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Abstract. In 2002, Luca and Walsh (J. Number Theory 96 (2002) 152–173) solved
the diophantine equation for all pairs (a, b) such that 2 ≤ a < b ≤ 100 with some
exceptions. There are sixty nine exceptions. In this paper, we give some new results
concerning the equation (an−1)(bn−1) = x2. It is also proved that this equation has no
solutions if a, b have opposite parity and n > 4 with 2|n. Here, the equation is also solved
for the pairs (a, b) = (2, 50), (4, 49), (12, 45), (13, 76), (20, 77), (28, 49), (45, 100).
Lastly, we show that when b is even, the equation (an − 1)(b2nan − 1) = x2 has no
solutions n, x .
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1. Introduction

Let a > 1 and b > 1 be fixed integers with a < b. The exponential diophantine equation

(an − 1)(bn − 1) = x2, x, n ∈ N (1)

has been studied by many authors in the literature since 2000. Firstly, Szalay [13] stud-
ied the equation (1) for (a, b) = (2, 3) and showed that this equation has no solutions
x and n. He also showed that equation (1) has only the solution (n, x) = (1, 2) for
(a, b) = (2, 5). After that, many authors studied (1) by introducing special constraints
to a or b (see [2,4,5,7–10,13,15,18–20]). In [10], Luca and Walsh proved that equation
(1) has finitely many solutions n, x for fixed (a, b) and gave the following remarkable
theorem.

Theorem 1. Let 2 ≤ a < b ≤ 100 be integers, and assume that (a, b) is not in one of the
following three sets:

A1 = {(2, 22), (4, 22)} ,

A2 = {(a, b); (a − 1)(b − 1) is a square, a ≡ b(mod 2) and (a, b) �= (9, 3), (64, 8)},
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A3 = {(a, b); (a − 1)(b − 1) is a square, a + b ≡ 1(mod 2) and ab ≡ 0(mod 4)}.
If

(ak − 1)(bk − 1) = x2, (2)

then k = 2, except for the pair (a, b) = (2, 4), in which case the only solution to (2)
occurs at k = 3.

There are 69 exceptions for (a, b) with 1 < a < b ≤ 100. Some of these pairs
are (2, 10), (2, 26), (2, 50), (2, 82), (3, 19), (3, 33), (3, 37), (3, 51), (3, 71) and (3, 99).
In [2], Cohn conjectured that equation (1) has no solutions if n > 4. Moreover, he conjec-
tured that (a3 − 1)(b3 − 1) = x2 has only the solutions

(a, b) = (2, 4), (2, 22), (3, 313), (4, 22).

The problem of finding solutions to equation (1) has not been settled yet, at least for the
pairs (a, b) in the sets described in Theorem 1. If a and b are relatively prime, it is shown
that equation (1) has no solutions when n > 2 is even and 4 � n. If a and b have opposite
parity and gcd(a, b) > 1, then we show that (1) has no solutions when n > 4 and 2|n. As
a result of these, it is shown that if a and b have opposite parity, then equation (1) has no
solutions when n > 4 and 2|n. Li and Tang [9] showed that equation (1) has no solutions
for (a, b) = (4, 13), (13, 28) if n > 1. In this paper, we give some new results which
exhausts many pairs (a, b) in the sets described in Theorem 1. Especially, we solve (1)
for the pairs (a, b) = (2, 50), (4, 49), (12, 45), (13, 76), (20, 77), (28, 49) and (45, 100).
Lastly, we show that when b is even, (an − 1)(b2nan − 1) = x2 has no solutions n, x .

In section 2, we give some basic definitions and lemmas and in section 3, we give the
proofs of our main theorems and corollaries.

Now, we state our main theorems and corollaries. For a nonzero integer m, we write
ν2 (m) for the exponent of 2 in the factorization ofm. Ifm is odd, it is clear that ν2 (m) = 0.

Theorem 2. Let gcd(a, b) = 1. If (an − 1)(bn − 1) = x2 for some integers x with 2|n
and 4 � n, then n = 2.

