

A note on the exponential diophantine equation $(a^n - 1)(b^n - 1) = x^2$

REFİK KESKİN

Department of Mathematics, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey E-mail: rkeskin@sakarya.edu.tr

MS received 7 February 2018; revised 21 June 2018; accepted 13 April 2019; published online 27 July 2019

Abstract. In 2002, Luca and Walsh (*J. Number Theory* **96** [\(2002\)](#page-11-0) 152–173) solved the diophantine equation for all pairs (a, b) such that $2 \le a \le b \le 100$ with some exceptions. There are sixty nine exceptions. In this paper, we give some new results concerning the equation $(a^n - 1)(b^n - 1) = x^2$. It is also proved that this equation has no solutions if *a*, *b* have opposite parity and $n > 4$ with $2|n$. Here, the equation is also solved for the pairs $(a, b) = (2, 50), (4, 49), (12, 45), (13, 76), (20, 77), (28, 49), (45, 100).$ Lastly, we show that when *b* is even, the equation $(a^n - 1)(b^{2n}a^n - 1) = x^2$ has no solutions *n*, *x*.

Keywords. Pell equation; exponential diophantine equation; Lucas sequence.

Mathematics Subject Classification. 11D61, 11D31, 11B39.

1. Introduction

Let $a > 1$ and $b > 1$ be fixed integers with $a < b$. The exponential diophantine equation

$$
(an - 1)(bn - 1) = x2, x, n \in \mathbb{N}
$$
 (1)

has been studied by many authors in the literature since 2000. Firstly, Szalay [\[13\]](#page-11-1) stud-ied the equation [\(1\)](#page-0-0) for $(a, b) = (2, 3)$ and showed that this equation has no solutions *x* and *n*. He also showed that equation [\(1\)](#page-0-0) has only the solution $(n, x) = (1, 2)$ for $(a, b) = (2, 5)$. After that, many authors studied [\(1\)](#page-0-0) by introducing special constraints to *a* or *b* (see [\[2](#page-10-0)[,4](#page-10-1)[,5](#page-10-2),[7](#page-10-3)[–10,](#page-11-0)[13](#page-11-1)[,15](#page-11-2)[,18](#page-11-3)[–20](#page-11-4)]). In [\[10\]](#page-11-0), Luca and Walsh proved that equation [\(1\)](#page-0-0) has finitely many solutions n, x for fixed (a, b) and gave the following remarkable theorem.

Theorem 1. Let $2 \le a < b \le 100$ be integers, and assume that (a, b) is not in one of the *following three sets*:

$$
A_1 = \{(2, 22), (4, 22)\},
$$

\n
$$
A_2 = \{(a, b); (a - 1)(b - 1) \text{ is a square}, a \equiv b \pmod{2} \text{ and } (a, b) \neq (9, 3), (64, 8)\},
$$

$$
A_3 = \{(a, b); (a - 1)(b - 1) \text{ is a square}, a + b \equiv 1 \text{ (mod 2)} \text{ and } ab \equiv 0 \text{ (mod 4)}\}.
$$

If

$$
(ak - 1)(bk - 1) = x2,
$$
\n(2)

then $k = 2$, *except for the pair* $(a, b) = (2, 4)$, *in which case the only solution to* [\(2\)](#page-1-0) *occurs at* $k = 3$ *.*

There are 69 exceptions for (a, b) with $1 \le a \le b \le 100$. Some of these pairs are (2, 10), (2, 26), (2, 50), (2, 82), (3, 19), (3, 33), (3, 37), (3, 51), (3, 71) and (3, 99). In [\[2\]](#page-10-0), Cohn conjectured that equation [\(1\)](#page-0-0) has no solutions if $n > 4$. Moreover, he conjectured that $(a^3 - 1)(b^3 - 1) = x^2$ has only the solutions

$$
(a, b) = (2, 4), (2, 22), (3, 313), (4, 22).
$$

The problem of finding solutions to equation (1) has not been settled yet, at least for the pairs (*a*, *b*) in the sets described in Theorem [1.](#page-0-1) If *a* and *b* are relatively prime, it is shown that equation [\(1\)](#page-0-0) has no solutions when $n > 2$ is even and $4 \nmid n$. If *a* and *b* have opposite parity and $gcd(a, b) > 1$, then we show that [\(1\)](#page-0-0) has no solutions when $n > 4$ and $2|n$. As a result of these, it is shown that if *a* and *b* have opposite parity, then equation [\(1\)](#page-0-0) has no solutions when $n > 4$ and $2|n$. Li and Tang [\[9\]](#page-11-5) showed that equation [\(1\)](#page-0-0) has no solutions for $(a, b) = (4, 13)$, $(13, 28)$ if $n > 1$. In this paper, we give some new results which exhausts many pairs (a, b) in the sets described in Theorem [1.](#page-0-1) Especially, we solve (1) for the pairs $(a, b) = (2, 50), (4, 49), (12, 45), (13, 76), (20, 77), (28, 49)$ and $(45, 100)$. Lastly, we show that when *b* is even, $(a^n - 1)(b^{2n}a^n - 1) = x^2$ has no solutions *n*, *x*.

In section [2,](#page-2-0) we give some basic definitions and lemmas and in section [3,](#page-5-0) we give the proofs of our main theorems and corollaries.

Now, we state our main theorems and corollaries. For a nonzero integer *m*, we write v_2 (*m*) for the exponent of 2 in the factorization of *m*. If *m* is odd, it is clear that v_2 (*m*) = 0.

Theorem 2. *Let* $gcd(a, b) = 1$ *. If* $(a^n - 1)(b^n - 1) = x^2$ *for some integers x with* $2|n|$ and 4 $\nmid n$, *then* $n = 2$.

