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1. Introduction

The transversal intersection phenomenon for monomial ideals in the polynomial ring hap-
pens to be extremely interesting and it turns out that it is equivalent to having disjoint
supports for their minimal generating sets; see Theorem 2.2. The Taylor complex which
resolves (possibly non-minimally) a monomial ideal has been understood completely for
ideals of the form I + J , where I and J are monomial ideals intersecting transversally;
see Theorem 3.2. As an application of this theorem, we prove in Corollary 3.3 that for two
ideals I and J in R intersecting transversally, the ideal I + J is resolved minimally by the
complex M(I )� ⊗ M(J )�, if M(I )� and M(J )� denote minimal free resolutions of I and
J respectively. Minimal free resolutions for ideals of the form I + J have an interesting
structure when I and J intersect transversally and are supported simplicially; see 4.3.

2. Monomial ideals

Let R = K [x1, x2, . . . , xn], where xi ’s are indeterminates over the field K . Let Mon(R)

denote the set of all monomials in R. Every nonzero polynomial f ∈ R is a unique K -linear
combination of monomials given by f = ∑

v∈Mon(R) avv. Let m( f ) := {v ∈ Mon(R) |
av �= 0}. An ideal I in R is said to be a monomial ideal if it is generated by monomials of
R. We list down some standard facts on monomial ideals.
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PROPOSITION 2.1

(1) I is a monomial ideal if and only if f ∈ I ⇒ m( f ) ⊂ I .
(2) Let {u1, . . . , um} be a monomial generating set of an ideal I , where ui ’s are mono-

mials. A monomial v ∈ I if and only if v = uiw for some 1 ≤ i ≤ m.
(3) Each monomial ideal I has a unique minimal monomial set of generators G(I ).

Proof. See [1]. �

DEFINITION 1

Let ∅ �= T ⊂ Mon(R). We define

supp(T ) = {i | xi divides m for some m ∈ T }.

If T = {m}, we simply write supp(m) instead of supp({m}). If S and T are two nonempty
subsets of Mon(R), then, supp(S) ∩ supp(T ) = ∅ if and only if supp( f ) ∩ supp(g) = ∅
for every f ∈ S and g ∈ T .

DEFINITION 2

We say that the ideals I and J of R intersect transversally if I ∩ J = I J .

Theorem 2.2. Let I and J be two monomial ideals of R. Then, I ∩ J = I J if and only if
supp(G(I )) ∩ supp(G(J )) = ∅.

Proof. Let I ∩ J = I J . Consider the set

S = {lcm( f, g) | f ∈ G(I ) , g ∈ G(J ), and supp( f ) ∩ supp(g) �= ∅}.
If S = ∅, then for every f ∈ G(I ) and g ∈ G(J ) we have supp( f ) ∩ supp(g) = ∅, which
proves that supp(G(I )) ∩ supp(G(J )) = ∅.

Suppose S �= ∅. We define a partial order ≤ on S in the following way: Given s, t ∈ S,
we define s ≤ t if and only s | t . Let m be a minimal element (by Zorn’s lemma)
of S; then there exist f, g, such that f ∈ G(I ), g ∈ G(J ) and ( f, g) = m. Since
lcm( f, g) ∈ I ∩ J and I ∩ J = I J , we have lcm( f, g) = m ∈ I J . By Proposition 2.1,
there exist h1 ∈ G(I ) and h2 ∈ G(J ) such that h1h2 | m, since the generating set of I J
is the set G(I )G(J ) = {uv | u ∈ G(I ), v ∈ G(J )}.

We claim that supp(h1)∩supp(h2) = ∅. If this is not the case, then lcm(h1, h2) �= h1h2,
in fact lcm(h1, h2) < h1h2 and lcm(h1, h2) | m; contradicting minimality of m in S.

We now prove that supp( f ) ∩ supp(h2) �= ∅. We know that h1h2 | lcm( f, g) = m.
Therefore, if supp( f ) ∩ supp(h2) = ∅, then h2 | g; which contradicts minimality of
the generating set G(J ). Similarly, we can prove that supp(g) ∩ supp(h1) �= ∅. Now,
h1h2 | m = lcm( f, g) implies that h2 | m = lcm( f, g). Moreover, f | lcm( f, g).
Therefore, lcm( f, h2) | lcm( f, g). Similarly, lcm(g, h1) | lcm( f, g). Now if lcm( f, h2) <

m or lcm(g, h1) < lcm( f, g) = m, then we have a contradiction, since lcm( f, g) and
lcm(g, h1) both are in the set S and m is a minimal element in S. Therefore, we must

have lcm( f, h2) = lcm(g, h1) = lcm( f, g) = m = h1h2w (say) and
f h2

gcd( f, h2)
=
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gh1

gcd(g, h1)
= h1h2w, therefore

f

gcd( f, h2)
= h1w. Hence, h1 | f and it contradicts

minimality of the generating set G(I ). Hence, S = ∅ and we are done.
Conversely, let us assume that supp(G(I )) ∩ supp(G(J )) = ∅. Without loss of gen-

erality, we can assume that supp(G(I )) = {1, 2, . . . , k} and supp(G(J )) = {k + 1, k +
2, . . . , n}. Let f ∈ I ∩ J such that f = ∑

v∈Mon(R) avv. We have v ∈ I ∩ J for all
v ∈ m( f ). It is therefore enough to show that if m is a monomial and m ∈ I ∩ J , then
m ∈ I J . Let m ∈ I ∩ J ; there exist mI ∈ G(I ) and mJ ∈ G(J ) such that mI | m and
mJ | m. Let mIm1 = m; then mJ | m = mIm1. We know that supp(mI )∩ supp(mJ ) = ∅,
therefore mJ | m1 and it follows that m1 = mJm2 and m = mImJm2. Therefore, m ∈ I J
since mImJ ∈ I J . �

Theorem 2.3. Let I and J be two ideals of R such that with respect to some monomial
order �, supp(Lt(I )) ∩ supp(Lt(J )) = ∅. Then I and J intersect transversally.

