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Abstract. In this paper, we construct extensions of mixed Hodge structure coming
from the mixed Hodge structure on the graded quotients of the group ring of the
fundamental group of a smooth projective pointed curve which correspond to the
regulators of certain motivic cohomology cycles on the Jacobian of the curve essentially
constructed by Bloch and Beilinson. This leads to a new iterated integral expression for
the regulator. This is a generalisation of a theorem of Colombo (J. Algebr. Geom. 11(4)
(2002) 761-790) where she constructed the extension corresponding to Collino’s cycles
in the Jacobian of a hyperelliptic curve.
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1. Introduction

A formula, usually called Beilinson’s formula — though independently due to Deligne as
well — describes the motivic cohomology group of a smooth projective variety X over
a number field as the group of extensions in a conjectured category of mixed motives,
MMgq. If i and n are two integers, then [19]

CH!L. (X)®Q ifi+1=2n,

1 i
X (). (X)) {Hﬂl(x, Q) ifi+1#2n.
Hence, if one had a way of constructing extensions in the category of mixed motives by
some other method, it would provide a way of constructing motivic cycles.
One way of doing so is by considering the group ring of the fundamental group of the
algebraic variety Z[m(X, P)]. If Jp is the augmentation ideal — the kernel of the map
from Z[m (X, P)] — Z — then the graded pieces Jj/ .lf, with a < b are expected to have
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a motivic structure. These give rise to natural extensions of motives — so one could hope
that these extensions could be used to construct natural motivic cycles.

Understanding the motivic structure on the fundamental group is complicated. However,
the Hodge structure on the fundamental group is well understood [9]. The regulator of
a motivic cohomology cycle can be thought of as the realisation of the corresponding
extension of motives as an extension in the category of mixed Hodge structures. So while
we may not be able to construct motivic cycles as extensions of motives coming from
the fundamental group — we can hope to construct their regulators as extensions of mixed
Hodge structures (MHS) coming from the fundamental group.

The aim of this paper is to describe this construction in the case of the motivic cohomol-
ogy group of the Jacobian of a curve. The first work in this direction is due to Harris [10]
and Pulte [9,16]. They showed that the Abel-Jacobi image of the modified diagonal cycle
on the triple product of a pointed curve (C, P), or alternatively the Ceresa cycle in the
Jacobian J(C) of the curve, is the same as an extension class coming from Jp /J 3 where
Jp is the augmentation ideal in the group ring of the fundamental group of C based at P.

In [6], Colombo extended this theorem to show that the regulator of a cycle in the
motivic cohomology of a Jacobian of a hyperelliptic curve, discovered by Collino [5], can
be realised as an extension class coming from Jp/ J;‘,, where here Jp is the augmentation
ideal of a related curve.

In this paper, we extend Colombo’s result to more general curves. If C is a smooth
projective curve of genus g with a function f with divisor div(f) = N Q — N R for some
points Q and R and some integer N and such that f(P) = 1 for some other point P, there
is a motivic cohomology cycle Zgg p in Hifl_l(l(C), Z,(g)) discovered by Bloch [2].
We show that the regulator of this cycle can be expressed in terms of extensions coming
from Jp/J ;4,. When C is hyperelliptic and Q and R are ramification points of the canonical
map to P!, this is Colombo’s result.

A crucial step in Colombo’s work is to use the fact that the modified diagonal cycle
is torsion in the Chow group C Hfom(C3) when C is a hyperelliptic curve. This means
the extension coming from Jp/ JI3) splits and hence does not depend on the base point P.
This allows her to consider the extension for Jp/ J;;. In general, that is not true—in fact
the known examples of non-torsion modified diagonal cycles come from the curves we
consider — namely modular and Fermat curves. Our main contribution is to use an idea of
Rabi [18] to show that Colombo’s arguments can be extended to work in our case as well.
As aresult, we have a more general situation—which has some arithmetical applications.

In Colombo’s paper, there were errors in Propositions 3.2 and 3.3 which were pointed
out by a referee of an earlier version of this paper. Hence we had to make some revisions.
As it turned out the statement of the main result still holds under some restricted conditions
and much of the revisions we made were to understand these conditions. Unfortunately,
this has made the paper a little long.

We have the following theorem (Theorem (4.14)).

Theorem 1.1. Let C be a smooth projective curve of genus g over C. Let P, Q and R be
three distinct points such that there is a function for with div(for) = NQ — NR for
some N and for(P) = 1. Let Zgr = ZgRr,p be the element of the motivic cohomology

group sz\f’l_l(J (C), Z(g)) constructed below in Section 2.3. There exists an extension
class E‘é R.P in Ext}w s (Z(=2), A2HY(C)) constructed from the mixed Hodge structures
associated to the fundamental groups w1(C\Q, P) and w1 (C\R, P) such that 62R’P =
(28 + V)N regy (Zgr) in Bxtl, , o(Z(—2), A*H'(C)).
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In other words, our theorem states that the regulator of a natural cycle in the motivic
cohomology group of the Jacobian of curves, being thought of as an extension class, is the
same as the extension class of a natural extension of mixed Hodge structures coming from
the fundamental group of the curve.

The outline of the proof is as follows. In section 2, we introduce background material
on iterated integrals, regulators, motivic cycles and extensions. We then describe the cycle
Zor, p and give a formula for its regulator. In section 3, we construct an extension coming
from the MHS on the fundamental group that we expect to be related to the regulator
of our explicit cycle. Finally, we prove that is indeed the case. This is the place where
there was an error in the paper of Colombo [6]. One has to restrict to a certain subspace
of Hi(C\{Q, R}) which is isomorphic to H{(C). There is no canonical way in which to
choose this in general, but in our case the function fpg determines such as space.

As a result of this, we have a new iterated integral formula for the regulator which
is more amenable to computation. In a subsequent paper, we apply this in the case of
Fermat curves to get an explicit expression for the regulator in terms of hypergeometric
functions—analogous to the works of Otsubo [14,15]. As the primary requirement is a
nice basis for the homology and the cohomology of the curve, we expect this will also
work in the case of modular curve, though that case is quite well understood.

Darmon et al. [7] used the modified diagonal cycle to construct points on Jacobians of
the curves and used the iterated integral approach to find a formula for the Abel-Jacobi
image of these points. Starting with Bloch [2] and later Collino [5] and Colombo [6], it has
been known that these null homologous cycles degenerate to higher Chow cycles on related
varieties. Recently, Iyer and Miiller-Stach [12] showed that the modified diagonal cycle
degenerates to the kind of cycles we consider in some special cases. This degeneration
can be understood from the point of view of extensions and in fact the iterated integral
expression we have for the regulator show that in a rather natural way in terms of the
holomorphic forms degenerating to logarithmic forms.

2. Iterated integrals, cycles, extensions and regulators
2.1 Iterated integrals

Let X be a smooth projective variety over C. Let « : [0,1] — X be a path and
w1, wy, ..., w, be 1-forms on X. Suppose a*(w;) = f;(t)dt. The iterated integral of
length n of w1, w7 . .. w, is defined to be

An iterated integral of length <n is a linear combination of integrals of the form above
with lengths <n. It is said to be a homotopy functional if it only depends on the homotopy
class of the path «. A homotopy functional gives a functional on the group ring of the
fundamental group or path space.

Iterated integrals can be thought of as integrals on simplices and satisfy the following
basic properties. Here we have only stated the results for length two iterated integrals,
since that is the only type we will encounter in this paper.

Lemma 2.1 (Basic properties). Let w1 and wy be smooth 1-forms on X and o and
piecewise smooth paths on X with (1) = B(0). Then
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(1) fa,ﬁ wiwy = [ wiw) —l—fﬁ wim + [, o1 fﬂ w,
Q) [, w0+ [, ;01 = [, o1 [, w2,

B) [ydfwr = [, for — f(«0)) [, w1,

@ [,odf = fla) [,o1 — [, for.

Proof. This can be found in any article on iterated integrals, for instance, Hain’s excellent
article [9]. U

2.2 Motivic cohomology cycles

Let X be a smooth projective algebraic variety of dimension g defined over C. The motivic
cohomology group H/Z\i_l (X, Z(g)) has the following presentation: Generators are rep-
resented by finite sums

Z =Y (Ci. f)

where C; are curveson X and f; : C; —> IP! are functions on them subject to the co-cycle
condition

> div(f;) =0.

Relations in this group are defined as follows: If Y is a surface on X and f and g are
functions on Y, one has the Steinberg element {f, g} in K2(C(Y)), where C(Y) is the
function field of Y. To such an element one can consider the sum, called the tame symbol

of {f, g},

ordw (g)
({f, gD = Z (W’ (_1)ordw(f)0rdw(g)g) ’

0 gordW(f)
Wey

where Y1 is the collection of curves on Y. This is a finite sum and satisfies the co-cycle
condition, hence lies in the above group. An element is said to be 0 in Hiﬂ_l (X, Z(g)) if
it lies in the image of the free abelian group generated by the tame symbols of elements of
K»(C(Y)) for some surface Y C X. The group sz\fl_l(X, 7.(2)) ® Q is the same as the
higher Chow group CH$(X, 1) ® Q.

