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1Department of Fundamental Sciences, Izmir Bakırçay University, Izmir, Turkey
2Department of Mathematics, Sakarya University, Adapazarı, Turkey
*Corresponding author.
E-mail: bahar.demirturk@bakircay.edu.tr; rkeskin@sakarya.edu.tr

MS received 19 March 2018; revised 17 April 2019; accepted 3 May 2019;
published online 9 August 2019

Abstract. In this paper, we find non-negative (n,m, a) integer solutions of the
diophantine equation Fn − Fm = 3a , where Fn and Fm are Fibonacci numbers. For
proving our theorem, we use lower bounds in linear forms.

Keywords. Diophantine equation; lower bounds; logarithmic method.

2000 Mathematics Subject Classification. 11B39, 11J86, 11D61.

1. Introduction

The Fibonacci sequence (Fn) is given by the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2

with initial conditions F0 = 0, F1 = 1. The Lucas sequence (Ln) is given by the recurrence
relation

Ln = Ln−1 + Ln−2, n ≥ 2

with initial conditions L0 = 2, L1 = 1. Fn and Ln are called the n-th terms of Fibonacci
and Lucas sequences, respectively. The Binet formulas for these sequences are given by

Fn = αn − βn

α − β
and Ln = αn + βn,

where α = 1 + √
5

2
and β = 1 − √

5

2
. It is easy to see that Ln = Fn−1 + Fn+1 and

5Fn = Ln−1 + Ln+1. Many properties of these recurrence sequences are given in [6,12].
In [2], Bravo and Luca determined all non-negative solutions (n,m, a) of the diophantine

equation Fn + Fm = 2a with n ≥ m. Then in [10], Pink and Zeigler considered a more
general form un + um = wpz1

1 · · · pzss in non-negative integers n,m, z1, . . . , zs , where
(un)n≥0 is a binary nondegenerate recurrence sequence, p1, . . . , ps are the distinct primes
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and w is a non-zero integer with pi � w for all 1 ≤ i ≤ s. After noticing Pink and Zeigler’s
more general diophantine equation for sums of terms of recurrence sequence (un)n≥0, Şiar
and Keskin [11] proved that all non-negative integer solutions of the diophantine equation
Fn − Fm = 2a are given by

(n,m, a) ∈ {(1, 0, 0), (2, 0, 0), (3, 0, 1), (6, 0, 3), (3, 1, 0), (4, 1, 1),

(5, 1, 2), (3, 2, 0)}

and

(n,m, a) ∈ {(4, 3, 0), (4, 2, 1), (5, 2, 2), (9, 3, 5), (5, 4, 1), (7, 5, 3),

(8, 5, 4), (8, 7, 3)}.

From this point of [11], we consider the solutions of diophantine equation of the form
Fn − Fm = 3a in non-negative integers. Moreover, Erduvan et al. [5] showed that the
solutions of the equation Fn − Fm = 5a is given by

F1 − F0 = F2 − F0 = F3 − F2 = F3 − F1 = 50

and

F5 − F0 = F4 − F3 = F6 − F4 = F7 − F6 = 5,

in nonnegative integers m, n and a.

Now we can give the logarithmic height definition from [8].

DEFINITION 1

Let α be an algebraic number of degree d and

f (x) =
d∑

i=0

ai x
d−i ∈ Z[x]

be the minimal polynomial of α with a0 > 0 and gcd(a0, . . . , ad) = 1. The logarithmic
height of α is given by

h(α) = 1

d

(
log |a0| +

d∑

i=1

log max{|α(i)|, 1}
)

,

where α(i)’s are the conjugates of α.

Some known properties of the logarithmic heights are as follows:

h(α ± β) ≤ h(α) + h(β) + log 2, (1.1)

h(αβ±1) ≤ h(α) + h(β), (1.2)

h(αk) = |k| h(α). (1.3)
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Now we can give the following lemmas from [7], that will be useful in the proof of
Theorem 1.

Lemma 1. If n ≡ m (mod 2), then

Fn − Fm =
{

F(n−m)/2L(n+m)/2, n ≡ m (mod 4)

F(n+m)/2L(n−m)/2, n ≡ m + 2 (mod 4).

Lemma 2. Let Ln = 3s · yb for some integers n ≥ 1, y ≥ 1, b ≥ 2 and s ≥ 0. The
solutions of this equation are given by n ∈ {1, 2, 3} .

The following lemma was an interesting problem and was completely proved by
Bugeaud et al. [3]. This lemma will be used in the proof of Theorem 1.

Lemma 3. The only perfect powers in the Fibonacci sequence are F0 = 0, F1 = F2 =
1, F6 = 8 and F12 = 144.

