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Abstract. In this article, we investigate sparse subsets of the natural numbers and
study the sparseness of some sets associated to the Euler’s totient function φ via the
property of ‘Banach density’. These sets related to the totient function are defined as
follows: V := φ(N) and Ni := {Ni (m) : m ∈ V } for i = 1, 2, 3, where N1(m) =
max{x ∈ N : φ(x) ≤ m}, N2(m) = max(φ−1(m)) and N3(m) = min(φ−1(m)) for
m ∈ V . Masser and Shiu (Pacific J. Math. 121(2) (1986) 407–426) called the elements
of N1 as ‘sparsely totient numbers’ and constructed an infinite family of these numbers.
Here we construct several infinite families of numbers in N2 \ N1 and an infinite family
of composite numbers in N3. We also study (i) the ratio N2(m)

N3(m)
which is linked to the

Carmichael’s conjecture, namely, |φ−1(m)| ≥ 2 for all m ∈ V , and (ii) arithmetic and
geometric progressions in N2 and N3. Finally, using the above sets associated to the
totient function, we generate an infinite class of subsets of N, each with asymptotic
density zero and containing arbitrarily long arithmetic progressions.
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1. Introduction

Euler’s totient function φ(n), which enumerates the number of positive integers which are
co-prime to and less than or equal to n, is a classical arithmetical function. It is a well
known fact that the number of solutions to the equation φ(x) = m is finite for each m ∈ N

(N is the set of positive integers). It is natural, then, to ask the following questions:

(i) For a given m ∈ N, what is the largest integer n such that φ(n) ≤ m?
(ii) What are the largest and the smallest integers satisfying φ(x) = m?

We denote the set {x : φ(x) = m} by φ−1(m) and the image of φ by V , i.e. V = {φ(m) :
m ∈ N}. The elements of V are called totients. For m ∈ V , we define the following
quantities with the above questions in mind:
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N1(m) = max{x : φ(x) ≤ m},
N2(m) = max(φ−1(m)),

N3(m) = min(φ−1(m)),

Ni = {Ni (m) : m ∈ V } for i = 1, 2, 3.

Note that N2(m), N3(m) are defined only on V , whereas N1(m) can be defined on the
whole of N. But this does not contribute any new elements to the image N1 of N1(m),
since N1(m) = N1(m−1) ifm /∈ V . Hence, from here on, we study N1(m) only form ∈ V .
In 1986, Masser and Shiu [10] studied many properties of N1 and called its elements as
‘sparsely totient numbers’. They gave the following criteria to find examples of sparsely
totient numbers.

PROPOSITION 1 [10]

Let (pi )∞i=1 be the enumeration of the primes in ascending order. Suppose k ≥ 2, d ≥ 1
and l ≥ 0 satisfy conditions d < pk+1 − 1 and d(pk+l − 1) < (d + 1)(pk − 1). Then
dp1 · · · pk−1 pk+l is a sparsely totient number.

They also found some nice patterns among sparsely totient numbers.

PROPOSITION 2 [10]

For n ∈ N1, let n′ represent the smallest sparsely totient number greater than n. Then
(i) n′

n → 1 as n → ∞ and n ∈ N1.
(ii) For a given prime p, ∃ m(p) ∈ N such that N1(m) ≡ 0 (mod p) ∀ m ≥ m(p).

This proposition suggests that the distribution of elements of N1 may be very sparse. To
study the notion of sparseness of a subset of integers, we use properties like asymptotic
density or Banach density. The asymptotic density gives the fraction of the number of
elements of a set in N whereas Banach density gives an idea about how locally sparse or
dense a set is. For example, the set ∪n∈N[10n, 10n + n] has asymptotic density zero but it
has, in fact, a maximum Banach density of 1. The notion of Banach density will be defined
in section 2. The first theorem in this paper measures the densities of sets V, Ni , etc.

Theorem 3.

(i) The Banach density of V and N1 is zero.
(ii) If f : V → N is such that f (m) ∈ φ−1(m), then the asymptotic density of f (V ) is 0.

In particular, the asymptotic density of N2 and N3 is zero.

More generally, we also look at the Banach density of sets that are images of injective-
increasing functions on N.

Theorem 4. Let A ⊂ N. Suppose f : A → N is an injective and increasing function.

(a) If the function f (n)
n is increasing on A and lim

n→∞
n∈A

f (n)
n = ∞, then the Banach density

of f (A) is zero.
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(b) For A = N, if there exists n0 ∈ N and positive absolute constants c1 and c2 such that
c1n ≤ f (n) ≤ c2n for n ≥ n0, then the Banach density of f (N) is positive.

In Theorem 4(a), the hypothesis ‘increasing’ for f (n)
n is only a sufficient condition. For

instance, if BN1 = {m ∈ V : N1(m) = N2(m)}, then the function h : BN1 → N1 given
by h(m) = N1(m) does not satisfy this condition, but nevertheless, the Banach density of
N1 is zero .

In section 3, we observe that N2 ⊃ N1 and N3 ⊃ P \ {2}, where P denotes the set of
primes. Therefore, we look for infinite families of elements in N2 \ N1 and an infinite
family of composite numbers in N3. This leads to our next theorem.

For r, r1, r2 ∈ N and a prime q ≡ 3(mod 4), define

R(r1, r2) := 2.3r1 .5r2 , Kq,r := 2qr+1,

kq,r :=
{
qr (q − 1) + 1 if qr (q − 1) + 1 ∈ P

qr+1 otherwise.

A prime of the form 22l + 1 with l ∈ N ∪ {0} is called a Fermat prime. We denote the
j-th Fermat prime by Fj . The only known Fermat primes are

F1 = 3, F2 = 5, F3 = 17, F4 = 257 and F5 = 65537.

The existence of F6 is not known.

Theorem 5. Kmax,R andF are infinite subsets of N2 in which only finitely many elements
are in N1. Moreover, Kmin is an infinite subset of N3 in which infinitely many elements are
composite. Here,

Kmax = {Kq,r : q ≡ 3 (mod 4), r ∈ N},
Kmin = {kq,r : q ≡ 3 (mod 4), r ∈ N},

R = {R(r1, r2) : r1, r2 ∈ N, r2 > 2},

F =
{

2a
k∏

i=1

Fi : k ∈ H ; a ≤ log2(Fk+1 − 1)

if Fk+1 exists and a ∈ N otherwise

}
,

where Fj denotes the j-th Fermat prime and H = {k ∈ N : Fk exists}.

From this theorem, we observe that N2 contains infinitely many elements divisible by
powers of n, where n is 2, 5 or a prime q with q ≡ 3 (mod 4). The infinite family F
of elements of N2 shows the importance of Fermat primes to generate many elements in
N2. The family Kmin of elements of N3 shows that N3 contains infinitely many elements
divisible by powers of some prime q, where q ≡ 3(mod 4).

Though we have given examples of infinite families in N2 and N3, there may still be
other elements in these sets. So, we give bounds for general N2(m) and N3(m) in the
case when m �≡ 0 (mod 8). We also study properties of the ratio N2(m)

N3(m)
and geometric



84 Page 4 of 25 Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:84

progressions contained inside N2 and N3. The ratios N2(m)
N3(m)

are important in the sense that

the statement ‘ N2(m)
N3(m)

> 1 for each m ∈ V’ is equivalent to Carmichael’s conjecture which

asserts that |φ−1(m)| ≥ 2 for all m ∈ V .

Theorem 6. Let m ∈ V .

(i) If m ≡ 2 (mod 4) or 4 (mod 8), then m < N3(m) < 2m and 2m < N2(m) < 4m.

(ii) There exist infinitely many m such that N2(m)
N3(m)

= 2. Further, if m ≡ 2 (mod 4), then

2 ≤ N2(m)
N3(m)

≤ 3.
(iii) N2 and N3 contain an infinite geometric progression.