In the group sz\fl_l (X, Z(g)), there are certain decomposable cycles coming from the
product

2g—1 282
H\$ 7 (X, Z(8))dee = Im(H\S (X, Zi(g — 1)) ® H}((X, Z(1)))
2¢—1
— HE (X, Z(g)).
This is simply CH'(X) x C*. The group of indecomposable cycles is defined as the

quotient

2g—1

2¢—1 2¢—1
H (X, Z(9)ina = HY y

(X, Z(8))/Hyy (X, Z(8))dec-

In general, it is not easy to find non trivial elements in this group.
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2.3 The cycle Zgg,p on J(C)

In this section, we construct a motivic cohomology cycle on J(C), where C is a smooth
projective curve over C. This was first constructed by Bloch [2] in the case when C is the
modular curve X((37). The cycle is similar, in fact, generalises, the cycle constructed by
Collino [5]. This section generalises the work of Colombo [6] on constructing the extension
corresponding to the Collino cycle and hence many of the arguments are adapted from her
paper.

Let C be a smooth projective curve defined over C. Let Q and R be two distinct points
on C such that there is a function f = fgg with divisor

div(for) = NQ — NR

for some N € IN. To determine the function precisely, we choose a distinct third point P
and assume fog(P) = 1.

There exist notable examples of curves where such functions can easily be found. For
instance, modular curves with Q and R being cusps, Fermat curves with the two points
being among the ‘trivial’ solutions of Fermat’s last theorem, namely the points with one
of the coordinates being 0, and hyperelliptic curves with the two points being Weierstrass
points.

Let C2 denote the image of C under the map C — J(C) given by x — x — Q.
Similarly, let gC denote the image of C under the map x — R — x and let < and g f
denote the function f being considered as a function on C€ and g C respectively.

Consider the cycle in J(C) given by

Zor.p = (C2, f9)+ (rC,k f).
We have
diveo (f9) +divyc(rf) = N(0) — N(R — Q) + N(R — Q) — N(0) = 0.

$1(J(C), Z(g)).

Hence the cycle Zgg, p gives an element of H iy

2.4 Regulators

Let X be a smooth projective variety of dimension g over C. The regulator map of Beilinson
is a map from the motivic cohomology group to the Deligne cohomology group.

12 *
2g-1 2¢—1 (F'H (X, C))
regy  Hy (X, 2(8)) > Hy (X, 2(8) = —F
zoTM P Hy(X, Z(1))
where * denotes the C-linear dual and F*® denotes the Hodge filtration. The group

H%g_l(X, 7Z.(g)) is a generalised torus.

The map is defined as follows [5]: Let Z = Zi(Ci, fi) be acycle in sz\ft_l (X,7Z(9)),
so C; are curves on X and f; are functions on them satisfying the cocycle condition. Let
[0, oo] denote the positive real axis in P! and Vi = fi_1 ([0, oc]). Then Zi div(f;) =0
implies that the 1-chain ), y; is closed and in fact torsion. If H(X, Z) has no torsion —
as is in the case of the Jacobian of curves, it is exact. Assuming that we have

> vi=03(D)
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for some 2-chain D, for a closed 2-form @ whose cohomology class lies in F 1 le) (X, 0),
reg, (Z)(w) == Z/ 1og(ﬁ)w+2mf . (1)
i Ci\yi D

Here C;\y; is the Riemann surface with boundary obtained as follows: Let n.(y;) be
an open tubular neighbourhood of y; in C; which is homeomorphic to (—€,€) x y;.
Ci\n¢(y;) is a closed subset of C; with the structure of a manifold with boundary. The
boundary 9(C;\n¢(y;)) is made up of two copies of y; with opposite orientation as well
as (—e, €) x y:(0) and (—e, €) x y;(1) with opposite orientations. C;\y; is the manifold
obtained by letting e — 0.Foradecomposable element (C, a), wherea € C*, the regulator
is particularly simple as follows:

regy (C. a))(@) = /C log(a) = log(a) /C o

2.5 The regulator of Zgr,p

Let Zgg, p be the motivic cohomology cycle in sz\fl_l (J(C), Z(g)). We now obtain a
formula for its regulator. The regulator is a current on forms in F YH?(J(C)¢)). Since
H2(J(C)) = A2H'(C) elements are of the form ¢ A ¥ where ¢ and v are closed 1-forms
on C and one of ¢ or ¥ is of type (1, 0). We have the following theorem.

Theorem 2.2. Let Zgg, p be the motivic cohomology cycle in Hiﬁ_l J(C),Z(g)), ¢ and
W two closed harmonic 1-forms in H'(J(C)) = H'(C) with W holomorphic. Then

regz(Zor,p) (@ ANY) = 2/

C\y

log(f) AW + 2xi / v — V).
Y

Proof. Recall that f = for is a function on C with divisor NQ — N R for some N. Let
w=¢Ayandy = f~1([0, 00]). As f is of degree N, y is the union of N paths each
lying on a different sheet with only the points O and R in common. We will denote them
by y%,1 <i < N.Each ' is apath from Q to R. Let y € and gy denote the path y on C2,
rC respectively and similarly for the components y’. Then from the co-cycle condition
one has

y9 gy =93(D),

where D is a 2-chain on J(C).

From equation (1), one has

0 log(fo)w + /

rRC\Ry

regz(Zgr,r)(®) =/Q 1og(Rf)w+2m'wa. )

CC\y

Our aim is to find a more explicit expression forreg, (Z g g, p). For this we need an explicit
description of D. This was done in Lemma 1.2 of [6].
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Lemma2.3. Leta(s,t) =t and b(s, t) = l’jsl(;i)t). Define F; : [0,1] x [0, 1] —> J(C)
by Fi(s,t) = yi(a(s, 1) — yi(b(s,t)) for 1 fli < N and let D; = Im(F;). Then,
orienting counterclockwise, 3(D;) = y"@ -g y'. In particular, if D = U,N:1Div then
D) =y2 gy

Proof. The proof is essentially identical to Colombo’s Lemma 1.2 — the only change is
that she does it for N = 2 — so we do not repeat it here. ]

We can compute the last integral as an iterated integral as follows.

Lemma 2.4. Let ¢ and r be closed harmonic 1-forms on C and let D; be a disc as in the
above lemma. Then

f¢>w=/, ¢n/f—/ ,w¢=/(¢w—w¢).
D; yhQ RY! y

Proof. This again is a slightly modified version of Lemma 1.3 of [6]. ]

This completes the proof of Theorem 2.2.

3. Extensions

As stated in the Introduction, conjecturally, there is a canonical description of the motivic
cohomology group as an extension in the category of mixed motives. From now on, Ext will
denote Ext!. Further, we will use H*(X) to denote the group H*(X (C), Z), the singular
(Betti) cohomology group with integral coefficients and H*(X) 4 to denote H*(X) ®z A,
where A is typically Q, R or C.

In our case, if one has a suitable category of mixed motives over Q, MM g, one expects
for a variety X [19] and i, n non-negative numbers with i < 2n — 1,

HiG (X, Q) = Bxt v (Q(=n), 1 (X)), *

where Q(—n) denotes the twist of the Tate motive and hi(X) denotes the motive whose
Hodge realisation is H' (X).

One knows that the Deligne cohomology can be considered as an extension in the
category of integral mixed Hodge structures,

Hy ' (X, Z(n)) ~ Exty ps(Z(—n), H' (X)).

Assuming (3) holds at the level of integer coefficients, the regulator map above then has
a canonical description as the map induced by the realisation map from the category of
mixed motives to the category of mixed Hodge structures

EXtAtMq (Z(—n), h (X)) —5 Extyps(Z(—n), H' (X)).
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3.1 Extensions of mixed Hodge structures coming from the fundamental group

The key point of this paper is that, in some cases, one can also obtain extensions of mixed
Hodge structures in other ways. For instance, if (X, P) is a pointed algebraic variety, it
was shown by Hain [9] that the graded quotients J3/J }IZ with a < b, where Jp is the
augmentation ideal of the group ring of the fundamental group Z[r (X, P)], carry mixed
Hodge structures. Hence natural exact sequences involving them lead to extensions of
mixed Hodge structures.

Our aim is to first construct some natural motivic cohomology cycles in the case when
X = J(C), the Jacobian of a curve of genus g. Their regulators will give rise to extensions
of mixed Hodge structures. We will show that there are natural extensions of mixed Hodge
structures coming from the Hodge structure on the graded pieces of Z[r (C, P)] for some
suitable point P which give the same extensions. In particular, since the constructions can
be carried out at the level of mixed motives, if we had a good category of mixed motives
the cycle itself would be an extension in the conjectured category of mixed motives coming
from the fundamental group.

3.2 The mixed Hodge structure on the fundamental group

Let C be a smooth projective curve over C and P, Q and R be three distinct points on
C. Consider the open curve Cp = C — {Q}. Let Z[n(Cg, P)] be the group ring of the
fundamental group of Cg based at P. Let Jg p := Jc,, p denote the augmentation ideal

d
Jo.p = Jcy.p = Ker{Z[m1(Cg, P)| =5 7).

Let HO(B,(C 0; P)) denote the F'-vector space, where F is R or C, of homotopy invariant
iterated integrals of length <r. Chen [4] showed that

H®(B,(Co; P)) ~ Homz(Z[x1(Co, P/ Iy, F)
under the map

I—>I(y)=/l.