In [1], Baker gave an effective lower bound for a non-zero expression of the form
c1 log α1 + · · · + cn log αn , where αi are the algebraic numbers and ci are the integers
for all 1 ≤ i ≤ n. We will use the reduction method of Baker–Davenport in the proof of
Theorem 1.

2. Preliminaries

Before proving the main theorem, we shall state a useful inequality associated with
Fibonacci sequence.

Lemma 4. Let n ≥ 1. Then αn−2 ≤ Fn ≤ αn−1.

Since the proof of the following lemma is given firstly in [9] and then in [3], we will
omit its proof.

Lemma 5 [3,9]. Let L be a number field of degree D and α1, α2, . . . , αn be non-zero
elements of L, and let b1, b2, . . . , bn be rational integers such that

� = ab1
1 · · · abnn − 1

and

B = max {|b1| , . . . , |bn|} .

Let h denote the absolute logarithmic height and A1, . . . , An be real numbers with

A j ≥ max{Dh(α j ), | log α j |, 0.16} for all 1 ≤ j ≤ n.

If � �= 0, then

log |�| > −3 · 30n+4(n + 1)5.5D2(1 + log D)(1 + log nB)A1 · · · An .
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Furthermore, if L is real, then

log |�| > −1.4 · 30n+3n4.5D2(1 + log D)(1 + log B)A1 · · · An .

We give the following lemma from [4].

Lemma 6. Let M be a positive integer and p/q be a convergent of the continued fraction
of the irrational number γ such that q > 6M. Let A, B, μ be some real numbers with
A > 0 and B > 1. Let ε := ‖μq‖ − M‖γ q‖, where ‖·‖ denotes the distance from the
nearest integer. If ε > 0, then there exist no solutions of the inequality

0 < |uγ − v + μ| < AB−w,

in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ε)

log B
.

3. Main theorem

Theorem 1. Let n,m and a be non-negative integers with n > m. Then all solutions of
the equation

Fn − Fm = 3a (3.1)

are given by

(n,m, a) ∈ {(1, 0, 0), (2, 0, 0), (4, 0, 1), (3, 1, 0), (3, 2, 0), (4, 3, 0), (5, 3, 1),

(6, 5, 1), (11, 6, 4)}.

Proof. If m = 0, then from Lemma 3, we get (n,m, a) = (1, 0, 0), (2, 0, 0), (4, 0, 1). Let
1 ≤ m < n ≤ 100.Then the solutions of (3.1) are (n,m, a) ∈ {(3, 1, 0), (3, 2, 0), (4, 3, 0),
(5, 3, 1), (6, 5, 1), (11, 6, 4)}. Thus, from now on, we will assume that n > 100. If n−m =
1, then we get 3a = Fn − Fm = Fm−1. This implies that m − 1 = 1, 2, 4, by Lemma 3. So
m = 2, 3, 5. If n−m = 2, then 3a = Fn −Fm = Fm+1. This implies that m+1 = 2, 4, by
Lemma 3. Som = 1, 3. But these solutions are given in the theorem for 1 ≤ m < n ≤ 100.

Therefore, we may suppose n − m ≥ 3. Since 3a = Fn − Fm < Fn ≤ αn−1 < 3n−1 by
Lemma 4, we get a < n.

Now recalling Fn − Fm = 3a, we get

αn

√
5

− 3a = βn

√
5

+ Fm . (3.2)

Taking absolute value of (3.2), we have

∣∣∣∣
αn

√
5

− 3a
∣∣∣∣ ≤ |β|n√

5
+ Fm <

|β|n√
5

+ αm <
1

2
+ αm, (3.3)
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where we take into account |β| =̃ 0.6 < 1 and
|β|n√

5
<

1

2
. Dividing both sides of (3.3) by

αn

√
5

, we obtain

|1 − 3a · α−n · √
5| <

√
5 · αm−n ·

(
1

2
α−m + 1

)
,

which implies that

|1 − 3a · α−n · √
5| <

√
5 · αm−n ·

(
1

2
+ 1

)
= 3

2

√
5 · αm−n <

4

αn−m
. (3.4)

Take the parameters t := 3, γ1 = 3, γ2 = α, γ3 = √
5, b1 = a, b2 = −n and b3 = 1 in

Lemma 5. We also notice that D = 2 and γ1, γ2, γ3 are positive real numbers and belong
to Q(

√
5).

Now it is necessary to show that � = 1 − 3a · α−n · √
5 is non-zero. Assume that

� = 1 − 3a ·α−n ·√5 = 0. Then we get α2n = 5 · 3a, which is impossible since α2n /∈ Z.

Thus we have h(γ1) = log 3, h(γ2) = h(α) = log α

2
and h(γ3) = h(

√
5) = log

√
5.

Therefore, we can choose

A1 := 2.2 ≥ max{2 log 3, | log γ1|, 0.16} = 2.1972, A2 := 0.5 , A3 := 1.7.