Theorem 3. Let ν2 (a) �= ν2 (b) and gcd(a, b) > 1. Then the equation (an−1)(bn−1) =
x2 has no solutions n, x with 2|n.

COROLLARY 4

If a and b have opposite parity, then the equation (an − 1)(bn − 1) = x2 has no solutions
for n > 4 with 2|n.

Theorem 5. Let a � b and b � a with g = gcd(a, b) > 1. If g2 > a or g2 > b, then the
equation (an − 1)(bn − 1) = x2 has no solutions x, n with 2|n. If a|b and a2 > b, then
the same is true.

Theorem 6. Let a, b be odd and g = gcd(a, b) > 1. If a/g ≡ 3(mod 4) or b/g ≡
3(mod 4), then the equation (an − 1)(bn − 1) = x2 has no solutions n, x with 2|n and
4 � n.
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Theorem 7. The equation (2n − 1)(50n − 1) = x2 has only the solution n = 1, x = 7.

Theorem 8. Let b be even. Then the equation (an − 1)(b2nan − 1) = x2 has no solutions
n, x.

COROLLARY 9

Let (a, b) = (13, 76), (4, 49), (28, 49), (45, 100), (20, 77), (12, 45). If the equation (an−
1)(bn − 1) = x2 has a solution, then n = 1 and all solutions are given by

(n, x) = (1, 30), (1, 12), (1, 36), (1, 66), (1, 38), (1, 22),

respectively.

2. Some basic definitions and lemmas

In the proof of our main theorems, we will use the sequences (Un(P, Q)) and (Vn(P, Q))

given in the following manner:
Let P and Q be non-zero coprime integers such that P2 + 4Q �= 0. Define

U0(P, Q) = 0,U1(P, Q) = 1,Un+1(P, Q)

= PUn(P, Q) + QUn−1(P, Q) (for n ≥ 1),

V0(P, Q) = 2, V1(P, Q) = P, Vn+1(P, Q)

= PVn(P, Q) + QVn−1(P, Q) (for n ≥ 1).

These sequences are called the first and second kinds of Lucas sequence, respectively.
Sometimes, we write Un and Vn instead of Un(P, Q) and Vn(P, Q). It is well known that

Un = αn − βn

α − β
and Vn = αn + βn, (3)

where α = (P + √
P2 + 4Q)/2 and β = (P − √

P2 + 4Q)/2. The following identities
are valid for the terms of the sequences (Un) and (Vn) (see [12]):

Let d = gcd(m, n). Then

gcd(Um,Un) = Ud (4)

and

gcd(Vm, Vn) =
{
Vd if m/d and n/d are odd,

1 or 2 otherwise.
(5)

If P is even, then Vn is even and

2|Un if and only if 2|n. (6)
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Moreover, we have

V2n(P,−1) = V 2
n (P,−1) − 2, (7)

V3n(P,−1) = Vn(P,−1)(V 2
n (P,−1) − 3) (8)

and

Vn(P,−1) = Un+1(P,−1) −Un−1(P,−1). (9)

The proof of the following lemma can be found in [3].

Lemma 10. If P ≡ 0(mod 2), then

ν2 (Vn (P,−1)) =
{

ν2 (P) if n ≡ 1(mod 2),

1 if n ≡ 0(mod 2).
(10)

Lemma 11 [14]. Let n ∈ N∪ {0}, m, r ∈ Z and m be a nonzero integer. Then

U2mn+r (P,−1) ≡ Ur (P,−1) (modUm(P,−1)) (11)

and

V2mn+r (P,−1) ≡ Vr (P,−1) (modUm(P,−1)). (12)

From (11) and (12), we can deduce the following.

Lemma 12. 5|Vn(P,−1) if and only if 5|P and n is odd.

Let d be a positive integer which is not a perfect square and consider the Pell equation

x2 − dy2 = 1. (13)

If x1 + y1
√
d is the fundamental solution of equation (13 ), then all the positive integer

solutions of this equation are given by

xn + yn
√
d = (x1 + y1

√
d)n (14)

with n ≥ 1. From (3) and (14), the following lemma can be given (see also [11], page 22).