Y
Using this, Hain [9] was able to put a natural mixed Hodge structure on the graded pieces
Jo.p/J é P

3.3 The extension ESQ,p

From this point on, we will use the following notation. For an extension E of mixed Hodge
structures,

E:0— B—H—A—0

we use m to denote its class in Ext}u us(A, B) and H to denote the middle term. We will
also use the notation N - E to denote N times the extension with respect to the Baer sum,
use N - m to denote its class of this extension in the Ext group and N - H to denote its
middle term .

For r > 3, one can consider the extensions of mixed Hodge structures

0.p 00— Uo.p/Iy ) — Uo.p/Ih p)* — (U p/Ih p)" — 0,
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where for a module M, M* = Hom(M, Z.).
The simplest non-trivial case is when r = 3. In this case, (JQ’p/Jé’P)* ~ H! (Cp) ~

H'(C) and (Jé,P/Jé,P)* ~ ®2H!'(C) and the exact sequence becomes
E}p:0— HYC)— (Jg.p/I}p) — & H'(C) — 0.
Hence E3Q’P gives an element m3Q!P in Ext(®2H'(C), H'(C)). A similar construction
with R in place of Q gives us the extension E ?3, p» which also lies in the same Ext group.
There is a surjection U : ®2H(C) — H2(C) ~ Z(—1) coming from the cup product.
Let K be the kernel of this map. The exact sequence of Hodge structures
0— K — & H'(C) —> Z(~1) — 0
splits over @ but not over Z. This happens as follows: There is a bilinear form [13]
b:®*H'(C) x ®H'(C) — Z
defined by
b(x1 @ x2, y1 ® y2) = (x1 U y2) - (x2 U y1).

Let S denote the orthogonal complement of K in ®2H!(C) with respect to this bilinear
form. Then, under the cup product S projects to 2gZ.(—1) where gc¢ is the genus of C and

R H(C)q = Kq ® Sq.
Let n"13Q p denote the class in Exty g s(S, H Loy corresponding to the extension
0—>H1(C)—>E3Q’P—>S—>O
obtained by restricting E 3Q p to the extension of S by H 1(C). From Kaenders [13], one
knows there is a covering map of complex tori,
Ext(®2H'(C), H'(C)) -2 Ext(K & 5, H(C))
= Ext(K, H'(C)) x Ext(S, H'(C)).

It is well known that Ext(S, H'(C)) = Ext(Z(—1), H'(C)) ~ Pic’(C). To understand
the other term, from the work of Hain [9], Pulte [16], Kaenders [13] and Rabi [18] one has
the following theorem.

Theorem 3.1. The image of the class m3Q’P of E3Q,P in Ext(@2H'(C), H'(C)) is given
by p(m3) p) = (mp, m}) p), where m3, € Ext(K, H'(C)) depends only on P and i3, ,
is givenby2gcQ — 2P — k¢ € Pic%(C), where k¢ is the canonical divisor of C and gc
is the genus of C.

Recall that in the group Ext, addition is given by the Baer sum. We will denote this by @& p
(or ©p if we are taking differences). Let m3Q g, p denote the Baer difference m3Q pOB m%’ p-

Lemma 3.2. Under the hypothesis that there is a function with divisor div(for) = NQ —
N R, the extension class m3QR,P is torsion in Ext(H'C) ® H'(C), H'(C)). Precisely,

N-Hpp~H(C) P H (O,
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where by N - H é r.p We mean the middle term of the exact sequence obtained by adding
the sequence E 3Q g, p to itself N-times using the Baer sum.

Proof. This follows from Theorem 2.5 of [13] which states that the map
Pic’(C) — Ext(H'(C) ® H'(C), H'(C))

given by

Q-R— m3Q,P _m??,P
is well defined and injective. Hence, since N (Q — R) = 0in Pic’(C), N(m3Qq p— m%’P) =
N(ng p) = 0in Ext(H'(C) ® H'(C), H'(C)). O

A consequence of this is that there is a morphism of integral mixed Hodge structures
r3:N-Hjpp— H'(C)

given by the projection.

Remark 3.3. This extension represents the class Q — R, at least up to an integral multiple,
and is hence the first example of the theme of this paper —namely the Abel-Jacobi image of
anull-homologous cycle is described in terms of extensions coming from the fundamental

group.

3.4 The extensions EZ,P and E;P

We know from some of the works that the class m%, in Ext(K, H'(C)) corresponds to
the extension of mixed Hodge structures determined by the Ceresa cycle in J(C), or
alternately, the modified diagonal cycle in C3. We would like to construct a similar class
corresponding to the motivic cohomology cycle Zpg, p. To that end, we now consider,
with C, P, Q and R as before, the extension corresponding to » = 4,

Ebp:0— (Jo.p/I) p)* — Uo.p/Iyp)* — (I} p/Th p)* — 0.
We have that (Jé!P/Jé’P)* ~ ®3H'(C) and this does not depend on P, Q or R. How-
ever, from Theorem 3.1, (JQ,p/Jé’P)* depends on Q and P. Similarly (JR,p/JI%,’P)*
depends on R and P. Hence we get classes in Ext(®3Hl(C), (JQAP/Jé p)¥) and

Ext(@3HY(C), (Jg.p /J 13?’ p)*) — which are different groups — hence we cannot take their
difference.
When C is hyperelliptic and Q, R and P are Weierstrass points, the extension classes

m3Q’P and m%P are 2-torsion in Ext(®2H'(C), H'(C)). Hence one gets two classes

2m4Q,P’ zmAI‘Q,P € Ext(®H'(C), *H'(C) ® H' (C))

and one can project to get two classes e4Q) p and e‘}e) pin Ext((X)3H1 (C), H'(C)). Colombo
[6] showed that the class

eor.p =¢€ph.p OB €k p € ExU(@ H'(C), H'(C))
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corresponds to the extension determined by the cycle Zgg, p—after pulling back and
pushing forward with some standard maps.

Unfortunately, in general, the extension classes m, p and m%’ p are not torsion in the
Ext group. They correspond to the instances where the Ceresa cycle is non-torsion—which
is the generic case. In fact, the instances where it is known that the cycles are non-torsion
are precisely the cases we have in mind—modular curves and Fermat curves [1,10]. Hence
we cannot use this argument immediately. However, since we know from Lemma 3.2 that
their difference m3Q R.P is torsion, we would like to get an extension of the form

3

0—) H%R,P®Q—) “HéR!P”®Q—> ®3H1(C)®Q—)O,

where “H é g p 1is the middle term of a sort of generalised Baer difference of the two exten-
sions E a pand E ?e, p- We could then push-forward this extension using the splitting to geta
class in Ext(®” H'(C)q, H'(C)q). We cannot simply consider Efy, p = E¢) p S5 Eg p
as the two extensions lie in different Ext groups. So we have to consider a generalisation

of Baer sums to not necessarily exact sequences which we came across in a paper of Rabi
[18].

3.5 The Baer sum

This is well known but we recall it to fix notation in order to describe Rabi’s work. Recall
that if we have two exact sequences of modules

Ej:0 Al Y. c 0

for j € {1, 2}, the Baer difference E; ©p E; is constructed as follows: We have

0—— AdA 12 poB 292 coc —— 0.

Let ¥ : B & B, —> C be the map
VY (b1, b2) = p1(b1) — p2(b2)

and let H = Ker(¥) = {(b1, b2)| p1(b1) = p2(b2)}. Let D be the image off A —
A®A— H,

f@ = (fi(a), (@)

Let B=H/D.Themap f : A® A — B given by
flai, a2) = (fi(a1), f2(a2))

factors through (A @ A)/A ~ A and so one has amap f : A — B,
a — (f1(a),0) = (0, — f2(a))

and an exact sequence

0 A f B pi(or p2) c 0.

The class of this exact sequence in Ext(C, A) is the Baer difference E; ©p E;. The Baer
sum E| @p E3 is the sequence obtained when one of the maps f> or p» is replaced by its
negative. The Baer sum is essentially the push-out over A in the category of modules.
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3.6 Rabi’s generalisation

Now suppose we have diagrams of the following type:
0

Pj

B3 0,

where the vertical and horizontal sequences are exact for j € {1,2}. Let E; denote the
horizontal exact sequences:

fi Pj

E;j:0 B] B — B; 0.
We would like to take the Baer difference of the E;—but since they do not lie in the same
Ext group we cannot quite do that. However, we can still salvage something.

One gets two types of extension classes in Ext groups which do not depend on j. The
vertical exact sequences give classes in Ext(Cy, A1). We can form their Baer difference to
get an exact sequence

0 A B, Ci 0.
The horizontal exact sequences give extensions in Ext(B3, B{ ). These depend on j but
their push forward under 7; give classes f I, in Ext(B3, C}).
2
Define B, as follows: Let H, = Ker(v), where ¢ is the ‘difference’ map

¥ : B} ® B3 — Bs,

¥ (b3, b3) = (p1(by) — p2(b3)).
Let D; be the image of the map

A| — B| @ B} — Hy,

a — (f1i1(a), f2(i2(a))).