Theorem 3. Let ν_2 (*a*) $\neq \nu_2$ (*b*) and $gcd(a, b) > 1$. Then the equation $(a^n - 1)(b^n - 1) =$ x^2 *has no solutions n, x with* $2|n$.

COROLLARY 4

If a and b have opposite parity, then the equation $(a^n - 1)(b^n - 1) = x^2$ *has no solutions for* $n > 4$ *with* $2|n$.

Theorem 5. Let $a \nmid b$ and $b \nmid a$ with $g = \gcd(a, b) > 1$. If $g^2 > a$ or $g^2 > b$, then the *equation* $(a^n - 1)(b^n - 1) = x^2$ *has no solutions x, n with* 2|*n. If a*|*b and* $a^2 > b$ *, then the same is true.*

Theorem 6. *Let a, b be odd and g* = $gcd(a, b) > 1$ *. If a*/*g* = 3(mod 4) *or b*/*g* = 3(mod 4), *then the equation* $(a^n - 1)(b^n - 1) = x^2$ *has no solutions n, x with* 2|*n and* $4 \nmid n$.

Theorem 7. *The equation* $(2^n - 1)(50^n - 1) = x^2$ *has only the solution* $n = 1, x = 7$ *.*

Theorem 8. *Let b be even. Then the equation* $(a^n - 1)(b^{2n}a^n - 1) = x^2$ *has no solutions n*, *x.*

COROLLARY 9

Let (*a*, *b*) = (13, 76), (4, 49), (28, 49), (45, 100), (20, 77), (12, 45)*. If the equation* (*aⁿ* − $1)(b^n - 1) = x^2$ *has a solution, then n* = 1 *and all solutions are given by*

$$
(n, x) = (1, 30), (1, 12), (1, 36), (1, 66), (1, 38), (1, 22),
$$

respectively.

2. Some basic definitions and lemmas

In the proof of our main theorems, we will use the sequences $(U_n(P, Q))$ and $(V_n(P, Q))$ given in the following manner:

Let *P* and *Q* be non-zero coprime integers such that $P^2 + 4Q \neq 0$. Define

$$
U_0(P, Q) = 0, U_1(P, Q) = 1, U_{n+1}(P, Q)
$$

= $PU_n(P, Q) + QU_{n-1}(P, Q)$ (for $n \ge 1$),

$$
V_0(P, Q) = 2, V_1(P, Q) = P, V_{n+1}(P, Q)
$$

= $PV_n(P, Q) + QV_{n-1}(P, Q)$ (for $n \ge 1$).

These sequences are called the first and second kinds of Lucas sequence, respectively. Sometimes, we write U_n and V_n instead of $U_n(P, Q)$ and $V_n(P, Q)$. It is well known that

$$
U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \quad \text{and} \quad V_n = \alpha^n + \beta^n,
$$
 (3)

where $\alpha = (P + \sqrt{P^2 + 4Q})/2$ and $\beta = (P - \sqrt{P^2 + 4Q})/2$. The following identities are valid for the terms of the sequences (U_n) and (V_n) (see [\[12](#page-11-6)]):

Let $d = \gcd(m, n)$. Then

$$
\gcd(U_m, U_n) = U_d \tag{4}
$$

and

$$
\gcd(V_m, V_n) = \begin{cases} V_d & \text{if } m/d \text{ and } n/d \text{ are odd,} \\ 1 \text{ or } 2 & \text{otherwise.} \end{cases}
$$
 (5)

If *P* is even, then V_n is even and

$$
2|U_n \text{ if and only if } 2|n. \tag{6}
$$

Moreover, we have

$$
V_{2n}(P, -1) = V_n^2(P, -1) - 2,\tag{7}
$$

$$
V_{3n}(P, -1) = V_n(P, -1)(V_n^2(P, -1) - 3)
$$
\n(8)

and

$$
V_n(P,-1) = U_{n+1}(P,-1) - U_{n-1}(P,-1).
$$
\n(9)

The proof of the following lemma can be found in [\[3](#page-10-4)].

Lemma 10*. If* $P \equiv 0 \pmod{2}$ *, then*

$$
\nu_2\left(V_n\left(P,-1\right)\right) = \begin{cases} \nu_2\left(P\right) & \text{if } n \equiv 1 \text{(mod 2)},\\ 1 & \text{if } n \equiv 0 \text{(mod 2)}. \end{cases} \tag{10}
$$

Lemma 11 [\[14\]](#page-11-7)*. Let* $n \in \mathbb{N} \cup \{0\}$ *,* $m, r \in \mathbb{Z}$ *and m be a nonzero integer. Then*

$$
U_{2mn+r}(P, -1) \equiv U_r(P, -1) \pmod{U_m(P, -1)}
$$
\n(11)

and

$$
V_{2mn+r}(P, -1) \equiv V_r(P, -1) \pmod{U_m(P, -1)}.
$$
\n(12)

From (11) and (12) , we can deduce the following.

Lemma 12*.* 5 $|V_n(P, -1)|$ *if and only if* 5 $|P|$ *and n is odd.*

Let *d* be a positive integer which is not a perfect square and consider the Pell equation

$$
x^2 - dy^2 = 1.\t(13)
$$

If $x_1 + y_1 \sqrt{d}$ is the fundamental solution of equation [\(13](#page-3-2)), then all the positive integer solutions of this equation are given by

$$
x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n \tag{14}
$$

with $n \geq 1$. From [\(3\)](#page-2-1) and [\(14\)](#page-3-3), the following lemma can be given (see also [\[11](#page-11-8)], page 22).