Lemma 13. Let x1 + y1
√
d be the fundamental solution of equation x2 − dy2 = 1. Then

all positive integer solutions of the equation x2 − dy2 = 1 are given by

xn = Vn(2x1,−1)

2
and yn = y1Un(2x1,−1)

with n ≥ 1.
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Lemma 14. Let n be even, say n = 2k and (an − 1)(bn − 1) = x2 for some integer x.
Then there exist positive integers m and r with gcd(m, r) = 1 such that

ak = Vm(2x1,−1)/2, bk = Vr (2x1,−1)/2,

where x1 > 1.

Proof. Let d = gcd(an − 1, bn − 1). Then an − 1 = du2 and bn − 1 = dv2 for some
integers u and v with gcd(u, v) = 1. It is seen that d is not a perfect square. Let n = 2k.
Then (ak)2 − du2 = 1 and (bk)2 − dv2 = 1. Assume that x1 + y1

√
d is the fundamental

solution of the equation x2 − dy2 = 1. Then by Lemma 13, we get

ak = Vm(2x1,−1)/2, u = y1Um(2x1,−1)

and

bk = Vr (2x1,−1)/2, v = y1Ur (2x1,−1)

for some m ≥ 1 and r ≥ 1. Since gcd(u, v) = 1, it follows that 1 = gcd(u, v) =
gcd(y1Um(2x1,−1), y1Ur (2x1,−1)) = y1 gcd(Um,Ur ) = y1Ugcd(m,r) by (4). Therefore
y1 = 1 and gcd(m, r) = 1. Since x2

1 −dy2
1 = 1, it follows that x2

1 = 1+dy2
1 = 1+d > 1

and so x1 > 1. �

The following lemma can be deduced from [1] and [16].

Lemma 15. Let p > 3 be a prime. Then the equation x p = 2y2 − 1 has only the solution
(x, y) = (1, 1) in non-negative integers. The equation x3 = 2y2 −1 has only the solutions
(x, y) = (1, 1) and (23, 78) in non-negative integers.

The following lemma is given in [2].

Lemma 16. If the equation (an −1)(bn −1) = x2 has a solution n, x with 4|n, then n = 4
and (a, b) = (13, 339).

Lemma 17 [17]. Let a be a positive integer which is not a perfect square and b be a positive
integer for which the quadratic equation ax2 − by2 = 1 is solvable in positive integers
x, y. If u1

√
a+v1

√
b is its minimal solution, then the formula xn

√
a+ yn

√
b = (u1

√
a+

v1
√
b)2n+1(n ≥ 0) gives all the positive integer solutions of the equation ax2 − by2 = 1.

Although the following lemma is given in [6], we will give its proof for the sake of
completeness.

Lemma 18. Let a be a positive integer which is not a perfect square and b be a positive
integer. Let u1

√
a + v1

√
b be the minimal solution of the equation ax2 − by2 = 1 and

P = 4au2
1 − 2. Then all the positive integer solutions of the equation ax2 − by2 = 1 are

given by (x, y) = (u1(Un+1 −Un), v1(Un+1 +Un)) with n ≥ 0, where Un = Un(P,−1).
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Proof. Since w = u1
√
a + v1

√
b is the minimal solution of the equation ax2 − by2 = 1,

all positive integer solutions of the equation ax2 − by2 = 1 are given by the formula
xn

√
a + yn

√
b = w2n+1 with n ≥ 0, by Lemma 17. Then we get

xn = w2n+1 + z2n+1

2
√
a

and yn = w2n+1 − z2n+1

2
√
b

,

where z = u1
√
a − v1

√
b. By using the fact that au2

1 − bv2
1 = 1, it is seen that

w2 = au2
1 + bv2

1 + 2u1v1
√
ab = 2au2

1 + 2bv2
1 + 4u1v1

√
ab

2

=
2au2

1 + 2au2
1 − 2 +

√
16u2

1v
2
1ab

2
=

4au2
1 − 2 +

√
(4au2

1 − 2)2 − 4

2

= (P +
√
P2 − 4)/2.