Define B, = H>/D,. We call this the generalised Baer difference of E| and E» and denote
it by &p. Observe that this is almost the Baer difference of E1 and E; in the sense that
if By = B] = B}, then we could take the difference in Ext(B3, By). Since that is not the
case, we do the best we can—we take the difference of the inexact sequences

0 A BJ B; 0.
As aresult of this, one has a complex
0 B, fief B, pi(or p2) B 0.

However, this complex is not exact since Ker(p1) is larger than (f1 @& f2)(B1). The next
lemma describes this difference.
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Lemma 3.4 [18]. Let F = F321é3322 = By /Bj. Then one has the following diagram, in
which the horizontal and vertical sequences are exact:

0

l

Bs

0
Proof (Appendix B of [17]). We repeat the proof here as it is unpublished. The horizontal
sequence is exact by definition. To show that the vertical sequence is exact we have to first

describe map ¢. It is defined as follows. One has maps 7; : Blj — (. Consider the
natural map

$:Cr®C — (Bl @ BY)/Ax, T By = Hy/Dy
(c1,62) 5 ey N e, 7y (@) — (A ), flry e,

where Ay, = {(i1(a), i2(a))|a € A1}. ¢ gives a well defined map
(C1®C1/Ac, — Ba/d(Ac)),

where Ac, = {(c, —c)|c € Cy} is the anti-diagonal. This is well defined as if (by, b2) and
(b}, b}) are in (71171 (c1), n{] (c2)), we have to show

(f1(b), fo(b2)) = (f1(bY), fr(b3) mod (Ac,)

or

(fi(by = b)), fa(by — bh)) € p(Ac)).
From exactness, we have by — b} = ij(a1) and by — b, = ir(ap) witha; € Ay. The image

of Ac, under (!, ;") consists of (b, b') such that 71 (b) = ma(b'). (i1(a1), i2(a2)) lie
in this image, hence

(fii1(a), f2(ia(@2))) = (filby = by), falbr — b)) € d(Ac)).
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Note that the pre-image (711_1, nz_l)(Acl) in (Bl1 ® Blz)/AA1 is the Baer difference B;.
Further, (C; & C1)/Ac,) = C;. Hence one has amap ¢ : C; — F = B,/B; and we get
an exact sequence

[ P
00— C; —>F321é3322 —> B3 — 0.

This sequence is exact as if b = (b%, b%) is in FleéBBg and p(b) = 0, then pl(b%) =
p2(b3) = 0.So b} and b3 lie in the image of B} @ B} —say b} = f1(b}) and b3 = fo(b?).
Let ¢; = i (b}) and 3 = m2(b?). Then

b = ¢(cy, c2),

so it lies in the image of ¢. ]

In general, for any Z-linear combination m - B21é Bn- B22 of le and Bzz, we get an
extension class fm‘leéB n-B2 in Ext(B3, C1) corresponding to Fm‘leéB 0Bl The relation
between this and the extension classes constructed above is given as follows.

COROLLARY 3.5

Let £ B andf, p 1&p n-B2 be the extensions in Ext(B3, C1) described above. Then
fnploynpz =m fp1 ©p n-fp.

Proof. This follows from the construction of the map ¢. ([

In the next section, we apply these constructions in our particular case to get the extension
class we want.

. 4
3.7 The extension €OR.P

In this section, we construct an extension e4Q z p in Ext(®°H'(C), H'(C)) which gen-

eralises the element e‘é p OB e‘}e p constructed by Colombo [6]. Recall that we have an
exact sequence

Ebp:0— HYC)— (Jg.p/I}p) — &H'(C) — 0
and a similar one E 13,?, p- Also, we have the exact sequence

Ebp:0— (Jo.p/I) p)* — Uo.p/Tg p) —> (I} p/Th p)* — 0
and a similar E4R,P' This gives us diagrams as in Lemma 3.4, with Bl = (JQ,P/Jé,p)*’
Bl = (Jrp/J}p)* By = (Jo.p/J} p)*s Bf = (Jrp/Jfp)* and Aj = H'(C),
B3 = @*H'(C) and finally C; = @*H'(C).

Let fp, fr and for denote the classes in Ext(®3H'(C), ®2H'(C)) with middle terms

H 53 P lef p and H, 5313 p corresponding to the diagrams for O, R and their generalised

Baer difference. fp and ff are the push-forwards of m4Q’ p and m‘}e, p respectively. From
Corollary 3.5, one has

for = fo — fx.
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Lemma 3.6. fog is N-torsion in Ext(®°H'(C), ® H'(C)). Namely,
N -Hipp=@® H'(C)®& H'(C).

Proof. From Corollary 3.3 of [18], one has that the class Hé%,, in Ext(®3H1(C), ®2H!
(C)) is given by

HFp=H'(C)® E}p B EHp ® H'(C).
Similarly,
He'p =H'(C)® Exp ®5 Exp ® H'(O).
Taking their difference gives
Hip—Hgp=H'(C)® (Ex p — Ep p) ®5 (Epp — Epp) @ H'(C)

From Lemma 3.2, we have E?”, - E3Q’P = (0,2g(Q — R)) € Extyps(®*H'(C), H!
(C)). As Q — R is N-torsion, we have

N (Hgp—Hj p) = H'(C)® & H'(C).
0

We also know from Lemma 3.2 that m3Q R.P is N-torsion. Hence from Lemma 3.4, we
get an exact sequence

00— ®*H'(C)oH'(C) —— N- HéR’P
—— RH(CO)®*H'(C) —— 0.
which gives a class in Ext(@3HY(C) ® 2*H(C), @* H(C) @ H(C)).
From the Kiinneth theorem,
Ext(@’H'(C) ® @ H'(C), @ H'(C) & H'(C))

= [l Exw@H'©.0/H ©).
i€{2,3},j€{l,2}

Define
ehr p € Ext(@H'(C), H'(C)) 4)
OR,P ’
to be the projection onto that component. Note that if C is hyperelliptic, this class e4Q R.P

is precisely the class e4Q RP= e‘é p OB e?e p constructed by Colombo.

3.8 Statement of the main theorem

Armed with the class e“QR’P € Ext(®3Hl (C), H'(C)), we can proceed as in Colombo
[6].
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Let €2 denote the pullback of the polarisation on J(C) in H2(J(C)(1) to @*HN(C)(1).
There is an injection obtained by tensoring with €2,

Jo=3Q: H(C)(-1) — & H'(C).

We first pull back the class using the map Jgq to get a class in
J5(ehr. p) € Ext(H' (C)(—1), H'(C)).

Tensoring with H'(C), we get a class
Js(ehr p) ® H'(C) € Ext(@H' (C)(~1), & H'(C)).

Once again pulling back using the map 8 : Z(—1) — ®>H'(C) gives us a class
€or.p € EXU(Z(=2), @ H'(C)) C Ext(Z(-2), H*(C x C)) (5)
Our main theorem is as follows.

Theorem 3.7. Let C be a smooth projective curve of genus g and P, Q and R be three dis-
tinct points. Let Zg g, p be the element of the motivic cohomology group H/3vt (J(C), Z((2))
constructed above. Let e‘é R.P be the extension in Exty g s(Z(—2), A2H(C)) constructed
above. Then

€or.p = (28 + DN regz(Zgr)
in Extygs(Z(=2), A2HL(C)).

In other words, our theorem states that the regulator of a natural cycle in the motivic
cohomology group of a product of curves, being thought of as an extension class is the
same as that as a natural extension of MHS coming from the fundamental group of the
curve. In fact, it is an extension of pure Hodge structures.

Remark 3.8 (Dependence on P). This is not so serious. If we do not normalise fgr
with the condition that for(P) = 1, then one has to add an expression of the form
log(for(P)) f ¢ - to the term—and this corresponds to adding a decomposable element of
the form (Ac, log(for(P))) to our element Zpg.

4. Carlson’s representatives

The proof of the main theorem will follow by showing that both the algebraic cycle
constructed earlier and the extension class constructed above induce the same current.
For that we have to understand how an extension class induces a current. This comes from
understanding the Carlson representative. In this section, we once again follow Colombo
[6] and adapt her arguments to our situation.

If V is a MHS all of whose weights are negative, then the intermediate Jacobian of V
is defined to be

Ve

Jo(V) = Ve d Vg
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This is a generalised torus — namely a group of the form C¢/ 7P ~ (C*P x (€)*? for
some a and b.
An extension of mixed Hodge structures

0—A-SH S B0

is called separated if the lowest non-zero weight of B is greater than the largest non-zero
weight of A. This implies that Hom ;g s(B, A) has negative weights. Carlson [3] showed
that

Extyus(B, A) ~ Jo(Hom(B, A)).

This is defined as follows: As an extension of Abelian groups, the extension splits. So
one has a map rz : H — A which is a retraction, rz ot = id. Let sF be a section
in Hom(B¢, H¢) preserving the Hodge filtration. Then the Carlson representative of an
extension is defined to be the class of

rz 0sp € Jo(Hom(B, A)).

We now describe explicitly the Carlson representative of the extension e‘é g.p con-
structed in the previous section. This is done in a few steps, first we describe the repre-
sentative for e4Q . p and then for its various pullbacks and push forwards to obtain that for

4
€OR.P:

4.1 Preliminaries

As before, let C be a smooth projective curve of genus g. We first describe the Carlson
representative of the extension

eor.p € Extyns(@ H'(C), H'(O)).
From the above discussion, this is an element of
Jo(Hom(®*H'(C), H'(C))

B Hom(®*H'(C)¢, H'(C)¢)
~ FOHom(®3H'(C)¢, H'(C)¢) ® Hom(®3H' (C), H'(C))’

so explicitly, given an element of R3H(C)¢ we get an element of H 1(C)¢ which we can
think of as a functional on H{(C)¢.