In section 4, we discuss about the existence of arithmetic progressions in infinite subsets
of natural numbers. The famous Szemerédi’s theorem [7] gives a sufficient condition for
the existence of arbitrarily long arithmetic progressions in a subset of integers, namely,
a positive asymptotic density. But this is not a necessary condition. Therefore we give a
class of subsets of the integers having zero asymptotic density and containing arbitrarily
long arithmetic progressions. These sets are formed by taking exactly one element from
each pre-image φ−1(m), m ∈ V . Theorem 7 below follows as a consequence by using
results due to Green and Tao [6] and Erdős [3, Theorem 4]. Therefore, we have as follows.

Theorem 7. If f : V → N is such that f (m) ∈ φ−1(m), then f (V ) contains arbitrarily
long arithmetic progressions.

Indeed, we observe that these sets satisfy the hypothesis of the so-called Erdős–Turán
conjecture [7, page 4] which asserts that if a set X of positive integers such that the
sum of reciprocals of elements of X diverges, then X contains arbitrarily long arithmetic
progressions.

Finally, in section 5, we pose some questions about elements of N2 and Banach density
of N2 and N3 arising from the present work.

We use the following notation in this paper. Let N, P, R
+ and Z denote, respectively, the

set of positive integers, the set of prime numbers, the set of positive real numbers and the
set of integers. p, q will always represent prime numbers unless otherwise mentioned. We
write f (x) = o(g(x)) if f (x)

g(x) → 0 as x → ∞. [a, b] denotes the set {x ∈ N : a ≤ x ≤ b}
and similarly for the sets (a, b], [a, b) and (a, b), and finally W (x) denotes the set of prime
divisors of x . By convention, we assume empty products and empty sums to take the values
1 and 0 respectively. By ‘a divergent sequence (xn)’, we mean that xn → ∞ as n → ∞.

2. Sparse subsets of natural numbers and sparsely totient numbers

It is well-known that the set of totients V is sparsely distributed, i.e., has asymptotic density
zero (see, for example, [4] and references therein).

PROPOSITION 8 [4]

If V (x) is the number of totients less than or equal to x , then
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V (x) = x

log x
exp{(C + o(1))(log log log x)2},

where 0.81 < C < 0.82.

Here, we study the sparseness of the set of totients V , the set of sparsely totient numbers
N1 and other subsets of natural numbers using a generalized version of asymptotic density
called the Banach density. We will define Banach density using Følner sequences.

DEFINITION 9 (Følner sequence)

A Følner sequence in a countable commutative semigroup (G,+) is a sequence (Fn)n∈N
of finite subsets of G such that for all g ∈ G,

lim
n→∞

|(g + Fn) ∩ Fn|
|Fn| = 1.

Example 10. In the semigroup (N,+), let Fn = [αn, βn] with βn − αn → ∞ as n → ∞,
then (Fn)n∈N is a Følner sequence.

DEFINITION 11 (Density of a subset of N)

Let (Fn)n∈N be a Følner sequence in N and A ⊂ N. Then the upper density of A with
respect to the Følner sequence (Fn)n∈N is defined by

dFn (A) = lim sup
n→∞

|Fn ∩ A|
|Fn|

and the lower density of A with respect to the Følner sequence (Fn)n∈N is defined by

dFn (A) = lim inf
n→∞

|Fn ∩ A|
|Fn| .

If the upper density and the lower density are equal, then we say that the density of A with
respect to the Følner sequence exists and it equals

dFn (A) = lim
n→∞

|Fn ∩ A|
|Fn| .

DEFINITION 12 (Asymptotic density)

The density with respect to the Følner sequence ([1, n])n∈N is called asymptotic density.
In this case, the upper asymptotic density, the lower asymptotic density and the density of
a subset A are denoted by d(A), d(A) and d(A) respectively.

DEFINITION 13 (Banach density)

The Banach density d∗(A) of A ⊂ N is defined by

d∗(A) = sup
{
dFn (A) : (Fn)n∈N is a Følner sequence in N

}
.
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Example 14. Banach density of the set of primes is zero (see [5, p. 194]).

Using Fn = [1, n] for all n ∈ N in the following proposition, one can observe that the
Banach density of a subset of N is equal to density of that subset with respect to the Følner
sequence ([tn + 1, tn + n])n∈N for some sequence (tn)n∈N in N. Therefore, it is enough to
consider Følner sequences formed by intervals in N to evaluate Banach density.

PROPOSITION 15 (p. 418, [1])

Given a subset A of N and any Følner sequence (Fn)n∈N, there is a sequence (tn)n∈N such
that

d∗(A) = d(Fn+tn)(A).

2.1 Proof of Theorem 3

We now show that the Banach density of the set of totients V and that of the set of sparsely
totient numbers N1 is zero. For this, we start with some necessary lemmas.

Lemma 16. If 0 < α < ∞ and x ≥ 3, then log(1 + α) + log x ≤ (1 + α) log x.

Proof. It is enough to show that fα(x) = xα − α − 1 ≥ 0 for x ≥ 3, 0 < α < ∞. Since
fα(x) is increasing in x , it suffices to show that fα(3) ≥ 0. Note that g(α) = fα(3) is a
strictly increasing function in α and moreover, g(0) = 0. So g(α) > 0 for α > 0. �

Lemma 17. If 0 < α ≤ 1 and z ∈ R
+, then

exp((1 + α)2z) − exp(z)

α
≤ exp(4z) − 1.

Proof. By the definition of the exponential function, we have

exp((1 + α)2z) − exp(z)

α
= lim

k→∞

k∑
n=0

(
(1 + α)2n − 1

α

)
zn

n! .

Applying the binomial theorem, we get

exp((1 + α)2z) − exp(z)

α
= lim

k→∞

k∑
n=1

(
2n∑

m=1

(
2n

m

)
αm−1

)
zn

n!

≤ lim
k→∞

k∑
n=1

(
2n∑

m=1

(
2n

m

))
zn

n! ,

as α ≤ 1. Again, referring to the binomial theorem, one has
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exp((1 + α)2z) − exp(z)

α
≤ lim

k→∞

k∑
n=1

(4z)n

n! = exp(4z) − 1.

�

Lemma 18. Suppose that (Fn)n∈N is a Følner sequence on N defined by

Fn = (xn, xn(1 + αn)],

where (xn)∞n=1 is a sequence in N and (αn)
∞
n=1 is a sequence of positive reals such that

xn → ∞ and αn → 0 as n → ∞. Then there exist n0 ∈ N and 0 < k < 1 such that

|V ∩ Fn|
|Fn| ≤ 2

(log xn)1−k
∀ n ≥ n0,

so that dFn (V ) = 0.

Proof. Since xn → ∞ and αn → 0 as n → ∞, we can choose n0 ∈ N such that
log log log xn > 5 and 0 < αn < 1 for all n ≥ n0. Applying Lemma 16 for each n ≥ n0,

we get

log log log((1 + αn)xn) ≤ log log((1 + αn) log xn)

≤ log((1 + αn) log log xn)

≤ (1 + αn) log log log xn . (1)

Using the estimate of V (x) from Proposition 8 (with the same constantC appearing there),
equation (1) and setting zn = (C + o(1))(log log log xn)2 for each n ≥ n0, we get that for
n ≥ n0,

|V ∩ Fn|
|Fn| = |V ∩ [1, xn(1 + αn)]| − |V ∩ [1, xn]|

|Fn|
≤ 1

αn log xn
((1 + αn) exp((1 + αn)

2zn) − exp(zn)).

Since αn < 1 and zn ∈ R
+, then Lemma 17 gives

|V ∩ Fn|
|Fn| ≤ 1

log xn
(2 exp(4zn) − 1)

≤ 2

log xn
(exp(4(C + o(1))(log log log xn)

2)).

Applying 4u2 < eu for all u > 5 with u = log log log xn , we get

|V ∩ Fn|
|Fn| ≤ 2

log xn
(exp((C + o(1)) log log xn)) ≤ 2(log xn)C+o(1)

log xn
.
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Since C < 1, choose a sufficiently large n1 with n1 ≥ n0 such that |C + o(1)| < k for all
n ≥ n1 and for some 0 < k < 1. Therefore,

|V ∩ Fn|
|Fn| ≤ 2

(log xn)1−k
∀ n ≥ n1

and hence d̄Fn (V ) = 0. �

Lemma 19. Suppose that (Fn)n∈N is a Følner sequence on N defined by

Fn = (xn, xn(1 + αn)],

where (xn)∞n=1 is a sequence in N and (αn)
∞
n=1 is a sequence of positive reals such that

αn > α0 > 0 for each n ∈ N. Then d̄Fn (V ) = 0.