Similarly, it can be seen that

z2 = (P −
√
P2 − 4)/2.

Let

α = (P +
√
P2 − 4)/2 and β = (P −

√
P2 − 4)/2.

By using (3) and (9), a simple calculation shows that

xn = w2n+1 + z2n+1

2
√
a

= wαn + zβn

2
√
a

= u1Vn + u1(P − 2)Un

2
= u1(Un+1 −Un)

and

yn = w2n+1 − z2n+1

2
√
b

= wαn − zβn

2
√
b

= v1Vn + v1(P + 2)Un

2
= v1(Un+1 +Un).

This completes the proof. �

3. Proofs of theorems and corollaries

Proof of Theorem 2. Let n = 2k with k odd. Then by Lemma 14, we get

ak = Vm(2x1,−1)/2, bk = Vr (2x1,−1)/2

for some m ≥ 1, r ≥ 1 with gcd(m, r) = 1 and x1 > 1. Now assume that m and r are
both odd. Then 2 = gcd(2ak, 2bk) = gcd(Vm, Vr ) = Vgcd(m,r) = V1 = 2x1 by (5). This
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implies that x1 = 1, which is impossible. Therefore, one of m and r must be even, say
m = 2t . Then 2ak = Vm = V2t = V 2

t − 2 by (7). Let Vt = 2c. Then it follows that
2ak = 4c2 − 2, which yields

ak = 2c2 − 1. (15)

Assume that k ≥ 3. If k has a prime factor p > 3, then (15) is impossible by Lemma 15
since a > 1. Let k = 3t = 3z with z ≥ 1. Then (az)3 = 2c2 − 1 and therefore
az = 23, c = 78 by Lemma 15. This shows that z = 1, a = 23 and n = 6. Thus
236 − 1 = du2 and b6 − 1 = dv2. Since (Vt/2, y1Ut ) = (Vt/2,Ut ) is a solution of the
equation x2 − dy2 = 1, it is seen that dU 2

t = (Vt/2)2 − 1. Since Vt = 2c = 2 · 78, we get

dU 2
t = 782 − 1 = 7 · 11 · 79,

which shows that d = 7 · 11 · 79 = 6083. Then b6 = dv2 + 1 = 6083v2 + 1 ≡
3v2 + 1(mod 8). Since gcd(236 − 1, b6 − 1) = d = 6083, it is seen that b must be even.
But this is impossible since b6 ≡ 3v2 + 1(mod 8). Thus we conclude that k = 1 and
therefore n = 2. �

Proof of Theorem 3. Assume that n = 2k. Then by Lemma 14, we get

ak = Vm(2x1,−1)/2, bk = Vr (2x1,−1)/2

for some m ≥ 1, r ≥ 1 with gcd(m, r) = 1 and x1 > 1. Since gcd(Vm, Vr ) =
gcd(2ak,, 2bk) = 2 (gcd(a, b))k > 2, it follows that m and r are odd by (5). Moreover,
we have 2ak = Vm and 2bk = Vr , which implies that

ν2(2a
k) = ν2(Vm) = ν2(2x1)

and

ν2(2b
k) = ν2(Vr ) = ν2(2x1)

by (10). Therefore, ν2(2ak) = ν2(2bk), which is impossible since ν2(a) �= ν2(b). This
completes the proof. �

Proof of Corollary 4. The proof follows from Lemma 16, Theorem 2 and Theorem 3. �

Proof of Theorem 5. Let (an − 1)(bn − 1) = x2 and n = 2k. Then (ak)2 − du2 = 1 and
(bk)2 − dv2 = 1 for some integers u and v with gcd(u, v) = 1. Assume that x1 + y1

√
d

is the fundamental solution of the equation x2 − dy2 = 1. Then by Lemma 13, we get

ak = Vm(2x1,−1)/2, u = y1Um(2x1,−1)

and

bk = Vr (2x1,−1)/2, v = y1Ur (2x1,−1)
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for some m ≥ 1 and r ≥ 1. Since (u, v) = 1, it is seen that y1 = 1 and gcd(m, r) = 1.
Since gcd(Vm, Vr ) = gcd(2ak, 2bk) = 2 (gcd(a, b))k > 2, it follows that m and r
are both odd by (5). Thus we get 2x1 = V1 = gcd(Vm, Vr ) = 2 (gcd(a, b))k . That is,
x1 = (gcd(a, b))k . Since g = gcd(a, b), it follows that d = x2