Let Cgg denote the open curve C\{Q, R}. In fact, we will describe the functional as
an iterated integral made up of forms in H'(C or)c and will naturally be a functional on
H;(Cgr). We have a natural inclusion

i:Cogr—C

which induces i, on homology and i* on cohomology. In order to consider the iterated
integral as a functional on H(C), we have to make a choice of an embedding H|(C) —
H1(Cgr) which splits the map i,. There are many ways of doing this, but for our formula
to work, we need to make a particular choice. In this section, we first construct a ‘natural’
splitting of the map i, — namely a subgroup of H;(Cgg) which maps isomorphically to
H;(C) under i,.

Consider the group w1 (Cgg; P). Thisisafree group on2g+1 generators. The generators
have the following description. The fundamental polygon of C is a 4g-sided polygon with
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the edges e; and ¢, 1, identified. The end points of the edges are identified and so they give
2g loops «; in C g which we consider as loops based at P. Let S be a small simple loop
around Q based at P. Then 771 (Cgg; P) = (o}, ... ,oeég, Bo)-
The map f : C — P! restricts to give f : Cor — P! — {0, co} and this induces
fi i1 (Cor; P) —> mi (P! — {0, 00}; 1).
One knows 7; (P! — {0, o0}) ~ Z. Let By denote the generator. Let H = Ker( fi). Then

S« (@1 (Cgg; P)) is a subgroup of Z. In a deleted neighbourhood of 0 the map looks like
z — zV, where N is the degree. Hence loop Bo is taken to ,B(])V . Let fiu(a) = ﬂg’ I for

—m;

some m; € Z. Then o; = a;NﬂQ satisfies fi(c;) = 0. Let G denote the subgroup of
H = Ker( f,) generated by the {«;}.

The inclusion map i also induces iy on the fundamental groups. Since i.(Bp) = 0,
is(e;) = i*(a;)N. The fundamental group of C is 71(C; P) = {(ix(e}), ..., i*(aég))/
[Tl (e), i*(alf+g)] = 0}. Hence one has a map G — m1(C; P) whose image is the
subgroup generated by the N-th powers of «/.

Lemma 4.1. The abelianization of G is isomorphic to the subgroup of index N*8 of the
abelianization of 71 (C; P),

G/IG, Gl = N - 71 (C)/[m1(C), 1 ()],

where N- denotes multiplication by N.
Proof. Leta =[] ozg,’f be a word in G. For a generator «; of G, define

ordy, (o) = Z b;

a;=i
namely, the number of times «; appears in the word. Define

VG — 7°8,
V() = (ordy, (@), ..., ordazg(a)).

Let K = ker(W¥). Clearly [G, G] C K. Further, the map W factors through i, and is
surjective. We claim K = [G, G]. To see this, observe thatif a, b € G,

ab = ba mod [G, G].
By repeatedly applying this, one can see that any word
2g d
o =TT =]e mod[G, Gl
i=1

In particular, if ordy, () = O for all i, o € [G, G]. Hence K = [G, G]. Hence

G/[G,G] ~ Z*8.
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The map i, takes o; to a’f-v. One has a similar map W' : 71 (C; P) — Z*$ using &/ instead
of a; which shows that the abelianization of 71 (C; P) is 728 as well. However, under this
map W/ («;) = N and hence G/[G, G is carried to the subgroup N - Z2¢. Multiplication
by N is an isomorphism so the map

1
iy = 7 ° ix : G/IG, G] —> m1(C)/[m1(C), 71 (C)]
is an isomorphism between the two abelianizations. |

Let V = G/[G, G]. The abelianization of the fundamental group of Cog is H1(CgRr)
and so V is a subgroup of H;(Cgr). The abelianization of 71 (C) is H;(C). Hence the
map iy is an isomorphism between V and H;(C). Let jy : H(C) —> V be the inverse
isomorphism. This gives an embedding of H;(C) in H;(Cgg). As discussed above, the
Carlson representative is a functional on H(C). However, we will obtain a functional on
H1(Cgr) which will be the Carlson representative of the extension when considered as a
functional on V.

Let [] denote the homology class of a loop «. The collection {[c; ]} has the property that
their images {[i*(oelf)]} in H;(C) form a symplectic basis. Since i, ([Bgp]) = 0, ix([o;]) =
Ni, ([a;]). Hence under the isomorphism, iy ([e;]) = [ix (oclf)]. Let {dx;} be the dual basis
of harmonic forms in H'!(C, C) satisfying

/ dx/~ = 5,’],
lix(@))]

where §;; is the Kronecker delta function. With this choice of {[a/]}s and {dx;}s, the
volume form on H2(C) can be expressed as follows: Let
1 ifi <
c(i) = L8
—1 ifi > g
and o (i) =i 4 c¢(i)g. The volume form is
2g
Z C(i)dx,' VAN de'(i).
i=1
From that one gets that a Poincaré dual of c(i)dx, ;) is [i*(alf )]

The group V is a subgroup of H;(Cgr). Recall that for the non-compact manifold Cgg,
Poincaré duality states that

H!(Cor) = Hi(Cop),
where HJ (Cor) is the cohomology with compact support of Cgg. This group has a
mixed Hodge structure determined by identifying it with the relative cohomology group
H! (Cgr, {Q, R}). Unlike H! (Cor) which has nontrivial weight 1 and weight 2 pieces,

cohomology with compact support has weight O and weight 1 pieces and is covariant.
However, we have an isomorphism of the weight 1 graded pieces,

Gr)' H! (Cor)q = Gr)) H' (Cor)q =~ H' (C)q.
Here the first isomorphism is induced by id, the identity map and the second by i*.

The space V determines a splitting of the Hodge structure on Hi(Cgr). The space V* of
Poincaré duals of element of V is a subspace of H!(C or) which determines a splitting of
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the Hodge structure on HC1 (Cor). Further, V*is isomorphic to H 1(C). Hence if n is a form
in H'(C) it is cohomologous in Cor to a compactly supported form in V* C Hg (CoRr)-
One has

H!(Vor)g = Vo ® Q- wo.
where w¢ is a Poincaré dual of Bp. Thus Q - wo =~ Q(0). Note that

.,
[eej]

/ i*(c(j)dxg(j)) ANwg
Cor

—/ wo A (c()dxq(j)) = —/ i*(c(j)dxo(j))
Cor Bo

[ i =0,
i+([Bo))

since i, (Bg) = 0. Further

f i*(de)Z/ deI/ deZNSij.
[ei] ix([ei]) Ni(le])

Hence the dual of [¢;] is i*@% and under the dual map dx; is taken to be % in V¥ =
Hom(V, Z). Further, note that

/ af dz 0
wl o Jhe®oow) 2

since [«;] € Ker( fy).

We now construct a cover of Cggr which has the property that its first homology group
is G/[G, G] and the form 4 i exact. Further, the loops «; lift to loops on this cover.
We do that as follows: Let u : X — Cgpr denote the universal cover of Cgg. The group
G acts on X as a group of deck transformations. Let C=X /G denote the quotient and
q: C—>C oR denote the covering map. This is a cover

q:(C,P) — (Cor, P) (6)
such that 5; (C‘; f’) = G, where Pisa point in q_l(P). Now by homotopy lifting ([11],
Proposition 1.31), loops based at P whose homotopy class liein G C 71(Cgg, p) Will lift

to loops in C based at P. Thus o; € G will lift to a unique up to homotopy loop &; based
at P such that g, (a;) = «;.

PROPOSITION 4.2

q*(%) = 0in H'(C). Hence there is a function which we call log(q*(f)), defined on C
such that dlog(q*(f)) = q*(%).

Proof. From Lemma 4.1,

H\(C) ~ G/IG,G] =V ~ N -7 (C)/[71(C; P), m1(C; P)]
~N-H(C)~ H(C).
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By the de Rham isomorphism, HY(C) ~ H'(C).

The maps ¢* and g, are adjoint with respect to the de Rham pairing — namely, if
o € Hi(C)and w € H'(Cgg, €), then

/ a):/q*(a)).
Q*(O') o

Further, ¢* () is 0 in H'(C) if and only if Sty @ =0forallo € Hy (C). Applying this

tow = % and using the fact that [@;], 1| <i < 2g give a basis for H; (é), we have

d - d d
q*(—f)=0€H1(C)© q*(—f)=0f0ralli© —f:Oforalli.
f (] f (o]

The map f induces

fx: Hi(Cor) —> Hi(P' — {0, o0}).

The form ‘g—f = f*(‘i—?). Hence, one has

L4-Lr)-L,. -
(] J [oi] z fuller)) 2

However, since «; € G and by choice G C Ker( f,), we have fi(«;) =0, s0 fi([;]) =0
and finally

d
/ oo
fellaiD) 2

Hence q*(%) =0€ H 1(C~’ ). Therefore, integration of df—f is path independent and we
have a well defined function

log(g™(f))(x) =/ﬁ q* (%)

on C. Note that log(q*(f)(ﬁ)) =0. O

Hence the space V can be understood as the homology of the space C and the map g
gives a rational splitting of the map i,. We also have the following description of Vg.