Proof. Since |Fn| = xnαn → ∞ as n → ∞, we can choose n0 ∈ N such that
log log log(1 + αn)xn > 0 for all n ≥ n0. For n ≥ n0, we get

|V ∩ Fn|
|Fn| = |V ∩ [1, xn(1 + αn)]| − |V ∩ [1, xn]|

|Fn| ≤ |V ∩ [1, xn(1 + αn)]|
|Fn| .

Using the estimate of V (x) from Proposition 8 (with the same constantC appearing there),
we get

|V ∩ Fn|
|Fn| ≤ (1 + αn)

αn log((1 + αn)xn)
(exp((C + o(1))(log log log(1 + αn)xn)

2)).

Since αn > α0 for each n ∈ N, applying the inequality y2 < ey for y > 0 gives us

|V ∩ Fn|
|Fn| ≤ (1 + α0)

α0

(
(log((1 + αn)xn))C+o(1)

log((1 + αn)xn)

)
→ 0 as n → ∞,

as C < 1. Hence dFn (V ) = 0. �

PROPOSITION 20

The Banach density of the set of totients is zero.

Proof. Let (Fn)n∈N be a Følner sequence on N defined by Fn = (xn, xn(1 + αn)], where
xn ∈ N, αn ∈ R

+. To prove that the Banach density of V is zero, it is enough to show that
d̄Fn (V ) = 0 in the following cases:

Case A. αn → 0 and xn → ∞ as n → ∞.

Case B. There exists α0 > 0 such that αn > α0 for each n ∈ N.

For Case A, the result follows from Lemma 18 and similarly, Lemma 19 covers Case B.
�
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Next, we proceed to prove that the Banach density of N1 is zero.

Lemma 21. Suppose A, B ⊂ N and g : A → B is an injective map satisfying g(x) ≤ x
for all x ∈ A. Let (Fn)n∈N be a Følner sequence in N such that Fn = (an, xn] and (an)∞n=1
is bounded. Then d̄Fn (B) = 0 implies d̄Fn (A) = 0.

Proof. Since g : A → B is an injective map and g(x) ≤ x for all x ∈ A, we have
g : Fn ∩ A → g(A) ∩ [1, xn] is injective for each n ∈ N. It follows that |Fn ∩ A| ≤
|g(A) ∩ [1, xn]| for all n ∈ N. Since g(A) ∩ [1, xn] ⊂ (g(A) ∩ Fn) ∪ [1, an], we get that
|Fn ∩ A| ≤ |g(A) ∩ Fn| + |[1, an]|. Therefore,

|Fn ∩ A|
|Fn| ≤ |Fn ∩ g(A)|

|Fn| + an
|Fn| ≤ |Fn ∩ g(A)|

|Fn| + a

|Fn| ,

where a is an upper bound of the sequence (an)∞n=1. Since g(A) ⊂ B and d̄Fn (B) = 0, we
conclude that d̄Fn (A) = 0. �

COROLLARY 22

Let (Fn)n∈N be a Følner sequence on N defined by Fn = (an, xn], where (an)∞n=1 is
bounded. If f : V → N is such that f (m) ∈ φ−1(m), then d̄Fn ( f (V )) = 0. In particular,
the asymptotic density of N1, N2 and N3 is zero.

Proof. Consider g : f (V ) → V defined by g(n) = φ(n). This is an injective map sat-
isfying g(x) ≤ x ∀x ∈ f (V ). Since d∗(V ) = 0, by Proposition 20, it follows that
d̄Fn ( f (V )) = 0, by applying Lemma 21. In particular, d̄Fn (Ni ) = 0 for i = 2, 3. Also,
N1 ⊂ N2 so that d̄Fn (N1) = 0. �

PROPOSITION 23

The Banach density of N1 is zero.

Proof. Let (Fn)n∈N be a Følner sequence on N defined by Fn = (xn, xn + yn], where
(xn)∞n=1 and (yn)∞n=1 are sequences in N with yn → ∞. To show that the Banach density
of N1 is zero, it is enough to prove that d̄Fn (N1) = 0 for the two cases when (i) (xn)∞n=1
is bounded, and (ii) (xn)∞n=1 is divergent.

If (xn)∞n=1 is a bounded sequence, then Corollary 22 establishes that d̄Fn (N1) = 0.
So we can assume that (xn)∞n=1 is a divergent sequence. If p is a prime number, then
Proposition 2(ii) gives the existence of an element m0(p) ∈ N such that N1(m) ≡ 0
(mod p) for each m ≥ m0(p). Since (xn)∞n=1 is divergent, we can choose n0(p) ∈ N such

that xn > N1(m0(p)) for each n > n0(p). Then Fn contains at most |Fn |
p + 1 elements of

N1 for n > n0(p). So, given a prime p, there exists n0(p) ∈ N such that

n > n0(p) ⇒ |Fn ∩ N1|
|Fn| ≤ 1

p
+ 1

yn
.

Since yn → ∞ as n → ∞, this means that d̄Fn (N1) ≤ 1
p . As this holds for each prime p,

we conclude that d̄Fn (N1) = 0 if (xn)∞n=1 is divergent. Therefore, d∗(N1) = 0. �
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Hence, the proof of Theorem 3 is complete by collecting Proposition 23, Proposition 20
and Corollary 22.

2.2 Some criteria for sparse sets in N

We have studied the Banach densities of specific sets like V and N1. Now, we are going
to investigate the behavior of sparse sets which are the images of injective, increasing
functions on N. We proceed to the proof of Theorem 4.

Proof of Theorem 4(a). Let (a, b] be an interval in N such that a, b ∈ f (A). Since f
is injective and increasing, it follows that {x ∈ A : f (x) ∈ (a, b]} = {x ∈ A : x ∈
( f −1(a), f −1(b)]}. Therefore,

|(a, b] ∩ f (A)|
b − a

≤ f −1(b) − f −1(a)

b − a
= 1

b − a

(
b

mb
− a

ma

)
,

where ma = a

f −1(a)
and mb = b

f −1(b)
. Since the function

f (n)

n
is increasing on A, we

get ma ≤ mb. It follows that

|(a, b] ∩ f (A)|
b − a

≤ 1

mb
.

Suppose that ((an, bn])n∈N is a Følner sequence with |(an, bn] ∩ A| > 1. Then for each
n ∈ N, there exist a′

n, b
′
n ∈ f (A) such that (an, bn] ∩ f (A) = [a′

n, b
′
n] ∩ f (A) and

an < a′
n < b′

n ≤ bn . So,

lim sup
bn−an→∞

|(an, bn] ∩ f (A)|
bn − an

≤ lim sup
bn−an→∞

|(a′
n, b

′
n] ∩ f (A)|

b′
n − a′

n
≤ lim sup

bn−an→∞
1

mb′
n

.

Note that bn − an → ∞ ⇒ bn → ∞. We claim that b′
n → ∞. If not, there exists a

subsequence {b′
nk } of {b′

n} such that b′
nk ≤ l for all k ∈ N. By the definition of b′

n , we know
that (b′

nk , bnk ] ∩ f (A) = ∅ for each k. In particular, (l, bnk ] ∩ f (A) = ∅ for all k. Since
bnk → ∞ as k → ∞, this implies that f (x) ≤ l for all x ∈ A. But this is a contradiction
since f is strictly increasing and hence grows indefinitely. Thus, b′

n → ∞. Therefore,

lim sup
bn−an→∞

|(an, bn] ∩ f (A)|
bn − an

≤ lim sup
b′
n→∞

1

mb′
n

= 0,

since (mb′
n
)∞n=1 is a subsequence of the divergent sequence

(
f (n)
n

)
n∈A

.