Lemma 13*. Let* $x_1 + y_1 \sqrt{d}$ *be the fundamental solution of equation* $x^2 - dy^2 = 1$ *. Then all positive integer solutions of the equation* $x^2 - dy^2 = 1$ *are given by*

$$
x_n = \frac{V_n(2x_1, -1)}{2} \quad \text{and} \quad y_n = y_1 U_n(2x_1, -1)
$$

with $n \geq 1$ *.*

Lemma 14*. Let n be even, say n* = 2*k and* $(a^n - 1)(b^n - 1) = x^2$ for some integer x. *Then there exist positive integers m and r with* $gcd(m, r) = 1$ *such that*

$$
a^k = V_m(2x_1, -1)/2, b^k = V_r(2x_1, -1)/2,
$$

where $x_1 > 1$ *.*

Proof. Let $d = \gcd(a^n - 1, b^n - 1)$. Then $a^n - 1 = du^2$ and $b^n - 1 = dv^2$ for some integers *u* and *v* with $gcd(u, v) = 1$. It is seen that *d* is not a perfect square. Let $n = 2k$. Then $(a^k)^2 - du^2 = 1$ and $(b^k)^2 - dv^2 = 1$. Assume that $x_1 + y_1 \sqrt{d}$ is the fundamental solution of the equation $x^2 - dy^2 = 1$. Then by Lemma [13,](#page-3-4) we get

$$
a^k = V_m(2x_1, -1)/2, u = y_1 U_m(2x_1, -1)
$$

and

$$
b^k = V_r(2x_1, -1)/2, v = y_1 U_r(2x_1, -1)
$$

for some $m \ge 1$ and $r \ge 1$. Since $gcd(u, v) = 1$, it follows that $1 = gcd(u, v) =$ $gcd(y_1U_m(2x_1, -1), y_1U_r(2x_1, -1)) = y_1 gcd(U_m, U_r) = y_1U_{gcd(m,r)}$ by [\(4\)](#page-2-2). Therefore $y_1 = 1$ and $gcd(m, r) = 1$. Since $x_1^2 - dy_1^2 = 1$, it follows that $x_1^2 = 1 + dy_1^2 = 1 + d > 1$ and so $x_1 > 1$.

The following lemma can be deduced from [\[1](#page-10-5)] and [\[16](#page-11-9)].

Lemma 15*. Let p* > 3 *be a prime. Then the equation* $x^p = 2y^2 - 1$ *has only the solution* $(x, y) = (1, 1)$ *in non-negative integers. The equation* $x^3 = 2y^2 - 1$ *has only the solutions* $(x, y) = (1, 1)$ *and* (23, 78) *in non-negative integers.*

The following lemma is given in [\[2](#page-10-0)].

Lemma 16*. If the equation* $(a^n - 1)(b^n - 1) = x^2$ *has a solution n, x with* 4|*n, then n* = 4 *and* (*a*, *b*) = (13, 339)*.*

Lemma 17 [\[17\]](#page-11-10)*. Let a be a positive integer which is not a perfect square and b be a positive integer for which the quadratic equation* $ax^2 - by^2 = 1$ *is solvable in positive integers* \sqrt{a} , *y*. *If* $u_1\sqrt{a} + v_1\sqrt{b}$ is its minimal solution, then the formula $x_n\sqrt{a} + y_n\sqrt{b} = (u_1\sqrt{a} + v_1\sqrt{b})$ $v_1 \sqrt{b}^{2n+1}(n \ge 0)$ gives all the positive integer solutions of the equation $ax^2 - by^2 = 1$.

Although the following lemma is given in [\[6](#page-10-6)], we will give its proof for the sake of completeness.

Lemma 18*. Let a be a positive integer which is not a perfect square and b be a positive integer. Let u*₁ \sqrt{a} + $v_1\sqrt{b}$ *be the minimal solution of the equation* $ax^2 - by^2 = 1$ *and* $P = 4au_1^2 - 2$. Then all the positive integer solutions of the equation $ax^2 - by^2 = 1$ are *given by* $(x, y) = (u_1(U_{n+1} - U_n), v_1(U_{n+1} + U_n))$ *with* $n \ge 0$ *, where* $U_n = U_n(P, -1)$ *.*

Proof. Since $w = u_1 \sqrt{a} + v_1 \sqrt{b}$ is the minimal solution of the equation $ax^2 - by^2 = 1$, all positive integer solutions of the equation $ax^2 - by^2 = 1$ are given by the formula $x_n \sqrt{a} + y_n \sqrt{b} = w^{2n+1}$ with $n \ge 0$, by Lemma [17.](#page-4-0) Then we get

$$
x_n = \frac{w^{2n+1} + z^{2n+1}}{2\sqrt{a}}
$$
 and $y_n = \frac{w^{2n+1} - z^{2n+1}}{2\sqrt{b}}$,

where $z = u_1 \sqrt{a} - v_1 \sqrt{b}$. By using the fact that $au_1^2 - bv_1^2 = 1$, it is seen that

$$
w^{2} = au_{1}^{2} + bv_{1}^{2} + 2u_{1}v_{1}\sqrt{ab} = \frac{2au_{1}^{2} + 2bv_{1}^{2} + 4u_{1}v_{1}\sqrt{ab}}{2}
$$

=
$$
\frac{2au_{1}^{2} + 2au_{1}^{2} - 2 + \sqrt{16u_{1}^{2}v_{1}^{2}ab}}{2} = \frac{4au_{1}^{2} - 2 + \sqrt{(4au_{1}^{2} - 2)^{2} - 4}}{2}
$$

=
$$
(P + \sqrt{P^{2} - 4})/2.
$$

Similarly, it can be seen that

$$
z^2 = (P - \sqrt{P^2 - 4})/2.
$$

Let

$$
\alpha = (P + \sqrt{P^2 - 4})/2
$$
 and $\beta = (P - \sqrt{P^2 - 4})/2$.