1 − 1 = gn − 1. Let a = gc
and b = ge. Since d|an − 1 and d|bn − 1, gn − 1|gncn − 1 and gn − 1|gnen − 1. Thus
gn − 1|cn − 1 and gn − 1|en − 1. Since c > 1 and e > 1, we get g ≤ c and g ≤ e. Then
it follows that a ≥ g2 and b ≥ g2, which contradicts the hypothesis. This completes the
proof. �

Proof of Theorem 6. Let n = 2k with k odd. Then there exist relatively prime integers u
and v such that

2ak = Vm(P,−1), u = y1Um(P,−1) (16)

and

2bk = Vr (P,−1), u = y1Ur (P,−1), (17)

by Lemma 13, where P = 2x1. Since gcd(u, v) = 1, it is seen that y1 = 1 and gcd(m, r) =
1. Let g = gcd(a, b). Thus (Vm, Vr ) = (2ak, 2bk) = 2gk > 2. Then m and r are odd
and so (Vm, Vr ) = V1 = P by (5). Thus P = 2gk . Since g and k are odd, it follows that
P ≡ 2g(mod 8). Then an induction method shows that Vn ≡ 2(mod 8) if n is even and
Vn ≡ 2g(mod 8) if n is odd. Let a = gc and b = ge. Then, from (16) and (17), it follows
that Vm = Pck and Vr = Pek . Thus we conclude that Pck ≡ Pek ≡ 2g(mod 8), that
is, 2gck ≡ 2gek ≡ 2g(mod 8). This implies that 2c ≡ 2(mod 8) and 2e ≡ 2(mod 8).
Therefore, c ≡ 1(mod 4) and e ≡ 1(mod 4). But this contradicts the hypothesis. This
completes the proof. �

Proof of Theorem 8. Assume that n is even, say n = 2k and (an − 1)(anb2n − 1) = x2 .
Then

ak = Vm(2x1,−1)/2, bnak = Vr (2x1,−1)/2

for some m ≥ 1, r ≥ 1 with gcd(m, r) = 1 and x1 > 1 by Lemma 14. Moreover,
gcd(Vm, Vr ) = gcd(2ak, 2bnak) = 2ak > 2. Then by (5), we see that m and r are odd.
Thus 2x1 = V1 = Vgcd(m,r) = (Vm, Vr ) = 2ak . This implies that 2bnak = Vr (2x1,−1) =
Vr (2ak,−1), which gives a contradiction by (10) since r is odd and b is even.

Now assume that n is odd, say n = 2k+1. Thus a(ak)2−du2 = 1 and a(akbn)2−dv2 =
1. Assume that a is not a perfect square. Let u1

√
a + v1

√
b be the minimal solution of the

equation ax2 − by2 = 1 and P = 4au2
1 − 2. Then by Lemma 18, we get

ak = u1(Um1+1 −Um1)

and

akbn = u1(Um2+1 −Um2)



Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:69 Page 9 of 12 69

for some non-negative integers m1 and m2, where Un = Un(P,−1). From the above, we
get Um2+1 − Um2 = bn(Um1+1 − Um1). But this is impossible since Um2+1 − Um2 and
Um1+1 − Um1 are odd by (6 ) and b is even. If a is a perfect square, say a = c2, then
(c2n − 1)(c2nb2n − 1) = x2. Thus by Lemma 14, we get

cn = Vm(2x1,−1)/2, (cb)n = Vr (2x1,−1)/2

for some m ≥ 1 and r ≥ 1 with gcd(m, r) = 1. Since gcd(Vm, Vr ) > 2, it is seen that m
and r are odd by (5). Moreover, we get Vr = bnVm . But this is impossible by (10) since b
is even. �

Proof of Theorem 7. Clearly, (n, x) = (1, 7) is a solution. Let d = gcd(2n − 1, 50n − 1).
Then 2n−du2 = 1 and 50n−dv2 = 1 for some positive integersu and v with gcd(u, v) = 1
Assume that n is even, say n = 2k. Let x1 + √

dy1 be the fundamental solution of
x2 − dy2 = 1. By Lemma 13, we get

2k = Vm(2x1,−1)/2, 50k = Vr (2x1 − 1)/2

and

u = y1Um(2x1,−1), v = y1Ur (2x1,−1)

for some positive integers m and r . Since gcd(u, v) = 1 and gcd(Vm, Vr ) = 2 · 2k > 2, it
follows that (m, r) = 1 and m, r are odd by (5). On the other hand, 5|Vr implies that 5|x1
by Lemma 12, which yields 5|2k . This is a contradiction. Now assume that n is odd and
n = 2k + 1 > 1. Then

x2 = (2n − 1)(50n − 1) ≡ (−1)(4k · 2 − 1) ≡ (−1)(2(−1)k − 1)(mod 5).

This shows that k is even. Let u1
√

2 + v1
√
d be the minimal solution of the equation

2x2 − dy2 = 1. Since 2(2k)2 − du2 = 1 and 2(5n2k)2 − dv2 = 1, we get

2k = u1(Um1+1 −Um1), u = v1(Um1+1 +Um1) (18)

and

5n2k = u1(Um2+1 −Um2), v = v1(Um2+1 +Um2) (19)

for some non-negative integers m1,m2 by Lemma 18, where Un = Un(P,−1) and P =
4au2

1 − 2 = 8u2
1 − 2. Since Um1+1 − Um1 is odd by (6), it follows that u1 = 2k and

Um1+1 − Um1 = 1. Therefore, m1 = 0. Moreover, we get that 5n = (Um2+1 − Um2) by
(18) and (19). Since m1 = 0, we have u = v1 by (18). From (18) and (19), it follows that
v1| gcd(u, v), which yields v1 = 1 since gcd(u, v) = 1. Therefore, u = v1 = 1. This
implies that d = 2n − 1 since 2n − du2 = 1.

Since 2k
√

2 + √
d is the minimal solution of the equation 2x2 − dy2 = 1, (2k

√
2 +√

d)2 = 2n + d + 2k+1
√

2d = 2n + 2n − 1 + 2k+1
√

2d = 2n+1 − 1 + 2k+1
√

2d is the
fundamental solution of the equation x2 − 2dy2 = 1. Moreover, (5n2k

√
2 + v

√
d)2 =
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52n22k+1 + dv2 + 2k+15nv
√

2d = 52n2n + 50n − 1 + 2k+15nv
√

2d = 2 · (50)n − 1 +
2k+15nv

√
2d is a solution of the equation x2 − 2dy2 = 1. Then by Lemma 13, we get

2 · 50n − 1 = Vm(P,−1)/2, 2k+15nv = 2k+1Um(P,−1)

for some m ≥ 1, where P = 2(2n+1 − 1). Since k is even and n = 2k + 1, it is seen
that P ≡ 1(mod 5). Therefore, we get U3 = P2 − 1 ≡ 0(mod 5). Let m = 6q + r
with 0 ≤ r ≤ 5. Then Um ≡ Ur (modU3), which implies that Um ≡ Ur (mod 5) by
(11). Then it follows that 3|m since 5|Um . Let m = 3t . Then 2w2 − 2 = Vm(P,−1) =
V3t = Vt (V 2

t − 3) = V 3
t − 3Vt by (8), where w = 10 · 50k . Let Vt = 2z. Then we get

w2 = 4z3 −3z+1 = (z+1)(2z−1)2. Since 3 � w, it follows that gcd(z+1, 2z−1) = 1.
Then

z + 1 = r2, (2z − 1)2 = s2

with rs = w = 2k+15n . Since gcd(r, s) = 1, it is seen that r = w and s = 1 or r = 2k+1