Hence, d̄Fn ( f (A)) = 0 for all Følner sequences (Fn)n∈N with Fn = (an, bn]. So,
d∗( f (A)) = 0. �

Proof of Theorem 4(b). Choose r ∈ N\{1} such that c2 < (r−1)c1 and consider the Følner
sequence (Fn)n∈N given by Fn = (n, rn]. Since f (N) is an infinite set, there exists k′ ∈ N

that for each n ≥ k′, one can choose integers an, bn ∈ f (N) such that (an, bn) ∩ f (N) =
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(n, rn] ∩ f (N) and an ≤ n < rn ≤ bn . Since f is injective and increasing, it follows that
{x ∈ N : f (x) ∈ (an, bn)} = {x ∈ N : x ∈ ( f −1(an), f −1(bn))}. We now have

|Fn ∩ f (N)|
|Fn| = f −1(bn) − f −1(an) − 1

(r − 1)n
. (2)

From the hypothesis, we have

c1x ≤ f (x) ≤ c2x ∀ x ≥ n0. (3)

Choose an integer k ≥ k′ such that f −1(an), f −1(bn) ≥ n0 for all n ≥ k. Inserting the
values of f −1(an), f −1(bn) obtained from inequality (3) in equation (2) for n ≥ k, we get

|Fn ∩ f (N)|
|Fn| ≥ 1

(r − 1)n

(
bn
c2

− an
c1

)
− 1

(r − 1)n

>
1

(r − 1)n

(
rn

(r − 1)c1
− n

c1

)

− 1

(r − 1)n
(since c2 < (r − 1)c1)

= 1

c1(r − 1)2 − 1

(r − 1)n
.

Therefore,

lim sup
n→∞

|Fn ∩ f (N)|
|Fn| ≥ 1

c1(r − 1)2 .

Hence, d̄Fn ( f (N)) > 0 and therefore d∗( f (N)) > 0. �

We drop the ‘increasing function’ hypothesis on f (n)
n in Theorem 4(a) and by the two

examples given below, we show that the conclusion on Banach density may or may not
hold.

Example 24. Given k, l ≥ 2, we define a map fk,l : N → N by

fk,l(x) =
{
k2nl + (l − 1)x if k2n ≤ x < k2n+1,

xl if k2n+1 ≤ x < k2n+2.

One can see that fk,l is injective and increasing. The function fk,l (n)

n is divergent but not
increasing. Note that fk,l([k2n, k2n+1)) is an arithmetic progression of length k2n+1 − k2n

with a common difference l − 1. Therefore, fk,l(N) contains arbitrarily long arithmetic
progressions with a common difference l − 1. Hence, it has positive Banach density.

The above example suggests that the ‘increasing’ hypothesis on f (n)
n is necessary. How-

ever, this is not always the case as the next example shows.
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Suppose BN1 = {m ∈ V : N1(m) = N2(m)}. Then the function h : BN1 → N1
defined by h(m) = N1(m), is both bijective and increasing. By a result of Sanna [11,
Lemma 2.1] on the asymptotic of N1(m), it is readily seen that h(m)

m = N1(m)
m → ∞ as

m → ∞.

Lemma 25 [11, Lemma 2.1]. N1(m) ∼ eγ m log logm as m → ∞, where γ is the Euler–
Mascheroni constant.

The next proposition tells us that h(m)
m is not an increasing function.

PROPOSITION 26

h(n)

n
: BN1 → N1 is not an increasing function.

Proof. For p ∈ P, define

X p =
∏

q∈P,q≤p

q.

Let p1 and p2 be two consecutive primes such that 3 < p1 < p2. Let a = X p1 , b = X p2
p1

,
Ma = φ(a) and Mb = φ(b). Then by Proposition 1 and the definition of h, we get

h(Ma) = N1(Ma) = a and h(Mb) = N1(Mb) = b.

The proof of the equation h(Mb) = b uses a result of Nagura which states that (n, 1.2n)∩
P �= ∅ for all n > 25. This gives

h(Ma)

Ma
=

∏
q∈P,q≤p1

q

q − 1
=

(
p1

p1 − 1

) (
p2 − 1

p2

)
h(Mb)

Mb
.

Since p1 < p2, it follows that

h(Ma)

Ma
>

h(Mb)

Mb
but Ma = p1 − 1

p2 − 1
Mb < Mb.

Therefore, h(n)
n is not an increasing function. �

In contrast to fk,l , though h(n)
n is not increasing, we know that d∗(h(BN1)) = d∗(N1) =

0. Therefore, we observe that if we remove the condition of ‘increasing map’ on f (n)
n , then

both the possibilities, namely Banach density is zero or positive may occur.

3. Explicit construction of elements of N2 and N3

3.1 Proof of Theorem 5

Now we move on to the study of N2 and N3. As we know that N1 � N2, we give
explicit examples of infinite families of elements in N2 \ N1. Since φ(p) = p − 1 and



Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:84 Page 13 of 25 84

φ(p− 1) < p− 1 for an odd prime p, this implies that N3(p− 1) = p. So, P \ {2} ⊂ N3.

We are going to show that infinitely many composite numbers also lie in N3. First, we give
the following useful definitions.

DEFINITION 27 (kq,r and Kq,r )

For q ∈ P and r, r1, r2 ∈ N, define

kq,r : =
{
qr (q − 1) + 1 if qr (q − 1) + 1 is a prime,

qr+1 otherwise .

Kq,r : = 2qr+1, R(r1, r2) = 2 · 3r1 · 5r2 .

The following lemma gives a description of the elements of φ−1(m) form ≡ 2 (mod 4).

This will be useful to construct families of elements in N2 and N3 as indicated above.

Lemma 28. Let A(m) denote the number of solutions to the equation φ(x) = m. Suppose
m > 2 and m ≡ 2 (mod 4). Then

(i) every element of φ−1(m) is of the form pα or 2pα , where p ≡ 3 (mod 4);
(ii) A(m) = 0, 2 or 4;
(iii) if A(m) = 2, then φ−1(m) = {pα, 2pα} for some p ≡ 3 (mod 4), α ≥ 1 and if

A(m) = 4, then φ−1(m) = {pβ, 2pβ, q, 2q} for some p, q ≡ 3 (mod 4), with p <

q, β > 1.

Proof. For the proof of (i) and (ii), see [9]. For (iii), if p ∈ P, p ≡ 3 (mod 4), then
φ(pα) = φ(2pα) for α ≥ 0. If A(m) = 2, then from (i), φ−1(m) = {pα, 2pα}
for some prime p ≡ 3 (mod 4). On the other hand, if A(m) = 4, then φ−1(m) =
{pβ, 2pβ, qγ , 2qγ } for some p, q ≡ 3 (mod 4) and β, γ ≥ 1. Now, pβ �= qγ and
φ(pβ) = φ(qγ ) ⇒ p �= q. Without loss of generality, let us assume that p < q. This
means that β > γ. Now, φ(pβ) = φ(qγ ) ⇒ pβ−1(p− 1) = qγ−1(q − 1). If γ > 1, then
it means that q | (p − 1), a contradiction to p < q. Thus, γ = 1.

Therefore, φ−1(m) = {pβ, 2pβ, q, 2q} for some p, q ≡ 3 (mod 4) with p < q, β >

1 in the case A(m) = 4. �

Lemma 29. Let q be a prime greater than 7. Then there exists a unique odd integer n ∈
{q + 2, q + 4} such that n ≡ 0 (mod 3), gcd(n, q) = 1 and φ(n) < q.

Proof. Since q is a prime and q > 7, one can choose the unique integer n ∈ {q +2, q +4}
such that n ≡ 0 (mod 3). Since q is odd, gcd(q, n) = 1. Let n = 3r l with r, l ∈ N and
3 � l. Hence φ(n) = 2 × 3r−1φ(l) ≤ 2 × 3r−1l = 2n

3 ≤ 2q+8
3 < q if q ≥ 11. �

PROPOSITION 30

Suppose that r ∈ N and q is a prime satisfying q ≡ 3 (mod 4). Then

(i) N2(qr (q − 1)) = Kq,r and N3(qr (q − 1)) = kq,r ;
(ii) Kq,r /∈ N1 except when (q, r) = (3, 1).