By using (3) and (9) , a simple calculation shows that

$$
x_n = \frac{w^{2n+1} + z^{2n+1}}{2\sqrt{a}} = \frac{w\alpha^n + z\beta^n}{2\sqrt{a}} = \frac{u_1V_n + u_1(P - 2)U_n}{2}
$$

= $u_1(U_{n+1} - U_n)$

and

$$
y_n = \frac{w^{2n+1} - z^{2n+1}}{2\sqrt{b}} = \frac{w\alpha^n - z\beta^n}{2\sqrt{b}} = \frac{v_1V_n + v_1(P+2)U_n}{2}
$$

= $v_1(U_{n+1} + U_n)$.

This completes the proof. \Box

3. Proofs of theorems and corollaries

Proof of Theorem [2.](#page-1-1) Let $n = 2k$ with k odd. Then by Lemma [14,](#page-4-1) we get

$$
a^k = V_m(2x_1, -1)/2, b^k = V_r(2x_1, -1)/2
$$

for some $m \ge 1$, $r \ge 1$ with $gcd(m, r) = 1$ and $x_1 > 1$. Now assume that *m* and *r* are both odd. Then $2 = \gcd(2a^k, 2b^k) = \gcd(V_m, V_r) = V_{\gcd(m,r)} = V_1 = 2x_1$ by [\(5\)](#page-2-3). This

implies that $x_1 = 1$, which is impossible. Therefore, one of *m* and *r* must be even, say $m = 2t$. Then $2a^k = V_m = V_{2t} = V_t^2 - 2$ by [\(7\)](#page-3-6). Let $V_t = 2c$. Then it follows that $2a^k = 4c^2 - 2$, which yields

$$
a^k = 2c^2 - 1.\t\t(15)
$$

Assume that $k \geq 3$. If *k* has a prime factor $p > 3$, then [\(15\)](#page-6-0) is impossible by Lemma [15](#page-4-2) since $a > 1$. Let $k = 3^t = 3z$ with $z > 1$. Then $(a^z)^3 = 2c^2 - 1$ and therefore $a^z = 23$, $c = 78$ by Lemma [15.](#page-4-2) This shows that $z = 1$, $a = 23$ and $n = 6$. Thus $23^6 - 1 = du^2$ and $b^6 - 1 = dv^2$. Since $(V_t/2, y_1U_t) = (V_t/2, U_t)$ is a solution of the equation $x^2 - dy^2 = 1$, it is seen that $dU_t^2 = (V_t/2)^2 - 1$. Since $V_t = 2c = 2 \cdot 78$, we get

$$
dU_t^2 = 78^2 - 1 = 7 \cdot 11 \cdot 79,
$$

which shows that $d = 7 \cdot 11 \cdot 79 = 6083$. Then $b^6 = dv^2 + 1 = 6083v^2 + 1 \equiv$ $3v^2 + 1 \pmod{8}$. Since gcd(23⁶ − 1, *b*⁶ − 1) = *d* = 6083, it is seen that *b* must be even. But this is impossible since $b^6 \equiv 3v^2 + 1 \pmod{8}$. Thus we conclude that $k = 1$ and therefore $n = 2$ therefore $n = 2$.

Proof of Theorem [3.](#page-1-2) Assume that $n = 2k$. Then by Lemma [14,](#page-4-1) we get

$$
a^k = V_m(2x_1, -1)/2, b^k = V_r(2x_1, -1)/2
$$

for some $m \geq 1$, $r \geq 1$ with $gcd(m, r) = 1$ and $x_1 > 1$. Since $gcd(V_m, V_r) =$ $gcd(2a^k, 2b^k) = 2$ $gcd(a, b)^k > 2$, it follows that *m* and *r* are odd by [\(5\)](#page-2-3). Moreover, we have $2a^k = V_m$ and $2b^k = V_r$, which implies that

$$
\nu_2(2a^k) = \nu_2(V_m) = \nu_2(2x_1)
$$

and

$$
\nu_2(2b^k) = \nu_2(V_r) = \nu_2(2x_1)
$$

by [\(10\)](#page-3-7). Therefore, $v_2(2a^k) = v_2(2b^k)$, which is impossible since $v_2(a) \neq v_2(b)$. This completes the proof. completes the proof.

Proof of Corollary [4.](#page-1-3) The proof follows from Lemma [16,](#page-4-3) Theorem [2](#page-1-1) and Theorem [3.](#page-1-2) \Box

Proof of Theorem [5.](#page-1-4) Let $(a^n - 1)(b^n - 1) = x^2$ and $n = 2k$. Then $(a^k)^2 - du^2 = 1$ and $(b^k)^2 - dv^2 = 1$ for some integers *u* and *v* with $gcd(u, v) = 1$. Assume that $x_1 + y_1\sqrt{d}$ is the fundamental solution of the equation $x^2 - dy^2 = 1$. Then by Lemma [13,](#page-3-4) we get

$$
a^k = V_m(2x_1, -1)/2, u = y_1 U_m(2x_1, -1)
$$

and

$$
b^k = V_r(2x_1, -1)/2, v = y_1 U_r(2x_1, -1)
$$

for some $m > 1$ and $r > 1$. Since $(u, v) = 1$, it is seen that $y_1 = 1$ and $gcd(m, r) = 1$. Since $gcd(V_m, V_r) = gcd(2a^k, 2b^k) = 2 (gcd(a, b))^k > 2$, it follows that *m* and *r* are both odd by [\(5\)](#page-2-3). Thus we get $2x_1 = V_1 = \gcd(V_m, V_r) = 2 (\gcd(a, b))^k$. That is, $x_1 = (\gcd(a, b))^k$. Since $g = \gcd(a, b)$, it follows that $d = x_1^2 - 1 = g^n - 1$. Let $a = gc$ and *b* = *ge*. Since $d|a^n - 1$ and $d|b^n - 1$, $g^n - 1|g^n c^n - 1$ and $g^n - 1|g^n e^n - 1$. Thus $g^n - 1/c^n - 1$ and $g^n - 1/e^n - 1$. Since $c > 1$ and $e > 1$, we get $g \le c$ and $g \le e$. Then it follows that *a* $\geq g^2$ and *b* $\geq g^2$, which contradicts the hypothesis. This completes the proof. \Box