Lemma 4.3. Let f : Cop —> P! — {0, 0o} be the map with divisor div(f) = NQ — NR
and f(P) = 1l and V = G/[G, G] as above. Let Wg = Ker(fy : Hi(Cgr)qg —
Hy (P! — {0, 00}0)). Then Vg = W

Proof. Since V. C Ker(fy), Vo C Wgq. However, both Vg and Wgq are subspaces of
codimension 1 in H{(Cgr)q. Hence they are isomorphic. ]
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Note that it does not appear to be true that V. = Ker( f,) as Z-modules. Intrinsically,
the reason why there is such a V is the following. If C and Cgr are as above, there is an
exact sequence of mixed Hodge structures

0 — Z() — Hi{(Cgr) — Hi1(C) — 0

induced by the inclusion map. Hence Hi(Cgg) determines a class in Ext(H(C), Z(1)).
From the Carlson isomorphism one knows

Extyus(Hi(C), Z(1)) = Extyps(Z(—1), H'(C)) =~ CHy . (C)

and the class determined by H;(Cgg) is nothing but the class of Q — R in C thom(C ).
Since there exists a function f with div(f) = NQ — NR, it implies that this sequence
splits rationally. Hence there is a map

p: Hi(Cgrig — Q)

which splits the exact sequence. This map can be seen to be

_ EZ/ dz
p(a)—/af oz

and if Vg is the kernel, then Vg ~ H1(C)q. Clearly, o € Ker(p) < o € Ker(f,). Hence
Ker( f;) is isomorphic to H1(C)q. The V defined above is only contained in Ker( f) but
is a subgroup of the integral homology H;(C) — so has a little more information.

4.2 The Carlson representative of e4Q R.P

The Carlson representative of e is given by p| o rg o s o i3, where
p OR,P1SE y p

e pj is the projection of N - HéR’P ~H () e *H'(C) LS H(0),
e i3 is the inclusion map R3H(C) BLY ®R3HY(C) ® @2H (C).

To describe s, we need a little more. Let C, = C — {o} for @ € {Q, R}. The inclusion
map

I : Co — C

induces isomorphisms on the first homology and cohomology groups —and in what follows,
we will identify elements of H(C,) with their images in H{(C) and similarly elements
of H'(C) with their images in H'(C,).

Recall &3 denotes the generalised Baer difference. Let

spoiy: @ H'(C) —> N-Hpp p~N-((Jo.p/T} p)*S8Ur.p/I4 p))
be the section preserving the Hodge filtration given by
sP(dxi @ dxj @ dxi) = (I 175).

Here Ifjk € (J.,p/Jf’P)* for ¢ € {Q, R} are iterated integrals with

1k =N ([ dxidxjdxy +dxi ke + [LijedXy + Mijk,o) , (N

where (4] e, 14 jk,e and fi;jk o are smooth, logarithmic 1-forms on C, such that
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(1) dpjre +dxj Ndxx =0,
(2) dpije +dxi Ndx; =0,
(3) dxi A pjk,e + Mije Ndxg +ditijke = 0.

There are inclusion maps of Cgg into Cg and Cg and we can pull back the forms dx;,
Mij,e and ke to Cor and consider all the forms as forms on Cgg. To compute the
element of Hom(®3 H'! C)e, H 1 (C)¢) obtained as the projection under pj, we describe
it as an element of H,(C);, = Hom(H;(C),C) = H'(C, C). The integrands 17% are
made up of forms on Cgg and so to compute it on elements of H;(C), we have to choose
an embedding of H(C) in H;(Cgg). This is precisely what the subgroup V gives us.

Hence from now on, if « is a homology class in H;(C), we think of it as an element of
H1{(Cgr) by identifying it with its image in V = g.(H 1(0)). Let V* denote its dual in
H!(Cgr). The Poincaré dual of an element of V also lies in V*.

The map from

H'(C) — (H'(C)® H'(C)/ Ay
is given by
x —> (x, —x).

Further, if « is a loop based at P on Cgg, the class in H;(C) = J.’P/JEP corresponding
toitis 1 —«.Soone has pjorgzospoisz € Hom(®3Hl(C)C, H'(C)¢). As an integral,
it is
Pl orZosFoi3(dx,~®dxj®dxk)(oz)=/ ng—/ I;{k,
l—a 11—«
where the first 1 — « is the class in H1(Cg) and the second is the class in H;(Cg). They are
both carried to the same class in V under the isomorphism, so we can take the difference of

the integrals when we consider « as a loop in Cgr whose corresponding homology class
lies in V. This resulting expression is

f Iink—/ Iligjk=N(/ dxi (wjk,0 — jk.R) + (ij,0 — mij,R) dxk
l—«a I—a l—a
+(Mijk,Q —Mijk,R))-

We can choose the logarithmic forms w;j e and p;jx,e for ¢ € {Q, R}, satisfying the
following:

® [Lije = —[jie-

o For|i—j| # g, ij,e issmoothon C,asdu;j e = dxjAdx; =0.As HZ(CQR, Z)=0

and (4}, is smooth, it is orthogonal to all closed forms, that is, j4;; ¢ A dX; is exact.

® [Lis(i),e has alogarithmic singularity at e with residue c(i).

o wij0— mij,r =0if |i — j| # g as forms on Cgg.

® lio(i),0 — Mio(i),R = %%, where f = for is a function such that div(for) =
N Q — NR. We can normalise fpr once again by requiring that for(P) = 1.

In terms of our basis of forms of H'(C), Q2 € @2 H(C) is
g 28
Q= de,‘ Qdx(jitg) — dx(it+g) @ dx; = Zc(i)dxi ® dxg (i)

i=1 i=1

With these choices of ;e and (4;ji e, We have the following theorem.
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Theorem 4.4. Let Ggogr p € Hom(H'(C)(—1)¢, H'(C)¢) be the Carlson representa-
tive corresponding to the extension class J¢ (e4Q r.p)- 1t is given by

Gor,p(dxi)(aj) = prorzospoiz(dx ® Q)(aj)
=g+ 1)/ gdxk — N/ W (dxy)

in J(Hom(HY(C)(=1), HY(C))), where

28
Wdxy) = Zc(i)(l/«ki(r(i)‘Q — Ikio(i),R)

i=1
is a 1-form on Cgg which satisfies

AWy = 20 + N
xx) = 2g N 7

Proof. Let S denote the map Sp = spoizo Jg : HY(C)(=1) = N - HéR’P. This is
given by
28
Sr(dxy) =Y c(i)sp(dxy ® dx; ® dXo i)

i=1

From (7), one has
2g o 2g o
Spdx) =Y ) / 15793 el / 1w
i=l i=l
Evaluating on a loop «; based at P using the maps described above, this is
Z/ C(l.)(lga(z) _ ki)
i—1 I—aj
2g
Z N </ c@)dxi (i i),0 — Mi,o@),R) + (Uki,0 — Mki,R)d X (i)
i=1 I=a;

+ (Ukio(i),0 — Mkm(f),R)) .

From the choice of the forms 1;; ¢ and 1;jk o above, the leading terms and several of the
lower order terms cancel out and

1 df
Mki, 0 — Mki,R = C(k)Ska(i)N7

and

L 1df
WHio(i),0 — Mio(i),R = CO)NT'
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Since ¢(i)? = 1, what remains is

2g

E / ka— - / ka +N E C(l)/ (Hkio (). — HMkio(i).R) -
: I—a; l—o;

i=1 J

_aj

Let
2g

Wdxy) = ZC(i) (Hkio(i),0 = Mkio(i),R) -
i=1

Since integration over a point, which corresponds to the constant loop 11is 0 and faj % =0,
by choice of &, using Lemma 2.1(2), the integral becomes

Gor,pldxp)(aj) = 2g/ dxk— — f —dxk + N W (dxy).
aj I—a;

1— l—a;

= —(2g—|—1)/ dxk7—N/ W (dxp).

Now consider
2g
dW(dxy) = Zc(i)d (kio(i),0 — Hkio().R) -
i=1

From the choice of ;i e, one has
dibijk,e = —dXi A [Ljke — [Lij,e N dXg.

So the sum becomes
2g
dW(dxp) = Z —c(i) ((dxk A tio(i),0 + ki, A dXo())

i=1
— (dxi A Rio),R + kiR A dXei)))
28

= Z —c(i) (dxk A (io(i),0 — Mio(i)R)
i=1
+ (i, 0 — [ki,R) A dXo (i) -

In the second sum, only one term survives and one has

dW(dxy) = —c(k) (ko (k),0 — Mko (k),R) N dxi
2g .
d
+ ; —c(i) (dxk A %%)

2g
— (k)(c(”(k)) dJ{)/\d +121: c(z)(d X A C](V’) d}{)
_Md_f ANd — de A ﬁ

N 7 X = N k f
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We have computed the Carlson representative Gog, p of our class in Ext(H L)1), H!
(C)). We now tensor with H1(C) and pull back using the map ®Q : Z(—1) —
®2>H'(C). This gives us an element of Ext(Z(—2), @ H'(C)). We denote its Carlson

representative by Fog p.

Lemma 4.5. The Carlson representative of the class in Ext(Z(—2), RHYO)) is given
by

For.p = (Gor,p ® 1d) 0 ®Q2

in (@2H'(C)g)*. On an element aj ® ag, it is given by

d
For p(Q)(aj @ ar) =c(o(k))N (/ (2g + 1)7fdxa(k) - NW(dxo(k))) .