84 Page 14 of 25 Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:84

Proof. Let m = qr (q − 1). Then q ≡ 3 (mod 4) ⇒ m ≡ 2 (mod 4). Since φ(qr+1) =
qr (q − 1), it follows that φ−1(m) is non-empty. Applying Lemma 28, we get φ−1(m) =
{qα

1 , 2qα
1 } or {qβ

2 , 2qβ
2 , q3, 2q3}, where q2 < q3, m > 2, α ≥ 1 and β > 1.

If φ−1(m) = {qα
1 , 2qα

1 }, then q1 = q and α = r + 1 as φ(qr+1) = qr (q − 1) =
φ(2qr+1). Hence N2(qr (q − 1)) = Kq,r and N3(qr (q − 1)) = qr+1 in this case. Since
φ−1(m) does not contain primes, this means that m + 1 = qr (q − 1)+ 1 is composite and
hence kq,r = qr+1 = N3(m).

If suppose φ−1(m) = {qβ
2 , 2qβ

2 , q3, 2q3}, where q2, q3 ≡ 3 (mod 4), q2 < q3 and
β > 1. If qr (q − 1) + 1 is a prime, then qr (q − 1) + 1 ∈ φ−1(m). It follows that
N3(qr (q − 1)) = kq,r in this case. Since the only prime in φ−1(m) is q3, we get q3 =
qr (q − 1) + 1 = N3(qr (q − 1)). This means that qβ

2 > q3. Now, note that qr+1 >

qr (q − 1) + 1 and qr+1 is the only odd composite number in φ−1(m). Thus, qβ
2 = qr+1,

i.e. q2 = q and β = r + 1. Therefore, N2(qr (q − 1)) = 2qr+1. On the other hand, if
qr (q−1)+1 is not a prime, then no element of φ−1(m) can be prime. But this contradicts
the fact that q3 ∈ φ−1(m). Therefore,

N2(q
r (q − 1)) = Kq,r and N3(q

r (q − 1)) = kq,r .

Coming to the proof of (ii), if q > 7, then Lemma 29 gives the odd integer n ∈
{q + 2, q + 4} such that n ≡ 0 (mod 3), gcd(n, q) = 1 and φ(n) < q. Now we observe
that 2nqr−1 > 2qr but φ(2nqr−1) ≤ φ(2qr ). Hence 2qr /∈ N1 for all q > 7. If q = 7,
then 2 × 32 × 7r−1 > 2 × 7r but φ(2 × 32 × 7r−1) ≤ φ(2 × 7r ) and hence 2 × 7r /∈ N1
for all r ≥ 1. If q = 5, then 12 × 5r−1 > 2 × 5r but φ(12 × 5r−1) ≤ φ(2 × 5r ). Hence
2 × 5r /∈ N1 for all r ≥ 1. Since φ(20 × 3r−2) < φ(2 × 3r ) but 20 × 3r−2 > 2 × 3r for
r ≥ 3, it follows that 2 × 3r /∈ N1 for all r ≥ 3. �

From Proposition 30, we see that Kq,r ∈ N2 \ N1 for all r ≥ 3. So, for each q ≡ 3
(mod 4), this gives an infinite family of elements in N2 \ N1. But the proposition does not
ensure the presence of infinitely many composite numbers in N3. For this, we require that
kq,r is composite for infinitely many (q, r). If q = 3, note that 2 · 3r + 1 is divisible by
5 when r ≡ 3 (mod 4). In other words, k3,r is composite for infinitely many r . So, from
Proposition 30, we see that N3 contains infinitely many composite numbers.

Now, we give another infinite family of elements in N2 \ N1. First, we state some
definitions, four preliminary lemmas and then prove the two main lemmas which together
construct an infinite two-parameter family of elements in N2 \ N1.

DEFINITION 31 (D(A, B))

Let A and B be two finite subsets of P. Then D(A, B) is defined by

D(A, B) :=
⎛
⎝∏

q∈A

q − 1

q

⎞
⎠

⎛
⎝∏

q∈B

q

q − 1

⎞
⎠ .

Lemma 32. Suppose that y, x ∈ N \ {1}. If φ(y) ≤ φ(x) and y > x, then
D(W (y),W (x)) < 1.



Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:84 Page 15 of 25 84

Proof. We know that

φ(y) = y
∏

q∈W (y)

(
q − 1

q

)
and φ(x) = x

∏
q∈W (x)

(
q − 1

q

)
.

This gives

1 ≥ φ(y)

φ(x)
= yD(W (y),W (x))

x
> D(W (y),W (x)),

since φ(y) ≤ φ(x) and y > x . �

Lemma 33. Let A and B be two finite subsets of P such that |B| ≤ |A|. If min(B \ A) >

max(A) or B ⊂ A, then D(B, A) ≥ 1.

Proof. If B ⊂ A, then D(B, A) =
(∏

q∈A\B
q

q−1

)
≥ 1. In the case when B �⊂ A, define

an injective map f : B → A such that f (x) = x for x ∈ A∩ B. If min(B \ A) > max(A),
it follows that f (x) ≤ x for all x ∈ B. Therefore,

D(B, A) ≥
∏
x∈B

(
(x − 1) f (x)

x( f (x) − 1))

)
=

∏
x∈B

(
x f (x) − f (x)

x f (x) − x

)
≥ 1.

�

Lemma 34. Let a, k ∈ N \ {1} and k ≤ a. Suppose that x1, x2, . . . , xk are non-negative
integers such that at least two of them are postive. Then

k∑
i=1

axi ≤ ax1+x2+···+xk .

Proof. Since atleast two of the k integers x1, x2, . . . , xk are positive, it follows that axi ≤
ax1+x2+···+xk−1 for all i ∈ [1, k]. Therefore,

k∑
i=1

axi ≤ kax1+x2+···+xk−1 ≤ ax1+x2+···+xk ,

since k ≤ a. �

Lemma 35. Let x, y, k ∈ N such that x, y, k ≥ 2 and k ≤ min{x, y}. Suppose that for each
i ≤ k, ai and bi are non-negative integers such that ai + bi �= 0. If a1 + a2 + · · · + ak = t
and b1 + b2 + · · · + bk = u, then

k∑
i=1

xai ybi ≤ xt yu .
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Proof. Let k ≥ 2. If possible, suppose that both the sequences (ai )ki=1, (bi )ki=1 contain at
most one positive integer. If k ≥ 3, then there exists j ∈ [1, k] such that a j + b j = 0, a
contradiction. Hence, k = 2 and exactly one of {a1, a2} and one of {b1, b2} are positive
with ai + bi �= 0 for i ∈ [1, 2]. Therefore, we can assume a1, b2 > 0, without loss of
generality. We need to show that

xa1 + yb2 ≤ xa1 yb2

in this case. Since x, y ≥ 2 and a1, b2 ∈ N, it is enough to show that v + w ≤ vw for
v,w ∈ N \ {1}. This happens iff v ≤ w(v − 1) iff v/(v − 1) ≤ w which is true since the
left-hand side is not greater than 2.

On the other hand, if one of the sequences, say (ai ), has at least two positive elements,
then by Lemma 34, we have

k∑
i=1

xai ybi ≤
(

k∑
i=1

xai

)
yu ≤ xt yu,

since k ≤ min{x, y} ≤ x . �

DEFINITION 36 (Valuation)

Let p be a prime number. Then the p-valuation on the integers Z is the map vp : Z →
N ∪ {0,∞} defined by vp(0) = ∞ and vp(n) = r for n �= 0, where r is the largest
non-negative integer such that pr | n.

Lemma 37. Suppose r1, r2, y ∈ N satisfy φ(y) = φ(R(r1, r2)), |W (y)| = 4, v2(y) = 1,

v3(y) = 0 and v5(y) = 0. Then y ≤ R(r1, r2).

Proof. Since |W (y)| = 4, v2(y) = 1, v3(y) = 0 and v5(y) = 0, we can write y =
2

(
q

vq1 (y)
1 q

vq2 (y)
2 q

vq3 (y)
3

)
, where q1, q2, q3 are distinct primes greater than 6 and vq(y) ≥ 1

for q ∈ {q1, q2, q3}. Since φ(y) = φ(R(r1, r2)), it follows that vq1(y) = vq2(y) =
vq3(y) = 1 and hence

(
q1 − 1

2

)(
q2 − 1

2

)(
q3 − 1

2

)
= 5r2−13r1−1.