Now by considering a < n, we can take

B := max{|a|, | − n|, 1} = n.

According to Lemma 5, we get

|1 − 3a · α−n · √
5| > exp{−1.4 × 306 × 34.5 × 4 × (1 + log 2)(1 + log n)

× 2.2 × 0.5 × 1.7}. (3.5)

If we take logarithms in equality (3.4) and combine the calculation of the right-hand side
of (3.5), we get

(n − m) log α < 18.139 × 1011(1 + log n) + log 4. (3.6)

Using the fact that 1 + log n < 2 log n for all n ≥ 3, we have

(n − m) log α < 3.63 × 1012 log n. (3.7)

Moreover, we can obtain a second linear form by using equation (3.1) as follows:

∣∣∣∣
αn

√
5
(1 − αm−n) − 3a

∣∣∣∣ =
∣∣∣∣
βn

√
5

− βm

√
5

∣∣∣∣ ≤ |β|n + |β|m√
5

< 0.445. (3.8)
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Now dividing both sides of (3.8) by
αn

√
5
(1 − αm−n), we get

|1 − 3a · α−n · √
5 · (1 − αm−n)−1| ≤ 0.445 × √

5

αn(1 − αm−n)
.

Since αm−n = 1

αn−m
<

1

α
< 0.67, it is obvious that

1

1 − αm−n
< 2.71. Thus it follows

that

|1 − 3a · α−n · √
5 · (1 − αm−n)−1| <

2.71

αn
. (3.9)

Let � = 3a · α−n · √
5 · (1 − αm−n)−1 − 1. Now, in order to apply Lemma 5 again, we

take parameters t := 3 and

γ1 = 3, γ2 = α, γ3 = √
5 · (1 − αm−n)−1, b1 = a, b2 = −n, b3 = 1.

As before, we have D := [Q(
√

5) : Q] = 2. It is obvious that � �= 0. Because, if � = 0,

we get αn − αm = 3a
√

5. Taking the conjugate of this equation, we have βn − βm =
−3a

√
5. Addition of these two conjugate equations gives Ln − Lm = 0, which contradicts

the fact that n > m.

Hence the left-hand side of (3.9) is non-zero. As before, A1 = 2.2, A2 = 0.5 and B = n
in Lemma 5.

Now we calculate A3. For all n − m > 3, we have | log γ3| < 1. Taking the identities
(1.1), (1.2) and (1.3) into account, we get

h(γ3) = h(
√

5 · (1 − αm−n)−1)

≤ h(
√

5) + h(1) + h(αm−n) + log 2

≤ log
√

5 + |m − n| h(α) + log 2

= log
√

5 + (n − m)
log α

2
+ log 2

= (n − m)
log α

2
+ log 2

√
5.

Thus, it follows that

A3 ≥ max{2h(γ3), | log γ3|, 0.16} ≥ log 20 + (n − m) log α.

Hence, we can take A3 = log 20 + (n − m) log α.

By Lemma 5, we obtain a lower bound for the left-hand side of (3.9) as

3.03

αn
> |�| > exp{−1.4 × 306 × 34.5 × 4 × (1 + log 2)(1 + log n)

×2.2 × 0.5 × [log 20 + (n − m) log α]}.



Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:81 Page 7 of 10 81

Taking logarithms on both sides of this inequality and considering the fact that 1+ log n <

2 log n for all n > 1, we get

n log α < 2.134 × 1012 log n × [
log 20 + (n − m) log α

]
. (3.10)

By a fast calculation with Mathematica, we obtain n < 7.09616 × 1028.

If (n,m, a) is a positive integer solution of equation (3.1) with n > m, then we have
a < n < 7.09616 × 1028. We have obtained an upper bound for n and now we will reduce
this bound to a size that can be easily dealt with. For doing this, we will use Lemma 4
again.

Let z1 := a log 3 − n log α + log
√

5. By considering equation (3.4), we get

∣∣1 − ez1
∣∣ <

4

αn−m
.

Thus, by using equation (3.1) and the Binet formula, we obtain

αn

√
5

= Fn + βn

√
5

> Fn − 1 > Fn − Fm = 3a .

Hence z1 = log(3a
√

5/αn) < 0. It is obvious that
4

αn−m
< 0.945 for all n − m ≥ 3.

Therefore we get e|z1| < 18.2 and therefore, it follows that

0 < |z1| < e|z1| − 1 ≤ e|z1||1 − ez1 | <
73

αn−m
.

Thus it can be seen that

0 < |a log 3 − n log α + log
√

5| <
73

αn−m
. (3.11)

Dividing both sides of the inequality (3.11) by log α, we get

0 <

∣∣∣∣∣a
log 3

log α
− n + log

√
5

log α

∣∣∣∣∣ <
73

log α
· α−(n−m). (3.12)

Now considering Lemma 6, we have the irrational γ = log 3

log α
with

μ = log
√

5

log α
, A = 73

log α
, B = α, w = n − m.