Proof of Theorem [6.](#page-1-5) Let $n = 2k$ with k odd. Then there exist relatively prime integers u and v such that

$$
2a^k = V_m(P, -1), u = y_1 U_m(P, -1)
$$
\n(16)

and

$$
2b^k = V_r(P, -1), u = y_1 U_r(P, -1),
$$
\n(17)

by Lemma [13,](#page-3-4) where $P = 2x_1$. Since $gcd(u, v) = 1$, it is seen that $y_1 = 1$ and $gcd(m, r) = 1$ 1. Let $g = \gcd(a, b)$. Thus $(V_m, V_r) = (2a^k, 2b^k) = 2g^k > 2$. Then *m* and *r* are odd and so $(V_m, V_r) = V_1 = P$ by [\(5\)](#page-2-3). Thus $P = 2g^k$. Since g and k are odd, it follows that $P \equiv 2g \pmod{8}$. Then an induction method shows that $V_n \equiv 2 \pmod{8}$ if *n* is even and $V_n \equiv 2g \pmod{8}$ if *n* is odd. Let $a = gc$ and $b = ge$. Then, from [\(16\)](#page-7-0) and [\(17\)](#page-7-1), it follows that $V_m = Pc^k$ and $V_r = Pe^k$. Thus we conclude that $Pc^k \equiv Pe^k \equiv 2g \pmod{8}$, that is, $2gc^k \equiv 2ge^k \equiv 2g \pmod{8}$. This implies that $2c \equiv 2 \pmod{8}$ and $2e \equiv 2 \pmod{8}$. Therefore, $c \equiv 1 \pmod{4}$ and $e \equiv 1 \pmod{4}$. But this contradicts the hypothesis. This completes the proof. completes the proof.

Proof of Theorem [8.](#page-2-4) Assume that *n* is even, say $n = 2k$ and $(a^n - 1)(a^n b^{2n} - 1) = x^2$. Then

$$
a^k = V_m(2x_1, -1)/2, b^n a^k = V_r(2x_1, -1)/2
$$

for some $m \geq 1, r \geq 1$ with $gcd(m, r) = 1$ and $x_1 > 1$ by Lemma [14.](#page-4-1) Moreover, $gcd(V_m, V_r) = gcd(2a^k, 2b^n a^k) = 2a^k > 2$. Then by [\(5\)](#page-2-3), we see that *m* and *r* are odd. Thus $2x_1 = V_1 = V_{\text{gcd}(m,r)} = (V_m, V_r) = 2a^k$. This implies that $2b^n a^k = V_r(2x_1, -1) =$ *V_r*($2a^{k}$, -1), which gives a contradiction by [\(10\)](#page-3-7) since *r* is odd and *b* is even.

Now assume that *n* is odd, say $n = 2k+1$. Thus $a(a^k)^2 - du^2 = 1$ and $a(a^k b^n)^2 - dv^2 = 1$ 1. Assume that *a* is not a perfect square. Let $u_1\sqrt{a} + v_1\sqrt{b}$ be the minimal solution of the equation $ax^2 - by^2 = 1$ and $P = 4au_1^2 - 2$. Then by Lemma [18,](#page-4-4) we get

$$
a^k = u_1(U_{m_1+1} - U_{m_1})
$$

and

$$
a^k b^n = u_1 (U_{m_2+1} - U_{m_2})
$$

for some non-negative integers m_1 and m_2 , where $U_n = U_n(P, -1)$. From the above, we get $U_{m_2+1} - U_{m_2} = b^n(U_{m_1+1} - U_{m_1})$. But this is impossible since $U_{m_2+1} - U_{m_2}$ and $U_{m_1+1} - U_{m_1}$ are odd by [\(6](#page-2-5)) and *b* is even. If *a* is a perfect square, say $a = c^2$, then $(c^{2n} - 1)(c^{2n}b^{2n} - 1) = x^2$. Thus by Lemma [14,](#page-4-1) we get

$$
c^{n} = V_{m}(2x_{1}, -1)/2, (cb)^{n} = V_{r}(2x_{1}, -1)/2
$$

for some $m \ge 1$ and $r \ge 1$ with $gcd(m, r) = 1$. Since $gcd(V_m, V_r) > 2$, it is seen that *m* and *r* are odd by [\(5\)](#page-2-3). Moreover, we get $V_r = b^n V_m$. But this is impossible by [\(10\)](#page-3-7) since *b* is even. is even. \Box

Proof of Theorem [7.](#page-2-6) Clearly, $(n, x) = (1, 7)$ is a solution. Let $d = \gcd(2^n - 1, 50^n - 1)$. Then $2^n - du^2 = 1$ and $50^n - dv^2 = 1$ for some positive integers *u* and *v* with gcd(*u*, *v*) = 1 Assume that *n* is even, say $n = 2k$. Let $x_1 + \sqrt{dy_1}$ be the fundamental solution of $x^{2} - dy^{2} = 1$. By Lemma [13,](#page-3-4) we get

$$
2^k = V_m(2x_1, -1)/2, 50^k = V_r(2x_1 - 1)/2
$$

and

$$
u = y_1 U_m(2x_1, -1), v = y_1 U_r(2x_1, -1)
$$

for some positive integers *m* and *r*. Since $gcd(u, v) = 1$ and $gcd(V_m, V_r) = 2 \cdot 2^k > 2$, it follows that $(m, r) = 1$ and m, r are odd by [\(5\)](#page-2-3). On the other hand, $5|V_r$ implies that $5|x_1$ by Lemma [12,](#page-3-8) which yields $5|2^k$. This is a contradiction. Now assume that *n* is odd and $n = 2k + 1 > 1$. Then

$$
x^{2} = (2^{n} - 1)(50^{n} - 1) \equiv (-1)(4^{k} \cdot 2 - 1) \equiv (-1)(2(-1)^{k} - 1) \pmod{5}.
$$