3
Proof. Recall that = Y% ¢(i)dx; ® dxq ).
From above, we have
28
(Gor,p®1d)(Q2)(a; ® ay) = Zc(i)GQR,P(dxi)(Olj) -ld(dxsiy) ().
1
From the choice of oy, one has
Id(dxs)) (k) = Ndko(i)-
Hence, in the sum above, precisely one term survives at i = o (k). Therefore,
(Gor,p ®1d)(Q)(aj ® ax) = Nc(o(k))Ggr, p(dxsw))(aj).
In particular,
For p()(a; ® ar) =Nc(o(k))Gor,p(dxsw))(a;))
df
=Nc(o(k)) 2g + 1)7dxg(k) — NW(dxs1)) | -
o
O

We now use Proposition 4.2 to convert the iterated integral into an ordinary integral.
The iterated integral term of length 2 in (8) is

df
Ne(o (6)(2g + 1) f Lax,

which we can evaluate using Lemma 2.1(3) if % is exact. However, ‘% is not exact on

Cor but it is exact on C, using Proposition 4.2. So we do the integration on C. Precisely,
we do that as follows.
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Let o be a loop such that [«] € q*(Hl(C')), where ¢ : C — Cor is the cover. Let

o = g« (&), where @ is a loop based at P lying over the base point P of .. Let i be another
closed 1-form on Cgg.

‘We have
vf / ( )qw,)

From Proposition 4.2, q*(T) is exact on @. In other words, q*(d%) = dlog(g*(f)).

Choose a primitive log(¢*(f)) such that log(q*(f)(ﬁ)) = 0. Using Lemma 2.1(3) and
the fact that we have chosen log(g™*(f)) with log(¢*(f)(P)) =0,

[q (7>q W) =[10g(61 (Ng™@).

Hence we have
d
wa = [ tosta* ().

Applying this to the case at hand, we have

For p(Q)(aj ® ax) = Ne(o (k) (/~_(2g + D log(g™(f)q™ (dxo (k)

- Nq*(W(an(k)))> . )

We have made a choice of ;. If we chose a different base point, the value of log(g™*(f))
will change by 27ri M for some M € Z. This will change the integral by 27i M [ o dXe (k)-
This does not affect the class in the intermediate Jacobian.

We would like to connect the expression above, which is the Carlson representative of
the extension class € . p» to the regulator of an explicit cycle on the Jacobian of the curve.
This is done by the followmg revised version of Colombo’s Proposition 3.3. Recall that
by C\y, we mean

lim C\ne(y),
e—0

where n(y) is an open tubular neighbourhood of y homeomorphic to (—¢, €) x y.

PROPOSITION 4.6 (Colombo Proposition 3.3)

Let f = for be as before and r a closed 1-form on Cgg. Let W () be a 1-form such
that dW () = ¥ A %. Hence ® = log(f)¥ + W (V) is a closed 1 form on Cor\y. Let

a be aloop in Cgp such that [a] € V and let ny € HC1 (CgRr) be the Poincaré dual of [o]
constructed below. Then we have the iterated integral

;1//+W(I/f) /C\yr,aA(aJrszyw <m0d2ni/(x1//Z).

Proof. We first need the following useful lemma.
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Lemma 4.7. Let ® and r be as above. Then

Aw:o

Proof. Let C\n.(y) be the manifold with boundary as before. This is a closed set so the
form © is closed and compactly supported on C\n¢(y). The boundary

IC\ne(y)) = Q0 x (—e.€) Uy Uy, ' U(e, —€) x R,

where y; and y» are copies of y. Applying Stokes theorem to d®, we get

0:/ d@:/ @:/@—/@
C\ne(y) (C\ne(y)) 71 2)

N
O x(—¢,€) Rx(—¢,€)

Recall ® = log(f)¥ + W (). The function log( f) differs by 27 on y; and y». The form
W (yr) is defined on all of Cgp so the integrals over y; and y» cancel. Keeping track of
orientations, we have

0=—hﬂ/¢+f @—/ .
Y1 O x(—¢€,€) Rx(—¢€,€)

As € — 0, it shows that —2i fy Y =0. O

The subgroup V is generated by the classes of o; = o ,N émi , where «; is one of the

‘standard’ generators of 1 (C) coming from the edges of the fundamental polygon and
Bo is a small simple loop around Q. These loops satisfy fi(e;) = 0.

It suffices to prove the theorem for «; and extend linearly, so from this point on, we let
o =op,a = alf . Let ny be the compactly supported Poincaré dual of [«] constructed as in
[8] as follows: Suppose § is a simple loopin Cgg. Let D = Ds be a tubular neighbourhood
of §. We can write Ds — § = D;’ U Dy with Dy to the left and D; to the right of . Let
Dy be a sub-tubular neighbourhood of § in D and D(jf = DyN D;t. Let G be a function
such that it is smooth on Cgg — & and

Gy = 1 on DO_ U(%
0 outside Dy .
Define
{ng on Ds — 8
ns =

0 elsewhere,

so the support Supp(ns) C Dy . One can then see that if v is a closed 1-form on Cgr,

/ nsA¢=/ dGsAlﬁ:/ dG51ﬁ=/ Gsy = 4
Cor Dy Dy D) 18]

since G5 = 1 on § and with this choice of orientation d(Dy ) = 4.
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u 1 , o =a; =« i simple . However,
In our case, in general s not a le loop. However, o’ and B¢

are. Let D, = D_, U DEQ. Define

IN p—m;
o

Nae = N1y —Mmingy-

e is supported in D, and is a Poincaré dual of [«] and as for a 1-form v,

/ Na ANY =N na/Aw—mi/ Npo NV
Cor Cor Cor

= / =11 v
Nle'J=mi[Bo] (o]

Let © = q*(®) =log(g*(Ng* () + ¢*(W(y)). From the discussion above,

fangv(w:f&@,

where & is a lifting of « to a loop in C such that it is based at P and log(g*(f)) is chosen
such that log(g™(f )(P) = 0. We would like to compute this integral.

Let nc(y) be as above and C\n(y) be as before. Choosing € and the tubular neigh-
bourhoods carefully, we can assume, without loss of generality that o’ and B¢ do not pass
through the points Q and R and that the tubular neighbourhoods D, and Dg, do not
intersect (—e, €) X Q and (—e€, €) X R.

We have o = o'V ﬂémi. Let @ be the lift of o’ and B¢ the lift of B¢. The restriction
dleorvnety = U; o'/ is a union of a finite number of paths «’/. The covering map ¢
induces a homeomorphism from each o'/ to a path &/ such that | J&"/ = &’|@\q,1 )"
Let D/, and similarly, D;, ; denote the restriction of the tubular neighbourhood D, of o

to a tubular neighbourhood of the path /. We have

D \n(y) =D,
J

Hence we have

/ na/A@):// na/A("):Z/ N’ N O.
Cor\ne(y) Do \ne(y) i YDy

The boundary of the tubular neighbourhood D _,; is

D) =ad"U(nND,HU(y; ' ND,).

Applying Stokes’ theorem, we get

/ w/\®=/ dGarG):/ Gy ®
D D D)

all ol

:/ ®+f 7Ga/®—/\ 7Ga/®.
o'l VlﬂD;/j yzﬂD;/j

Summing up over j, we have

> / 7GO,/®—/ _ Gy© =/ Ga/®—/ Gy ®
Vi ﬂD;,j VzﬂD;,j Vi V2
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as Gy is supported in D . Recall that the value of log( f) on y; and y» differ by —27i. The
value of G, W () is the same on both y and y», hence fVl Gy W) _fyz GyW) =0.
Hence we get

/ Ga/®—/ Ga/@z—szca,w.
Y1 V2 Y

Lemmas 4.7 and 2.1(3) shows that the integral simplifies to

/ G,,@—f Ga/®=—2ni/ Ga/wz—Zm'/ o' V-
Y1 V2 Y 14

/ ”a’/\(“):Z/ @—Zni/nanp.
Cor\ne(y) ; o'l 4

We can make a similar argument for B¢.
Combining the two we get

N f ® —m; / @:/ naA®+2ni/na1ﬁ.
; o' XS: Bp Cor\ne(y) Y

Finally, since 7, is compactly supported in C g g, we canreplace Cgg\ne(y) with C\n¢(y)

to get
NZ/ @—m,-Z/ @:/ na/\®+2m/naw.
; o' s YBY C\y y

To link this to the integral over &, we observe the following. The loop o' lifts to a path
in o’V in C which is made up of copies of &@'. Let & denote the lift of the k-th copy of o/,
50 & (1) = @ ;(0). We can choose the homeomorphisms between o7 and @ such that

So we get

the k-th copy of ’/ is homeomorphic to a path 5[,/{] in @; . So we have homeomorphisms

N N
UUe? ~JUa ~ o™ —a\g~ ).
k=1 j k=1 j
A similar situation holds for B¢. Via these homeomorphisms
N mi
vY . [ e-mY [ e=YY [ 6->> 6
j e s P =1 j Y% =1 s 2P0,
which is

//\:71- B @ = / B é
aN B, =8(C\g~ (ne(y))) a@—a(C\g~L(ne ()