Also, we know that a < n < 7.09616 × 1028. So it follows that M := 7.09616 × 1028,
according to Lemma 6 and q > 6M is the denominator of a convergent of the continued
fraction of γ such that ε = ‖μq‖−M ‖γ q‖ > 0. Considering the denominator of the 61-st
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convergence of
log 3

log α
, we have q = 10.52×1029. By some calculations with Mathematica,

we obtain ε = 0.154453.

According to Lemma 6, we know that there is no solution of the inequality (3.12) for

the values n − m with n − m ≥ log(Aq/ε)

log B
. Therefore, it follows that inequality (3.12)

has no solutions for n−m ≥ 157.972. This means that a bound for n−m is n−m ≤ 157.

Considering this fact in inequality (3.10), we get n < 1.29184 × 1016.

Let us work on (3.9) for finding an upper bound on n. Now take

z2 := a log 3 − n log α + log(
√

5(1 − αm−n)−1).

Thus (3.9) implies that

|1 − ez2 | <
2.71

αn
.

It is obvious that
2.71

αn
<

1

2
. If z2 > 0, then 0 < z2 < ez2 − 1 <

2.71

αn
. If z2 < 0, then

|1 − ez2 | = 1 − ez2 <
2.71

αn
<

1

2
. Thus, we get 1 − 1

2
< ez2 , so that e|z2| < 2. Therefore,

we have

0 < |z2| < e|z2| − 1 ≤ e|z2| · |1 − ez2 | < 2 × 2.71

αn
.

Thus it follows that

0 <

∣∣∣∣∣a
log 3

log α
− n + log

√
5 · (1 − αm−n)−1

log α

∣∣∣∣∣ <
5.42

log α
· α−n . (3.13)

Now considering Lemma 6, we obtain

γ = log 3

log α
, μ = log

√
5 · (1 − αm−n)−1

log α
, A = 5.42

log α
, B = α, w = n.

It is obvious that γ is irrational. Also, 3 ≤ n−m ≤ 157. Firstly, calculate the denominator
q of continued fraction of γ. Since M = 1.29184 × 1016, we must choose the 39-th
denominator q = 48, 9 × 1016 such that q > 6M = 7.75107 × 1016. Hence by applying
Lemma 6 to (3.13) with 3 ≤ n − m ≤ 157 except for n − m = 4 or 8, we obtain

ε = ‖μq40‖ − M‖γ q40‖ ≥ 0.492868

by a fast computation with Mathematica. Furthermore, according to Lemma 6, we know

that there is no solution of the inequality (3.13) for values n with n ≥ log(Aq/ε)

log B
=

91.1453. Thus, an upper bound for n must be n ≤ 91. This contradicts our assumption
that n > 100.
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Finally, we consider the cases n − m = 4 or 8. According to Lemma 1, when n ≡ m
(mod 4), we have Fn − Fm = F(n−m)/2L(n+m)/2. Thus, it follows that Fn − Fm =
F2Lm+2 = Lm+2 for n − m = 4. This gives Lm+2 = 3a . According to Lemma 2,
the possible values for m + 2 are 1, 2, 3. Since 4 � 3a and m is a non-negative integer,
we have that m + 2 �= 3 and m + 2 �= 1. If m + 2 = 2, then we get L2 = 3a . Thus,
it follows that (n,m, a) = (4, 0, 1) is a solution to (3.1). Moreover, the case n − m = 8
gives Fn − Fm = F4Lm+4 by Lemma 1 . Hence we get Lm+4 = 3a−1, which implies that
m + 4 = 1, 2, 3 by Lemma 2. This is impossible since m is a non-negative integer. �

4. Conclusion

In [7], it is shown that if n ≡ m (mod 2), then all the solutions of the equation

Fn − Fm = y p, p ≥ 2, y ≥ 1 (4.1)

satisfy max{n,m} ≤ 36. Then the authors conjectured that all the solutions of equation
(4.1) are

F1 − F0 = 1, F2 − F0 = 1, F3 − F1 = 1, F3 − F2 = 1, F4 − F3 = 1,

F5 − F1 = 22, F5 − F2 = 22, F6 − F4 = 5, F7 − F5 = 23,

F7 − F6 = 5, F8 − F5 = 24, F8 − F7 = 23, F9 − F3 = 25,

F11 − F6 = 92, F13 − F6 = 152, F13 − F11 = 122, F14 − F9 = 73,

F14 − F13 = 122, F15 − F9 = 242.

Consequently, it is true that the above conjecture is valid for y = 2, 3 by our result and
the results in [5,11]. It is reasonable to conjecture that if Fn − Fm = pa for some prime
p and positive integer a, then p = 2, 3, 5, 7.
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