This shows that *k* is even. Let $u_1\sqrt{2} + v_1\sqrt{d}$ be the minimal solution of the equation $2x^{2} - dy^{2} = 1$. Since $2(2^{k})^{2} - du^{2} = 1$ and $2(5^{n}2^{k})^{2} - dv^{2} = 1$, we get

$$
2^{k} = u_1(U_{m_1+1} - U_{m_1}), u = v_1(U_{m_1+1} + U_{m_1})
$$
\n(18)

and

$$
5^{n}2^{k} = u_1(U_{m_2+1} - U_{m_2}), v = v_1(U_{m_2+1} + U_{m_2})
$$
\n(19)

for some non-negative integers m_1 , m_2 by Lemma [18,](#page-4-4) where $U_n = U_n(P, -1)$ and $P =$ $4au_1^2 - 2 = 8u_1^2 - 2$. Since $U_{m_1+1} - U_{m_1}$ is odd by [\(6\)](#page-2-5), it follows that $u_1 = 2^k$ and $U_{m_1+1} - U_{m_1} = 1$. Therefore, $m_1 = 0$. Moreover, we get that $5^n = (U_{m_2+1} - U_{m_2})$ by [\(18\)](#page-8-0) and [\(19\)](#page-8-1). Since $m_1 = 0$, we have $u = v_1$ by (18). From (18) and (19), it follows that v_1 | gcd(*u*, *v*), which yields $v_1 = 1$ since gcd(*u*, *v*) = 1. Therefore, $u = v_1 = 1$. This implies that $d = 2^n - 1$ since $2^n - du^2 = 1$.

Since $2^k \sqrt{2} + \sqrt{d}$ is the minimal solution of the equation $2x^2 - dy^2 = 1$, $(2^k \sqrt{2} +$ \sqrt{d})² = 2^{*n*} + *d* + 2^{*k*+1} $\sqrt{2d}$ = 2^{*n*} + 2^{*n*} − 1 + 2^{*k*+1} $\sqrt{2d}$ = 2^{*n*+1} − 1 + 2^{*k*+1} $\sqrt{2d}$ is the fundamental solution of the equation $x^2 - 2dy^2 = 1$. Moreover, $(5^n 2^k \sqrt{2} + v \sqrt{d})^2 =$ $5^{2n}2^{2k+1} + dv^2 + 2^{k+1}5^n v \sqrt{2d} = 5^{2n}2^n + 50^n - 1 + 2^{k+1}5^n v \sqrt{2d} = 2 \cdot (50)^n - 1 +$ $2^{k+1}5^n v \sqrt{2d}$ is a solution of the equation $x^2 - 2dy^2 = 1$. Then by Lemma [13,](#page-3-4) we get

$$
2 \cdot 50^n - 1 = V_m(P, -1)/2, 2^{k+1} 5^n v = 2^{k+1} U_m(P, -1)
$$

for some $m > 1$, where $P = 2(2^{n+1} - 1)$. Since k is even and $n = 2k + 1$, it is seen that *P* \equiv 1(mod 5). Therefore, we get *U*₃ $=$ *P*² $-$ 1 \equiv 0(mod 5). Let *m* $=$ 6*q* + *r* with $0 \le r \le 5$. Then $U_m \equiv U_r \pmod{U_3}$, which implies that $U_m \equiv U_r \pmod{5}$ by [\(11\)](#page-3-0). Then it follows that 3|*m* since $5|U_m$. Let $m = 3t$. Then $2w^2 - 2 = V_m(P, -1) =$ $V_{3t} = V_t(V_t^2 - 3) = V_t^3 - 3V_t$ by [\(8\)](#page-3-6), where $w = 10 \cdot 50^k$. Let $V_t = 2z$. Then we get $w^2 = 4z^3 - 3z + 1 = (z+1)(2z-1)^2$. Since $3 \nmid w$, it follows that $gcd(z+1, 2z-1) = 1$. Then

$$
z + 1 = r^2, (2z - 1)^2 = s^2
$$

with $rs = w = 2^{k+1}5^n$. Since $gcd(r, s) = 1$, it is seen that $r = w$ and $s = 1$ or $r = 2^{k+1}$ and $s = 5^n$. Let $s = 1$. Then $z = 1$, which implies that $V_t = 2$. Therefore, $t = 0$ and this yields $m = 0$. This is impossible since $U_m = 5^n v$. Let $r = 2^{k+1}$ and $s = 5^n$. Then $z = r^2 - 1 = 2^{n+1} - 1$ and $2z - 1 = 5^n$. This implies that $5^n + 1 = 2^{n+2} - 2$. Therefore, $5^n - 1 = 4(2^n - 1)$. Then we get $2^n - 1 = 1 + 5 + \cdots + 5^{n-1} \equiv n \pmod{4}$ and so *n* = −1(mod 4). This is impossible since *n* ≡ 1(mod 4). We conclude that *n* = 1. Thus the proof of the theorem is complete. the proof of the theorem is complete.