and s = 5n . Let s = 1. Then z = 1, which implies that Vt = 2. Therefore, t = 0 and
this yields m = 0. This is impossible since Um = 5nv. Let r = 2k+1 and s = 5n . Then
z = r2 − 1 = 2n+1 − 1 and 2z − 1 = 5n . This implies that 5n + 1 = 2n+2 − 2. Therefore,
5n − 1 = 4(2n − 1). Then we get 2n − 1 = 1 + 5 + · · · + 5n−1 ≡ n(mod 4) and so
n = −1(mod 4). This is impossible since n ≡ 1(mod 4). We conclude that n = 1. Thus
the proof of the theorem is complete. �

Proof of Corollary 9. Let (a, b) = (13, 76). Since (132 − 1)(762 − 1) is not a perfect
square, we may suppose that n is odd by Theorem 2 and Lemma 16. Clearly, (n, x) =
(1, 30) is a solution. Assume that n ≥ 3. Let A = 1 + 13 + 132 + · · · + 13n−1 and B =
1+76+762 +· · ·+76n−1. Then A ≡ ( n+1

2 )·1+( n−1
2 )·5(mod 8) and B ≡ 5(mod 8) since

132 j ≡ 1(mod 8) and 132 j+1 ≡ 5(mod 8). This implies that AB ≡ 5(3n − 2)(mod 8),

which yields n ≡ 5(mod 8) since AB is an odd perfect square. Let n = 5+8k with k ≥ 0.
Then, since 138 ≡ 1(mod 17) and 768 ≡ 1(mod 17), we get

x2 = (13n − 1)(76n − 1) ≡ (135 − 1)(765 − 1) ≡ ((−4)5 − 1)(85 − 1) ≡
≡ −(45 + 1)(85 − 1) ≡ −40 ≡ 11(mod 17).

But this is impossible since
( 11

17

) = ( 17
11

) =
(−5

11

)
= (−1)

(
5
11

)
= −1 . This completes

the proof.
Let (a, b) = (4, 49). Clearly, (n, x) = (1, 12) is a solution. Assume that (4n −1)(49n −

1) = x2. Then (22n −1)(72n −1) = x2. By Lemma 16 and Theorem 2, we obtain 2n = 2,

which yields n = 1. This completes the proof.
Let (a, b) = (28, 49). Since gcd(28, 49) = 7 and ν2 (28) �= ν2 (49), by Theorem 3, we

may suppose that n is odd. Clearly (n, x) = (1, 36) is a solution. Assume that n ≥ 3. Let
A = 1+28+282 +· · ·+28n−1 and B = 1+49+492 +· · ·+49n−1. Then A ≡ 5(mod 8)

and B ≡ n(mod 8). This implies that 5n ≡ 1(mod 8) since AB is an odd perfect square.
Then it follows that n ≡ 5(mod 8). Let n = 5 + 8k. Since

( 28
17

) = −1 and
( 49

17

) = 1,

we get 288 ≡ −1(mod 17) and 498 ≡ 1(mod 17). Then x2 = (28n − 1)(49n − 1) ≡
(285(−1)k −1)(495 −1)(mod 17), which implies that x2 ≡ (10(−1)k −1)(mod 17) since
495 −1 ≡ 1(mod 17). Therefore, k must be even. Then we get n ≡ 5, 21, 37(mod 48). Let
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n ≡ 5(mod 48). Then x2 ≡ (28n−1)(49n−1) ≡ (285−1)(495−1) ≡ 5·3 ≡ 2(mod 13),

which is impossible since
( 2

13

) = −1. If n ≡ 21(mod 48), then x2 ≡ (2821 − 1)(4921 −
1) ≡ 4 · 11 ≡ 5(mod 13), which is impossible since

(
5
13

)
= ( 13

5

) = ( 3
5

) = −1.