Therefore, for each i ∈ {1, 2, 3}, we can write qi = 2 · 3ai 5bi + 1 such that

a1 + a2 + a3 = r1 − 1, b1 + b2 + b3 = r2 − 1,

a1 + b1 �= 0, a2 + b2 �= 0, a3 + b3 �= 0,

a1, a2, a3, b1, b2, b3 ≥ 0.
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Therefore,

y = 2(2 · 3a1 5b1 + 1)(2 · 3a2 5b2 + 1)(2 · 3a3 5b3 + 1)

= 2

(
233r1−15r2−1 + 22

(
3∑

i=1

3r1−ai−15r2−bi−1

)
+ 2

(
3∑

i=1

3ai 5bi

)
+ 1

)

= 2

(
233r1−15r2−1 + 223r1−15r2−1

(
3∑

i=1

3−ai 5−bi

)
+2

(
3∑

i=1

3ai 5bi

)
+1

)
.

(4)

Since ai + bi ≥ 1 for each i = 1, 2, 3, we have

3∑
i=1

3−ai 5−bi ≤
3∑

i=1

3−(ai+bi ) ≤ 1. (5)

Applying Lemma 35, we have

3∑
i=1

3ai 5bi ≤ 3r1−15r2−1. (6)

Inserting inequalities (5) and (6) in the right-hand side of (4), we get

y ≤ 2
(

233r1−15r2−1 + 223r1−15r2−1 + 2 · 3r1−15r2−1 + 1
)

≤ 2 · 3r1−15r2−1(8 + 4 + 2 + 1) = R(r1, r2).

�

Lemma 38. Suppose r1, r2, y ∈ N and r2 > 2 satisfy φ(y) = φ(R(r1, r2)), |W (y)| = 4,

v2(y) = 1, v3(y) ≥ 1 and v5(y) = 0. Then y ≤ R(r1, r2).

Proof. Since |W (y)| = 4, v2(y) = 1, v3(y) ≥ 1 and v5(y) = 0, we can write y =
2
(
3v3(y)q

vq1 (y)
1 q

vq2 (y)
2

)
, where q1, q2 are distinct primes greater than 6 and vq(y) ≥ 1 for

q ∈ {q1, q2, 3}. Since φ(y) = φ(R(r1, r2)), it follows that vq1(y) = vq2(y) = 1, v3(y) ≤
r1, and hence(

q1 − 1

2

)(
q2 − 1

2

)
= 5r2−13r1−v3(y).

Therefore, we can write q1 = 2 · 3a1 5a2 + 1 and q2 = 2 · 3b1 5b2 + 1 such that a1 + b1 =
r1 − v3(y), a2 + b2 = r2 − 1, a1 + a2 �= 0, b1 + b2 �= 0 and a1, a2, b1, b2 ≥ 0.

Therefore,

y = 2 · 3v3(y)
(
2 · 3a1 5a2 + 1

)(
2 · 3b1 5b2 + 1

)
= 2

(
22 · 3a1+b1+v3(y)5a2+b2 + 2(3a1+v3(y)5a2 + 3b1+v3(y)5b2

) + 3v3(y)).
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Inserting a1 + b1 = r1 − v3(y) and a2 + b2 = r2 − 1 in the above equation, we get

y = 2
(
22 · 3r1 5r2−1 + 2

(
3r1−b15a2 + 3r1−a1 5b2

) + 3v3(y)
)
. (7)

From Lemma 34, we have

5a2 + 5b2 ≤
{

5r2−1 if a2, b2 > 0,

1 + 5r2−1 else.
(8)

We are now going to consider the following cases depending on the value of a1 and b1.

Case 1. If a1 and b1 are positive, then a1 + b1 ≥ 2. Using this along with the conditions
a1 + b1 + v3(y) = r1 and v3(y) ≥ 1, we get r1 ≥ 3 and v3(y) ≤ r1 − 2. Applying these
in the right-hand side of equation (7), we have

y ≤ 2
(
22 · 3r1 5r2−1 + 2 · 3r1−1(5a2 + 5b2

) + 3r1−2).
Inserting the value of 5a2 + 5b2 from (8) in the above inequality, we have

y ≤ 2 · 3r1−2(36 · 5r2−1 + 6
(
1 + 5r2−1) + 1

)
≤ 2 · 3r1−2(45 · 5r2−1 − 3 · 5r2−1 + 7

)
≤ 2 · 3r1 5r2 = R(r1, r2) for each r2 ≥ 2.

Case 2. If a1 = 0 and b1 = 0, then v3(y) = r1 due to the fact that a1 + b1 = r1 − v3(y).
Applying these in equation (7), we have

y ≤ 2 · 3r1
(
4 · 5r2−1 + 2

(
5a2 + 5b2

) + 1
)
.

Since a1 + a2 �= 0 and b1 + b2 �= 0, it follows that a2, b2 > 0. Hence a2, b2 ≤ r2 − 2
because a2 + b2 = r2 − 1. Using this in the previous inequality gives us

y ≤ 2 · 3r1
(
4 · 5r2−1 + 4 · 5r2−2 + 1

)
≤ 2 · 3r1

(
5r2 − 5r2−2 + 1

) ≤ R(r1, r2),

since r2 = 1 + a2 + b2 ≥ 3.

Case 3. The remaining cases are in which exactly one of a1 and b1 is zero. Without loss
of generality, assume that a1 = 0 and b1 �= 0.

If b2 ≥ 1, we get r2 ≥ 2 and a2 ≤ r2 − 2 because a2 + b2 = r2 − 1. Since a1 = 0 and
a1 + a2 �= 0, we have a2 ≥ 1, and hence b2 ≤ r2 − 2. Equation (7) gives

y ≤ 2
(
22 · 3r1 5r2−1 + 2

(
3r1−15r2−2 + 3r1 5r2−2) + 3r1

)
≤ 2 · 3r1

(
22 · 5r2−1 + 4 · 5r2−2 + 1

)
≤ 2 · 3r1

(
22 · 5r2−1 + 5r2−1 − 5r2−2 + 1

)
≤ 2 · 3r1

(
5r2 − 5r2−2 + 1

)
≤ 2 · 3r1 5r2 , since r2 ≥ 2.
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Now, in the case b2 = 0, we have a2 = r2 −1. Since a1 = 0 and a2 +a1 �= 0, it follows
that a2 ≥ 1 and hence r2 ≥ 2. Then equation (7) gives

y ≤ 2
(
22 · 3r1 5r2−1 + 2

(
3r1−15r2−1 + 3r1

) + 3r1
)

≤ 2
(
3r1 5r2 − 3r1−15r2−1 + 3r1+1) ≤ R(r1, r2), since r2 > 2.

Hence y ≤ R(r1, r2) for r1, r2 ∈ N, r2 > 2. �

PROPOSITION 39

R(r1, r2) lies in N2 for each r1, r2 ∈ N, r2 > 2.

Proof. Let y be an even number such that φ(y) = φ(R(r1, r2)). Since v2(φ(R(r1, r2))) =
3, it follows that v2(φ(y)) = 3. This means that y can have atmost 4 prime factors. If
|W (y)| ≤ 3, then

D(W (y),W (R(r1, r2))) ≥ 1,

by Lemma 33. This gives y ≤ R(r1, r2), by Lemma 32. Now we consider the case |W (y)| =
4. Since v2(φ(y)) = 3, it follows in this case that v2(y) = 1.

Suppose v5(y) ≥ 1, then v2(φ(y)) ≥ 4. It follows that v2(φ(R(r1, r2))) ≥ 4 which
contradicts the fact that v2(φ(R(r1, r2))) = 3. Therefore, v5(y) = 0.

If v3(y) ≥ 1, Lemma 38 ensures that y ≤ R(r1, r2). If v3(y) = 0, then Lemma 37 gives
y ≤ R(r1, r2). Therefore R(r1, r2) ∈ N2 in any case. �

Remark 40. From Proposition 2(ii), we get that any element in N1, all of whose prime
factors are less than some prime p, has bounded exponents for its prime factors. But, as seen
above from Proposition 39, this is not the case for elements in N2. In fact, R(r1, r2) ∈ N2
for r1, r2 ∈ N, r2 > 2.