Proof of Corollary [9.](#page-2-7) Let $(a, b) = (13, 76)$. Since $(13² - 1)(76² - 1)$ is not a perfect square, we may suppose that *n* is odd by Theorem [2](#page-1-1) and Lemma [16.](#page-4-3) Clearly, (n, x) = (1, 30) is a solution. Assume that $n \ge 3$. Let $A = 1 + 13 + 13^2 + \cdots + 13^{n-1}$ and $B =$ $1+76+76^2+\cdots+76^{n-1}$. Then $A \equiv (\frac{n+1}{2}) \cdot 1 + (\frac{n-1}{2}) \cdot 5 \pmod{8}$ and $B \equiv 5 \pmod{8}$ since $13^{2j} \equiv 1 \pmod{8}$ and $13^{2j+1} \equiv 5 \pmod{8}$. This implies that $AB \equiv 5(3n-2) \pmod{8}$, which yields $n \equiv 5 \pmod{8}$ since *AB* is an odd perfect square. Let $n = 5 + 8k$ with $k \ge 0$. Then, since $13^8 \equiv 1 \pmod{17}$ and $76^8 \equiv 1 \pmod{17}$, we get

$$
x2 = (13n - 1)(76n - 1) \equiv (135 - 1)(765 - 1) \equiv ((-4)5 - 1)(85 - 1) \equiv
$$

$$
\equiv -(45 + 1)(85 - 1) \equiv -40 \equiv 11 \pmod{17}.
$$

But this is impossible since $\left(\frac{11}{17}\right) = \left(\frac{17}{11}\right) = \left(\frac{-5}{11}\right) = (-1)\left(\frac{5}{11}\right) = -1$. This completes the proof.

Let $(a, b) = (4, 49)$. Clearly, $(n, x) = (1, 12)$ is a solution. Assume that $(4ⁿ - 1)(49ⁿ -$ 1) = x^2 . Then $(2^{2n} - 1)(7^{2n} - 1) = x^2$. By Lemma [16](#page-4-3) and Theorem [2,](#page-1-1) we obtain $2n = 2$, which yields $n = 1$. This completes the proof.

Let $(a, b) = (28, 49)$. Since gcd $(28, 49) = 7$ and v_2 $(28) \neq v_2$ (49) , by Theorem [3,](#page-1-2) we may suppose that *n* is odd. Clearly $(n, x) = (1, 36)$ is a solution. Assume that $n \ge 3$. Let $A = 1+28+28^2+\cdots+28^{n-1}$ and $B = 1+49+49^2+\cdots+49^{n-1}$. Then $A \equiv 5 \pmod{8}$ and $B \equiv n \pmod{8}$. This implies that $5n \equiv 1 \pmod{8}$ since AB is an odd perfect square. Then it follows that $n \equiv 5 \pmod{8}$. Let $n = 5 + 8k$. Since $\left(\frac{28}{17}\right) = -1$ and $\left(\frac{49}{17}\right) = 1$, we get $28^8 \equiv -1 \pmod{17}$ and $49^8 \equiv 1 \pmod{17}$. Then $x^2 = (28^n - 1)(49^n - 1) \equiv$ $(28^5(-1)^k - 1)(49^5 - 1)$ (mod 17), which implies that $x^2 \equiv (10(-1)^k - 1)(\text{mod } 17)$ since 495 [−]¹ [≡] ¹(mod 17). Therefore, *^k* must be even. Then we get *ⁿ* [≡] ⁵, ²¹, ³⁷(mod 48). Let $n \equiv 5 \pmod{48}$. Then $x^2 \equiv (28^n - 1)(49^n - 1) \equiv (28^5 - 1)(49^5 - 1) \equiv 5.3 \equiv 2 \pmod{13}$, which is impossible since $\left(\frac{2}{13}\right) = -1$. If $n \equiv 21 \pmod{48}$, then $x^2 \equiv (28^{21} - 1)(49^{21} - 1)$ 1) $\equiv 4 \cdot 11 \equiv 5 \pmod{13}$, which is impossible since $\left(\frac{5}{13}\right) = \left(\frac{13}{5}\right) = \left(\frac{3}{5}\right) = -1$. Therefore, $n \equiv 37 \pmod{48}$. Then we get $n \equiv 37, 85, 133, 181, 229 \pmod{240}$. Let $n \equiv$ 37(mod 240). Then $x^2 \equiv (28^{37} - 1)(49^{37} - 1) \equiv 11 \pmod{31}$, which is impossible since $\left(\frac{11}{31}\right) = \left(\frac{-20}{31}\right) = -\left(\frac{5}{31}\right) = -\left(\frac{31}{5}\right) = -1$. Let $n \equiv 85 \pmod{240}$. Then $x^2 \equiv$ $(28^{85} - 1)(49^{85} - 1) \equiv 3 \pmod{31}$, which is impossible since $\left(\frac{3}{31}\right) = -\left(\frac{31}{3}\right) = -1$. Let $n \equiv 181 \pmod{240}$. Then $x^2 \equiv (28^{181} - 1)(49^{181} - 1) \equiv 102 \pmod{241}$. But this is impossible since $\left(\frac{102}{241}\right) = \left(\frac{2}{241}\right) \left(\frac{51}{241}\right) = \left(\frac{241}{51}\right) = \left(\frac{37}{51}\right) = \left(\frac{51}{37}\right) = \left(\frac{14}{37}\right) = \left(\frac{2}{37}\right) \left(\frac{7}{37}\right) =$ $-\left(\frac{7}{37}\right) = -\left(\frac{37}{7}\right) = -\left(\frac{2}{7}\right) = -1.$ Let $n \equiv 229 \pmod{240}$, then $x^2 \equiv (28^{229} - 1)(49^{229} - 1)$ 1) $\equiv 8 \pmod{11}$, which is impossible since $\left(\frac{8}{11}\right) = -1$. This completes the proof.

