4
QR,P

the extension in ExtMHS(Z(−2),∧2H1(C)). We use ε4
QR,P to denote its Carlson repre-

sentative as well. Then one has

ε4
QR,P (ω) ≡ (2g + 1)N regZ(ZQR)(ω),
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where ω ∈ F1 ∧2 H1(C).

Proof. It suffices to check this on dzi ∧ dx j = dzi ⊗ dx j − dx j ⊗ dzi . The result then
follows by comparing the formula for the Carlson representative FQR,P in Lemma 4.5
with the expression for the regulator in Theorem 2.2 using Proposition 4.11.

From Theorem 4.13 and Lemma 4.5, we have

FQR,P (�)(c(σ ( j))ασ( j) ⊗ ζi )

≡ (2g + 1)N

(∫
C\γ

log( f )dx j ∧ dzi + 2π i
∫

γ

dx jdz j

)
.

On the other hand, from Proposition 4.13, one has

FQR,P (�)(ζi ⊗ c(σ ( j))ασ( j))

= (2g + 1)N

(∫
C\γ

log( f )dzi ∧ dx j + 2π i
∫

γ

dzidx j

)

= (2g + 1)N

(
−

∫
C\γ

log( f )dx j ∧ dzi + 2π i
∫

γ

dzidx j

)
.

Therefore, we get

FQR,P (�)(c(σ ( j))ασ( j) ∧ ζi )

≡ FQR,P (�)(c(σ ( j))ασ( j) ⊗ ζi ) − FQR,P (�)(ζi ⊗ c(σ ( j))αασ( j) )

≡ (2g + 1)N

(
2

∫
C\γ

log( f )dx j ∧ dzi + 2π i
∫

γ

(dx jdzi − dzi dx j )

)
.

On the other hand, from Theorem 2.2,

(2g + 1)N regZ(ZQR)(dx j ∧ dzi )

= (2g + 1)N

(
2

∫
C\γ

log( f )dx j ∧ dzi + 2π i
∫

γ

(dx jdzi − dzidx j )

)
.

�

Recall that we have assumed in both cases that fQR(P) = 1. If we do not make that
assumption, then one has a term corresponding to a decomposable element that one has
to account for. However, if we work modulo the decomposable cycles we can ignore that
term.

As a result of this theorem, we get the following expression of the regulator as an iterated
integral over a loop – which is more amenable to computation.

COROLLARY 4.15

Let ZQR,P be the element of H2g−1
M (J (C),Z(g)) and let η and ω be two closed 1 forms

on C with ω holomorphic. Let α be a loop in CQR based at P such that [α] ∈ V and a
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Poincaré dual of [α] is homologous to η in H1(CQR). Then

regZ(ZQR,P )(η ∧ ω) ≡ 2
∫

α

d f

f
ω.

Proof. It suffices to check this for η = dx j and ω = dzi . From Theorem 4.14, one has

FQR,P (�)(c(σ ( j))ασ( j) ∧ ζi )

≡
(

2
∫
C\γ

log( f )dx j ∧ dzi + 2π i
∫

γ

(dx jdzi − dzidx j )

)
.

From Lemma 2.1, we have∫
γ

dx jdzi +
∫

γ

dzidx j =
∫

γ

dx j

∫
γ

dzi .

From Lemma 4.7, one has
∫
γ
dzi = 0. Hence

∫
γ

dx jdzi = −
∫

γ

dzidx j .

Therefore, we can simplify the regulator expression to get

regZ(ZQR,P )(dx j ∧ dzi )

= 2

(∫
C\γ

log( f )dx j ∧ dzi + 2π i
∫

γ

dx jdzi

)

= 2

(∫
C\γ

dx j ∧ log( f )dzi + 2π i
∫

γ

dx jdzi

)
.

Using Corollary 4.8, this becomes

regZ(ZQR,P )(dx j ∧ dzi ) = 2c(σ ( j))
∫

ασ j

d f

f
dzi . �

Remark 4.16. Darmol et al. [7] and Otsubo [15] have a similar formula for the regulator
of the modified diagonal cycle. Their expression is an iterated integral of two holomorphic
forms over the dual of a third form – but none of the forms are logarithmic. Similarly, the
regulator of an element of K2 can be expressed as the iterated integral of two logarithmic
forms over the dual of a third holomorphic form.
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