Therefore, n ≡ 37(mod 48). Then we get n ≡ 37, 85, 133, 181, 229(mod 240). Let n ≡
37(mod 240). Then x2 ≡ (2837 − 1)(4937 − 1) ≡ 11(mod 31), which is impossible

since
( 11

31

) = (−20
31

) = −
(

5
31

)
= − ( 31

5

) = −1. Let n ≡ 85(mod 240). Then x2 ≡
(2885 − 1)(4985 − 1) ≡ 3(mod 31), which is impossible since

( 3
31

) = − ( 31
3

) = −1.
Let n ≡ 181(mod 240). Then x2 ≡ (28181 − 1)(49181 − 1) ≡ 102(mod 241). But this is

impossible since
( 102

241

) = ( 2
241

) (
51
241

)
= ( 241

51

) = ( 37
51

) =
(

51
37

)
= ( 14

37

) = ( 2
37

) ( 7
37

) =
− ( 7

37

) = − ( 37
7

) = − ( 2
7

) = −1. Let n ≡ 229(mod 240), then x2 ≡ (28229 −1)(49229 −
1) ≡ 8(mod 11), which is impossible since

( 8
11

) = −1. This completes the proof.
Let (a, b) = (45, 100). Since gcd(45, 100) = 5 and ν2 (45) �= ν2 (100) , by Theorem 3,

we may suppose that n is odd. It is obvious that(n, x) = (1, 66) is a solution. Suppose that
n ≥ 3. Then it can be seen that n ≡ 5(mod 8). Therefore,

n ≡ 5, 13, 21, 29, 37, 45, 53, 61, 69(mod 72).

Let n ≡ 5(mod 72). Then x2 ≡ (455−1)(1005−1) ≡ 5(mod 7), which is impossible since(
5
7

)
= −1. Let n ≡ 21(mod 72). Then we get x2 ≡ 43(mod 73), which is a contradiction

since
( 43

73

) = −1. If n ≡ 29(mod 72), then we use mod 7 to get a contradiction. If
n ≡ 53(mod 72), then x2 ≡ 13(mod 37), which gives a contradiction since

( 13
37

) = −1.
If n ≡ 37, 45, 61, 69(mod 72), then we get x2 ≡ 45, 15, 31, 10(mod 73) respectively,

which gives a contradiction since
( 43

73

) =
(

45
73

)
=

(
15
73

)
= ( 31

73

) = ( 10
73

) = −1. Let

n ≡ 13(mod 72). Then n ≡ 13, 85, 157(mod 216). Thus x2 ≡ 14, 13, 59(mod 109),

which is impossible since
( 14

109

) = ( 13
109

) =
(

59
109

)
− 1. This completes the proof . We

omit the proof in the case (a, b) = (20, 77), (12, 45) as the proof is similar. �
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[14] Şiar Z and Keskin R, Some new identities concerning generalized Fibonacci and Lucas num-

bers, Hacet. J. Math. Stat. 42 (2013) 211–222
[15] Tang M, A note on the exponential diophantine equation (am − 1)(bn − 1) = x2, J. Math.

Research and Exposition 31(6) (2011) 1064–1066
[16] van der Waall R W, On the diophantine equation x2 + x + 1 = 3y2, x3 − 1 = 2y2 and

x3 + 1 = 2y2, Simon Stevin 46 (1972/73) 39–51
[17] Walker D T, On the diophantine equation mX2 − nY 2 = ±1, Amer. Math. Montly 74 (1967)

504–513
[18] Walsh P G, On diophantine equations of the form (xn − 1)(ym − 1) = z2, Tatra Math. Publ.

20 (2000) 87–89
[19] Xioyan G, A note on the diophantine equation (an − 1)(bn − 1) = x2, Period. Math. Hungar.

66 (2013) 87–93
[20] Yuan P and Zhang Z, On the diophantine equation (an − 1)(bn − 1) = x2, Publ. Math.

Debrecen 80 (2012) 327–331

Communicating Editor: B Sury

https://math.dartmouth.edu/archive/m105f12/public_html/lucaHungary1.pdf
https://math.dartmouth.edu/archive/m105f12/public_html/lucaHungary1.pdf

	A note on the exponential diophantine equation  (an-1)(bn-1)=x2
	1.  Introduction
	2.  Some basic definitions and lemmas
	3.  Proofs of theorems and corollaries
	References