Finally, as € — 0, the set @ N 8(C~'\q_l (ne<(y))) becomes a set of measure 0, so we have

lim 0= / 0.
=0Ja-a(C\g~ (e () &
We have made a choice of a lifting & of «.. A different choice of base point P’ would change
the value of log(¢*(f)) by 2mwi M for some M € Z. This would change the integral by
27iM [, . Hence this equality holds only up to 27i [, ¥ Z. O
We have the following useful corollary to the above proposition, which says that in fact,
we can replace 7, by any form on C which is cohomologous to i, ([1¢])-
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COROLLARY 4.8

Let ',y and W () be as above and ¢, a closed 1 form on C which is cohomologous in
Hl(C) 10 i([ny]) for some a in V. Then

ﬂw + W) = MNCES 2711'[ Ga (mod 27'”"/ I/JZ) .
o f C\y v o

Proof. Let ¢, denote such a form. Both ¢, and 1, are Poincaré duals of the same homology
class, so ¢y — ny = dg. Let n.(y) be as before. One has

f ¢a/\®=f dg/\®+/ Neg N ©.
C\ne(y) C\ne(y) C\ne(y)

So it suffices to compute the two terms separately.
Any closed form ¢ on C is compactly supported on the manifold with boundary C\n.(y)
as C\n¢(y) is a closed subset of C and C is compact. Further, by choice of V, it will be

cohomologous to [i«(ny)] for some o € V. In particular, we know that [c(i)%] is

cohomologous to a Poincaré dual of [¢;].
Since both ¢, and n, are compactly supported on C\n(y), so is dg and hence g and
dg N © are compactly supported as well. From Stokes’ theorem, we get

/ dgA@:/ d(g@):/ g0.
C\ne(y) C\ne(y) 9(C\ne(y))

If we choose a different function % such that dh = dg, then h — g = ¢ for some constant
c. Hence, from Lemma 4.7, we see

/ g@—/ h@:c/ ®:/ de =0
9(C\ne(y)) 9(C\ne(y)) 9(C\ne(y)) C\ne(y)

so it does not depend on the choice of primitive.
An argument similar to Lemma 4.7 with g® in place of ® shows that

/ g0 = —2ni/ gv.
9(C\ne(y)) Y

Lemma 4.7 along with Lemma 2.1(3) shows further that

/ dg/\@:/ g@:—Zni/glﬂ:—Zni/dgtﬁ.
C\ne(y) A(C\ne()) Y Y

Taking the limit as ¢ — 0, one gets

/ dg N® = =2mi / dgy.
C\y 4

From Proposition 4.6, we have

/agtp+W(1p):/C\yna/\®+2ni/;naw (mod2m’/a¢Z).
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Since the integral of dg A ©® cancels the iterated integral term, we have

¢aA®+2ﬂif¢aw
14

C\y

:f (naA®+dgA®)+2mf(naw+di)
C\y v

:/;\yna/\G—i—Zni/ynal/f=/ag1/f+W(1/f)<mod2m'/awZ>.

O

Remark 4.9. We will apply this to compute the Carlson representative of an extension
class. This is an element of the intermediate Jacobian associated to the extension, hence
the two expressions, while they possibly differ by and element of (27i [ o ¥)Z will have
the same class in Homy,(Z(—2), ®* H ' (C)) keeping in mind isomorphism of H(C) with
q*(Hl(C‘)) C H{(Cgr). We will use = to keep in mind the fact that all equalities hold
only in the intermediate Jacobian.

We now apply this in the case of interest to us.
COROLLARY 4.10
Let o be as above. Then

For.p(€2)(aj ® ax) = N(2g + De(j)e(o (k)

N
dxg(j 1 dxepy — ——W(dx,
(/C\y X (/>/\<0g(f) Yo = a1 1) (dx. (k>))

+ Zﬂi/dxg(j)dxg(k)>.
Y

Proof. This is a straightforward application of Corollary 4.8 to the expression in
Lemma 4.5. ]

For,p(£2) determines an element of the intermediate Jacobian of (®%Ve)*,
FY®* V)
®2V)*
so to determine Fgr p(£2), it suffices to evaluate it on elements of F 1(®?Ve)*. From the

above Corollary, we can compute it on F ! (®2H L)y).
Let {dz;} be a basis of the holomorphic 1-forms on C such that

/ de=N5ij, 1<i<g
i*(Ot,')

where {«;} is the basis V.

J(®*V§) ~

8 1
dzj =dx; +2Ajidxi+g, where Aj; = — dz;

i=1 ix(@itg)
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coming from the fact that ¢(j) dx;;j L is dual to j- This expression continues to hold when
we consider them as forms in Cgg.

Let §j = c(0(j)o(j) + D 1<i<g Ajic(i)ei, where j < g. Then dz; is cohomologous

in H'(C oR) to a Poincaré dual of ¢;. We have the following proposition.
PROPOSITION 4.11
The map F g, p(S2) evaluated on elements of the form ¢; @ o is
For p(Q)(& ® clo(j)as(j))
=Q2g+ DN <f log(f)dzi Adx; + Zm'/ dzidxj> .
C\y 4
In other words,
dzi AW(dxj) =0.

Proof. This is Proposition 3.4 of [6]. The point is that W(dx;) and dz; are both of type
(1, 0), hence dz; A W(dx;) = 0. O

In fact, the theorem holds for the other term as well.
PROPOSITION 4.12

For a suitable choice of w;ji, o and (;jk r, one has

W(dzi) =W (dxi) + Y A W(dxiyg) =0.
k

Proof. 1t follows from Lemma 3.1 of [6]. O
Hence we have as follows.

PROPOSITION 4.13

For p(Q)(c(o (o) ® &i)
=(Q2g+ DN </ log(f)dx; ANdz; + 2711'/ dx.,'dz,~> .
C\y Y
Comparing this with the regulator term in Theorem 2.2, we get the following.
Theorem 4.14. Let Z g be the motivic cohomology cycle constructed above and e‘é R.P

the extension in Bxty ys(Z(=2), A2 HY(C)). We use e‘éR p to denote its Carlson repre-
sentative as well. Then one has

€hr.p(@) = Qg+ DN regy(Zor) ().
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where w € F' A2 H'(C).

Proof. 1t suffices to check this on dz; A dxj = dz; ® dxj — dxj ® dz;. The result then
follows by comparing the formula for the Carlson representative Fog p in Lemma 4.5
with the expression for the regulator in Theorem 2.2 using Proposition 4.11.

From Theorem 4.13 and Lemma 4.5, we have

For, p(R)(c(o(j)as) ® &)

=(Q2g+ 1N </ log(f)dxj/\dzi+2ni/dede).
C\y 14
On the other hand, from Proposition 4.13, one has

For p(R2) (& @ c(o()))as()))

=Qg+ 1N </ log(f)dz; Ndx; +2mi / dzidxj>
C\y 4
=Q2g+ DN <—f log(f)dx; ANdz; + 2mi / dzidxj) .
C\y 14

Therefore, we get

For p(Q)(c(o(j)as) A&i)
=For r(Q)(c(o(j))ae(j) ® &) —For p(S2)(& ® c(0(j))a, ;)

=(Q2g+ 1N <2/ log(f)dx; Ndz; + 27ri/(dxjdzi - dzidxj)> .
C\y Y

On the other hand, from Theorem 2.2,
(2g + )N regy(Zor)(dxj A dz;)

= Qg+ 1N (2/ log(f)dx; Adz; —i—ZJTi/(dxjdz,- — dz,-dxj)) .
C\y 4
O

Recall that we have assumed in both cases that for(P) = 1. If we do not make that
assumption, then one has a term corresponding to a decomposable element that one has
to account for. However, if we work modulo the decomposable cycles we can ignore that
term.

As aresult of this theorem, we get the following expression of the regulator as an iterated
integral over a loop — which is more amenable to computation.

COROLLARY 4.15

Let ZgR, p be the element of H'/z\frl (J(C), Z(g)) and let n and w be two closed 1 forms

on C with w holomorphic. Let o be a loop in Cgg based at P such that [a] € V and a
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Poincaré dual of [«] is homologous to 1 in H' (CoRr). Then

d
regz(Zor,p) (M Aw) =2 —fw

o

Proof. It suffices to check this for n = dx; and @ = dz;. From Theorem 4.14, one has
For p(Q)(c(o(j)as) A &)

= (2[ log(f)dx; Adz; +2ni/(dxjdzi — dzidxj)> .
C\y 14

From Lemma 2.1, we have

/dedZi+./dZide Z/de/dZi-
v v y v

From Lemma 4.7, one has fy dz; = 0. Hence

/dedZi = —/dzidxj.
14 Y

Therefore, we can simplify the regulator expression to get

regy (Zor,p)(dx; Ndz;)

=2 (/ log(f)dx; ANdz; + 2mi / dedzi>
C\y 1%

=2 (/ dxj Nlog(f)dz; +2mi / dxjdzi) .
C\y 4

Using Corollary 4.8, this becomes

d
regy(Zor,p)(dxj Ndz;) = 2c(o(j))/ dezi. O

Remark 4.16. Darmol et al. [7] and Otsubo [15] have a similar formula for the regulator
of the modified diagonal cycle. Their expression is an iterated integral of two holomorphic
forms over the dual of a third form — but none of the forms are logarithmic. Similarly, the
regulator of an element of K> can be expressed as the iterated integral of two logarithmic
forms over the dual of a third holomorphic form.
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