So, this raises the following question: For a given odd prime p, do there exist non-
negative integers dq corresponding to each odd prime q < p such that rq > dq for each
q < p ⇒ 2

∏
2<q<p q

rq ∈ N2? The numbers R(r1, r2) and K3,r answer this question in
the affirmative for p = 7 and p = 5 respectively.

Now we are going to give another infinite family of elements in N2 in which the odd
prime factors of elements are Fermat primes.

Lemma 41. If φ(x) = 2r for some x, r ∈ N, then there exist b, n ∈ N∪{0} and a sequence
of distinct Fermat primes (Fi j )

j=n
j=1 such that

x = 2b
n∏
j=1

Fi j .

Proof. We observe that if φ(x) = 2r and if an odd prime q | x , then (q − 1) | 2r which
implies that q is of the form 2l + 1 for some l ∈ N. But it is well-known that if 2l + 1
is a prime, then l = 2α for some α ≥ 0 (see [8, Theorem 17]). Hence, q = 22α + 1,
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a Fermat prime. Also, vq(x) = 1 for each such q | x . If not, then q | φ(x) = 2r , a
contradiction since q is odd. Therefore, x will be of the form x = 2b

∏n
j=1 Fi j , where

i j ∈ N, b, n ∈ N ∪ {0}. �

PROPOSITION 42

Let Fj denote the j-th Fermat prime for j ∈ N. Suppose F1, F2, . . . , Fk exist. If Fk+1 also
exists, then 2a F ∈ N2, where F = ∏k

i=1 Fi and 1 ≤ a ≤ log2(Fk+1 − 1). If Fk+1 does
not exist, then 2a F ∈ N2 for each a ∈ N.

Proof. Define y := 2a
∏k

i=1 Fi with a ∈ N. To prove y ∈ N2, it is enough to show that if
x is any even integer satisfying φ(y) = φ(x), then x ≤ y. This can be observed using the
fact that elements of N2 are even.

Let x be an even integer satisfying φ(x) = φ(y). Since φ(y) = 2r for some r ∈ N, it
follows that φ(x) = 2r for some r ∈ N. Then Lemma 41 gives x = 2b

∏n
j=1 Fi j for some

b ∈ N and n ∈ N ∪ {0}. Since φ(x) = φ(y), we have

a = b +
n∑
j=1

log2(Fi j − 1) −
k∑
j=1

log2(Fj − 1). (9)

If Fk+1 exists, then

|W (x)| > |W (y)| ⇒
n∑
j=1

log2(Fi j − 1) −
k∑
j=1

log2(Fj − 1) ≥ log2(Fk+1 − 1)

⇒ a ≥ b + log2(Fk+1 − 1) by equation (9)

⇒ a ≥ 1 + log2(Fk+1 − 1) since b ∈ N.

Therefore,

a ≤ log2(Fk+1 − 1) ⇒ |W (x)| ≤ |W (y)|
⇒ D(W (x),W (y)) ≥ 1 by using Lemma 33

⇒ x ≤ y by Lemma 32.

On the other hand, if Fk+1 does not exist, then W (x) ⊂ W (y) for each a ∈ N. It follows
that D(W (x),W (y)) ≥ 1, using Lemma 33. Then Lemma 32 gives x ≤ y. �

Only five Fermat primes are known till date. From the above proposition, one can see
that there exist elements in N2 \ N1 which are divisible by arbitrarily large powers of 2.
In all the earlier results, the elements obtained were divisible by 2 but not by 4.

COROLLARY 43

For a positive integer r, there exist infinitely many integers l such that l ≡ 0 (mod 2r )
and l ∈ N2 \ N1.
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DEFINITION 44

Let Fj denote the j-th Fermat prime for j ∈ N and let H = {k ∈ N : Fk exists}. Define

Kmax = {Kq,r : q ≡ 3 (mod 4), r ∈ N},
Kmin = {kq,r : q ≡ 3 (mod 4), r ∈ N},

R = {R(r1, r2) : r1, r2 ∈ N, r2 > 2},

F =
{

2a
k∏

i=1

Fi : k ∈ H ; a ≤ log2(Fk+1 − 1)

if Fk+1 exists and a ∈ N otherwise

}
.

By collecting Propositions 30, 39 and 42 , we get that (i) Kmax,R and F are infinite
subsets of N2 and (ii) Kmin is an infinite subset of N3 in which infinitely many elements
are composite. Proposition 2(ii) gives that only finitely many elements of Kmax,R and F
belong to N1.

Theorem 5. Kmax,R andF are infinite subsets of N2 in which only finitely many elements
are in N1.Kmin is an infinite subset of N3 in which infinitely many elements are composite.

3.2 Proof of Theorem 6

In the previous results, we looked at several families of elements in N2 and N3. Now, we
would like to compare the values of N2(m) and N3(m). In the following proposition, we
are going to give upper and lower bounds for N2(m) and N3(m) and we also look at the
ratio N2(m)/N3(m).

Lemma 45. Let m be an odd integer. If u is an odd integer satisfying φ(u) = 4m, then

u = (2z1 + 1)(2z2 + 1)

z1z2
m or

(4z3 + 1)

z3
m,

where z1z2|m, z3|m, z1 �= z2 and 2z1 + 1, 2z2 + 1, 4z3 + 1 are primes. Also, 4m < u ≤ 7m.

Proof. Any odd integer u satisfying φ(u) = 4m can have at most two prime factors. If u
has two distinct prime factors q1 and q2 such that q1 < q2 and q1, q2 ≡ 3 (mod 4) (since
v2(φ(u)) = 2), then

u

(
(q1 − 1)(q2 − 1)

q1q2

)
= 4m, i.e., u = 4q1q2

(q1 − 1)(q2 − 1)
m.

Since u, q1, q2 and m are all odd, we have q1 = 2z1 + 1, q2 = 2z2 + 1 for some odd
integers z1, z2 with z1 < z2. Moreover, q1q2|u ⇒ (q1 − 1)(q2 − 1) | φ(u) = 4m, i.e.,
z1z2 | m. Using this in the value of u, we have
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u = (2z1 + 1)(2z2 + 1)

z1z2
m,

where z1z2 divides m. Clearly, u > 4m and it can take a maximum value of 7m if z1 =
1, z2 = 3. Therefore, u ≤ 7m. If u has only one prime factor q with q ≡ 5 (mod 8) (since
v2(φ(u)) = 2), then

u = 4qm

q − 1
.

Now, q ≡ 5 (mod 8), and so q = 4z3 + 1 for some odd integer z3. Therefore,

u = (4z3 + 1)

z3
m.

Note that z3, 4z3 + 1 are co-prime integers and hence z3 | m. Clearly u > 4m and it can
take a maximum value of 5m if z3 = 1. �

Now we proceed to prove Theorem 6(i) and 6 (ii).

Proof of Theorem 6(i). If m ≡ 2 (mod 4) and φ(x) = m is solvable, then by Lemma 28,
m = qr (q − 1) for some q ≡ 3 (mod 4) . Since qr (q − 1) + 1 ≤ qr+1 ≤ 3m

2 , we have
m < N3(m) ≤ 3m

2 and 2m < N2(m) ≤ 3m, by Proposition 30. If m ≡ 4 (mod 8), firstly,
note that the proposition is true for m = 4, since N3(4) = 5 and N2(4) = 12. So, we can
assume that m ≥ 12. If φ(x) = m for m ≡ 4 (mod 8), then v2(x) ≤ 2.