Let $(a, b) = (45, 100)$. Since gcd $(45, 100) = 5$ and $v_2 (45) \neq v_2 (100)$, by Theorem [3,](#page-1-2) we may suppose that *n* is odd. It is obvious that $(n, x) = (1, 66)$ is a solution. Suppose that $n \geq 3$. Then it can be seen that $n \equiv 5 \pmod{8}$. Therefore,

n ≡ 5, 13, 21, 29, 37, 45, 53, 61, 69(mod 72).

Let $n \equiv 5 \pmod{72}$. Then $x^2 \equiv (45^5 - 1)(100^5 - 1) \equiv 5 \pmod{7}$, which is impossible since $\left(\frac{5}{7}\right)$ = -1. Let $n \equiv 21 \pmod{72}$. Then we get $x^2 \equiv 43 \pmod{73}$, which is a contradiction since $\left(\frac{43}{73}\right)$ = -1. If $n \equiv 29 \pmod{72}$, then we use mod 7 to get a contradiction. If $n \equiv 53 \pmod{72}$, then $x^2 \equiv 13 \pmod{37}$, which gives a contradiction since $\left(\frac{13}{37}\right) = -1$. If $n \equiv 37,45,61,69 \pmod{72}$, then we get $x^2 \equiv 45,15,31,10 \pmod{73}$ respectively, which gives a contradiction since $\left(\frac{43}{73}\right) = \left(\frac{45}{73}\right) = \left(\frac{15}{73}\right) = \left(\frac{31}{73}\right) = \left(\frac{10}{73}\right) = -1$. Let *n* ≡ 13(mod 72). Then *n* ≡ 13, 85, 157(mod 216). Thus x^2 ≡ 14, 13, 59(mod 109), which is impossible since $\left(\frac{14}{109}\right) = \left(\frac{13}{109}\right) = \left(\frac{59}{109}\right) - 1$. This completes the proof. We omit the proof in the case $(a, b) = (20, 77), (12, 45)$ as the proof is similar.

References

- [1] Bennet M A and Skinner C M, Ternary diophantine equation via Galois representations and modular forms, *Canad. J. Math.* **56** (2004) 23–54
- [2] Cohn J H E, The diophantine equation $(a^n - 1)(b^n - 1) = x^2$, *Period. Math. Hungar.* **44** (2002) 169–175
- [3] Damir M T, Faye B, Luca F and Tall A, Members of Lucas sequences whose Euler function is a power of 2, *Fibonacci Quart.* **52** (2014) 3–9
- [4] Hajdu L and Szalay L, On the diophantine equations $(2^n - 1)(6^n - 1) = x^2$ and $(a^n - 1)(a^{kn} - 1)$ 1) $= x^2$, *Period. Math. Hungar.* **40** (2000) 141–145
- [5] Ishii K, On the exponential diophantine equation $(a^n - 1)(b^n - 1) = x^2$, *Pub. Math. Debrecen* **89** (2016) 253–256
- [6] Keskin R and Şiar Z, Positive integer solutions of some diophantine equations in terms of integer sequences, *Afr. Mat.* **30** (2019) 181–184
- [7] Lan L and Szalay L, On the exponential diophantine equation $(a^n - 1)(b^n - 1) = x^2$, *Publ. Math. Debrecen* **77** (2010) 1–6
- [8] Le M H, A note on the exponential diophantine equation $(2^n 1)(b^n 1) = x^2$, *Publ. Math. Debrecen* **74** (2009) 401–403
- [9] Li Z-J and Tang M, A remark on a paper of Luca and Walsh, *Integers* **11** (2011) A40, 6 pp.
- [10] Luca F, Walsh P G, The product of like-indexed terms in binary recurrences, *J. Number Theory* **96** (2002) 152–173
- [11] Luca F, Effective Methods for Diophantine Equations, [https://math.dartmouth.edu/archive/](https://math.dartmouth.edu/archive/m105f12/public_html/lucaHungary1.pdf) [m105f12/public_html/lucaHungary1.pdf](https://math.dartmouth.edu/archive/m105f12/public_html/lucaHungary1.pdf)
- [12] Ribenboim P, My Numbers, My Friends (2000) (New York: Springer-Verlag)
- [13] Szalay L, On the diophantine equations $(2^{n} - 1)(3^{n} - 1) = x^{2}$, *Publ. Math. Debrecen* **57** (2000) 1–9
- [14] Siar Z and Keskin R, Some new identities concerning generalized Fibonacci and Lucas numbers, *Hacet. J. Math. Stat.* **42** (2013) 211–222
- [15] Tang M, A note on the exponential diophantine equation $(a^m - 1)(b^n - 1) = x^2$, *J. Math. Research and Exposition* **31(6)** (2011) 1064–1066
- [16] van der Waall R W, On the diophantine equation $x^2 + x + 1 = 3y^2$, $x^3 - 1 = 2y^2$ and $x^3 + 1 = 2y^2$, *Simon Stevin* **46** (1972/73) 39–51
- [17] Walker D T, On the diophantine equation $mX^2 - nY^2 = \pm 1$, *Amer. Math. Montly* **74** (1967) 504–513
- [18] Walsh P G, On diophantine equations of the form $(x^n - 1)(y^m - 1) = z^2$, *Tatra Math. Publ.* **20** (2000) 87–89
- [19] Xioyan G, A note on the diophantine equation $(a^n 1)(b^n 1) = x^2$, *Period. Math. Hungar.* **66** (2013) 87–93
- [20] Yuan P and Zhang Z, On the diophantine equation $(a^n - 1)(b^n - 1) = x^2$, *Publ. Math. Debrecen* **80** (2012) 327–331

Communicating Editor: B Sury