Suppose that there exists an integer z such that v2(z) = 2 and φ(z) = m, where m =
4m0, m0 being an odd integer. If z = 4y, then y is an odd integer satisfying φ(x) = 2m0.
Then by Lemma 28, y = pα for some α ≥ 1 and prime p ≡ 3 (mod 4). Therefore,
z = 4pα . If p > 3, then 3pα < z < 6pα and φ(3pα) = φ(z) = φ(6pα). If p = 3 and
α > 1, then 7 × 3α−1 < z < 14 × 3α−1 and again they have the same φ value. Hence,
if φ(z) = m, m ≡ 4 (mod 8) and v2(z) = 2, then z /∈ {N2(m), N3(m)}. Moreover, an
odd integer l ∈ φ−1(m) iff 2l ∈ φ−1(m). Therefore, v2(N3(m)) = 0 and v2(N2(m)) = 1.
Now, note that N3(m) and N2(m)

2 are odd integers satisfying φ(x) = m = 4m1, where m1

is odd. Therefore, by Lemma 45, we have m < N3(m) and N2(m)
2 ≤ 7m

4 and the result
follows. �

Proof of Theorem 6(ii). By Lemma 28, if m ∈ V , then m ≡ 2 (mod 4) ⇐⇒ m =
qr (q−1) for some prime q ≡ 3 (mod 4), r ≥ 0. Now, by Proposition 30, if qr (q−1)+1
is composite, then

N2(qr (q − 1))

N3(qr (q − 1))
= 2.

Else, if qr (q − 1) + 1 is prime, then

N2(qr (q − 1))

N3(qr (q − 1))
= 2qr+1

qr (q − 1) + 1
= 2q

q − 1 + 1
qr

.

It is readily seen that the rightmost quantity lies between 2 and 3 since r ≥ 0, q ≥ 3. �
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To prove Theorem 6(iii), we give examples of infinite length geometric progressions in
N2 and N3. For each prime q ≡ 3 (mod 4), note that {Kq,r }r∈N is a geometric progression
in N2 with common ratio q. Also, we see that {R(r0, r)}∞r=3 is a geometric progression in
N2 with common ratio 5.

Now, we turn our attention to geometric progressions in N3. We construct an infinite
geometric progression in N3 with the help of the following lemma.

Lemma 46. Let q be a prime satisfying q ≡ 3 or 7 (mod 20). Then the set {r : qr (q −
1) + 1 is composite} contains an infinite arithmetic progression.

Proof. Suppose that q ≡ 3 (mod 20). We observe that qr (q − 1) + 1 is divisible by 5
for r ≡ 3 (mod 4). Now, if q ≡ 7 (mod 20), we see that qr (q − 1) + 1 is divisible by 5
for r ≡ 2 (mod 4). So, in any case, the set {r : qr (q − 1) + 1 is composite} contains an
infinite arithmetic progression. �

If q ≡ 3 or 7 (mod 20), then kq,r ∈ N3 for each r ∈ N. As the set S = {r : qr (q −1)+
1 is composite} contains an infinite arithmetic progression, the set {kq,r : r ∈ S} contains
an infinite geometric progression. So, corresponding to each such q, there is an infinite
geometric progression. This implies an infinite family of such geometric progressions in
N3 due to the following result of Dirichlet [8, Theorem 15, page 16].

PROPOSITION 47 (Dirichlet’s theorem)

Suppose (a, q) = 1. Then there are infinitely many primes p satisfying p ≡ a (mod q).

4. Arithmetic progressions in sparse sets

Szemerédi’s theorem assures the existence of arbitrarily long arithmetic progressions in
a set having positive asymptotic density. But the converse is not necessarily true. For
example, the set of prime numbers has zero asymptotic density but contains arbitrarily
long arithmetic progressions, as proved by Green and Tao [6].

DEFINITION 48

Let A ⊂ P. Then Rd(A) = lim supN→∞
|A∩[1,N ]|

π(N )
defines the relative upper density of A

with respect to P, where π(N ) denotes the number of primes less than or equal to N .

PROPOSITION 49 [6]

Let A be any subset of the prime numbers of positive relative upper density Rd(A). Then
A contains infinitely many arithmetic progressions of length k for all k.

Let f : V → N be such that f (m) ∈ φ−1(m). By Corollary 22, d̄( f (V )) = 0. We
observe that it satisfies the hypothesis of the following famous conjecture of Erdős and
Turán.
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Conjecture 1 (Erdős and Turán). If A ⊂ N is such that
∑

n∈A n
−1 diverges, then A

contains arbitrarily long arithmetic progressions.

PROPOSITION 50

Let f : V → N be such that f (m) ∈ φ−1(m). Then
∑

m∈V 1
f (m)

diverges.

Proof. We have

∑
n∈N2

1

n
≤

∑
m∈V

1

f (m)
≤

∑
n∈N3

1

n
.

If m ≡ 2 (mod 4), then N2(m) ≤ 3N3(m), by Proposition 6(ii). So, it follows that

∑
m∈V

1

N2(m)
≥

∑
m≡2 (mod 4)

m∈V

1

3N3(m)
≥

∑
p≡3 (mod 4)

1

3p
,

since N3 contains each odd prime. The right most series is divergent (see [2, Chapter 4])
and the result follows. �

Hence we may expect arbitrarily long arithmetic progressions in f (V ). Indeed, the
following result due to Erdős [3, p. 15] and Proposition 49 confirm our intuition.

PROPOSITION 51 [3]

Suppose m ∈ V with |φ−1(m)| = k for k ≥ 2. Then there exists a set P ⊂ P such that
Rd(P) > 0 and for each p ∈ P, φ−1(m(p − 1)) = pφ−1(m).

Proof of Theorem 7. Consider the set V1 = {m ∈ V : |φ−1(m)| = 2} and let m′ ∈ V1.
Then, by Proposition 51, there exists P1 ⊂ P such that Rd(P1) > 0 and m′(p − 1) ∈ V1
for each p ∈ P1. Now, consider the sets P2 = {p ∈ P1 : pN2(m′) ∈ f (V )} and P3 =
{p ∈ P1 : pN3(m′) ∈ f (V )}. By the definition of the set f (V ), we have P2 ∩ P3 = ∅ and
P2 ∪ P3 = P1. Therefore, at least one of the sets P2 or P3 has positive relative density in P

and thus, by Proposition 49, contains arbitrarily long arithmetic progressions. Therefore,
one of the subsets N2(m′)P2 or N2(m′)P3 of f (V ) contains arbitrarily long arithmetic
progressions and the result follows. �

5. Questions

As discussed in Remark 40, we raise the following question about elements in N2.

Question 1. For a given odd prime p, do there exist non-negative integers dq for each
prime q < p such that rq > dq for each prime q < p ⇒ 2

∏
2<q<p q

rq ∈ N2?

We have observed that the Banach densities of V and N1 are zero. Also, the asymptotic
density d̄(N2) of N2 is zero. Since N1 ⊂ N2, d∗(N1) = 0, and there is a bijection
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fmax : V → N2 given by fmax(m) = N2(m), it may seem that d∗(N2) = 0. But, on the
other hand, consider the function f : N

2 → N (where N
2 is the set of square numbers

{1, 4, 9, 16, . . . }) defined by f (y) = √
y,

√
y being the unique positive square root of y.

By Theorem 4(a), we see that d∗(N2) = 0. So f is a bijection from a zero Banach density
set to a set with positive Banach density. Now, the function fmax is not increasing and
hence, it suggests that N2 may have a positive Banach density. So, it is interesting to ask
the following question.

Question 2. What is the Banach density of N2 and N3?

In fact, except for Følner sequences of type (an, an(1+αn)], where αn → 0, an → ∞,
and αnan → ∞, one can see that the upper density with respect to other Følner sequnces
is zero.

Acknowledgements

The authors would like to thank the Department of Atomic Energy, Government of India for
the financial support. In addition, the research of the second and third authors (PE and BRP)
was also supported by the ‘INFOSYS scholarship for senior students’. They would also
like to thank Harish-Chandra Research Institute for the excellent facilities. They thank their
supervisors Prof. D S Ramana and Prof. Gyan Prakash for their comments on the final draft
of this paper. They sincerely thank K Mallesham for his insightful remarks and constant
encouragement, and Samrat Kadge for help with the computation and programming. They
would also like to thank the referee for a very careful reading of this paper and for his/her
suggestions.

References

[1] Beiglböck M, Bergelson V and Fish A, Sumset phenomenon in countable amenable groups,
Adv. Math. 223(2) (2010) 416–432

[2] Davenport H, Multiplicative number theory, third edition, revised and with a preface by Hugh
L Montgomery, Graduate Texts in Mathematics, 74 (2000) (Springer-Verlag)
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