Proof. Let GI and GJ be Gröbner bases with respect to the monomial order � of the ideals
I and J respectively. We assume that f ∈ I ∩ J . There exist polynomials p ∈ GI and
q ∈ GJ such that Lt(p) | Lt( f ) and Lt(q) | Lt( f ). Since supp(Lt(I ))∩ supp(Lt(J )) = ∅,
we have Lt(p) · Lt(q) | Lt( f ). After division we write f = pq + r . Then r ∈ I ∩ J
and Lt(r) � Lt( f ). We can apply the same process on r , and after a finite stage, we get
f ∈ I J . �

3. The Taylor complex

We define the multidegree of a monomial xa = xa1
1 xa2

2 · · · xann to be the n-tuple
(a1, . . . , an), denoted by mdeg(xa). Hence R = ⊕m∈Mon(R)Km has a direct sum decom-
position as K -vector spaces Km, where Km = {cm | c ∈ K }.

DEFINITION 3 (The Taylor complex)

Let M be a monomial ideal of R minimally generated by the monomials m1,m2, . . . ,mp.
The Taylor complex for M is given by T(M)� as follows: T(M)i is the free R-module
generated by e j1 ∧ e j2 ∧ · · · ∧ e ji for all 1 ≤ j1 < · · · < ji ≤ p, where {e1, . . . , ep} is the
standard basis for the free R-module Rp. The differential δ(M)· is given by the following:

δ(M)i (e j1 ∧ · · · ∧ e ji )

=
∑

1≤k≤i

(−1)k−1 lcm(m j1, . . . ,m ji )

lcm(m j1, . . . , m̂ jk , . . . ,m ji )
(e j1 ∧ · · · ∧ ê jk ∧ · · · ∧ e ji ).

We define mdeg(e j1∧, . . . ∧ e ji ) = mdeg(lcm(m j1, . . . ,m ji )). The Taylor complex
(T(M)�, δ(M)�) defined above is indeed a chain complex of free R modules and gives
a free resolution for the R-module R/M ; see section 26 in [2].

Theorem 3.1. The Taylor complex (T(M)�, δ(M)�) defined above is a free resolution
(though not minimal) of the monomial ideal M called the Taylor resolution of M.

Proof. See Theorem 26.7 in [2]. �
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Theorem 3.2. Let I and J be two monomial ideals of R intersecting transversally. Let
T(I )� and T(J )� be the Taylor resolutions of I and J respectively. Then the Taylor’s
resolution of I + J is isomorphic to the complex T(I )� ⊗T(J )� and hence T(I )� ⊗T(J )�
is acyclic.

Proof. We know that T(I )i = R(pi ) and T(J ) j = R(qj), where p and q denote the minimal
number of generators of I and J respectively. Then

(T(I )� ⊗ T(J )�)r = ⊕i+ j=r (T(I )i ⊗ T(J ) j )

= ⊕i+ j=r R(pi ) ⊗ R(qj)

= R
∑

i+ j=r (
p
i )(

q
j)

= R(p+q
r ) = T(I + J )r .

A basis of (T(I )� ⊗ T(J )�)r is given by (ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
) such that

i + j = r , 1 ≤ k1 < k2 < · · · < ki ≤ p and 1 ≤ k′
1 < k′

2 < · · · < k′
j ≤ q. Now for each

r , the free module (T(I )� ⊗ T(J )�)r can be graded with the help of mdeg as follows. We
define

mdeg((ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
))

= mdeg(lcm(mk1 , . . . ,mki ) · lcm(m′
k′

1
, . . . ,m′

k′
j
)).

This defines a multi-graded structure for the complex T(I )� ⊗ T(J )�.
Let G(I ) = {m1,m2, . . . ,mp} and G(J ) = {m′

1,m
′
2, . . . ,m

′
q} denote the minimal sets

of generators for I and J respectively. Then I + J is minimally generated by G(I )∪G(J ),
by Theorem 2.2, since G(I ) and G(J ) are of disjoint support. We will now show that the
tensor product complex T(I )� ⊗ T(J )� is isomorphic to the Taylor resolution T(I + J )�.
We define ψr : (T(I )� ⊗ T(J )�)r −→ (T(I + J )�)r as

(ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
) �→ (ek1 ∧ · · · ∧ eki ∧ e′

k′
1
∧ · · · ∧ e′

k′
j
).

Moreover,

mdeg(ek1 ∧ · · · ∧ eki ∧ ek′
1
∧ · · · ∧ ek′

j
)

= mdeg(lcm(mk1 , . . . ,mks ,m
′
k′

1
, . . . ,m′

k′
s′
))

= (mdeg(lcm(mk1 , . . . ,mks )), mdeg(lcm(m′
k′

1
, . . . ,m′

k′
s′
))),

since G(I ) and G(J ) are with disjoint supports. Hence, the map is a graded isomorphism
between the free modules (T(I )� ⊗ T(J )�)r and (T(I + J )�)r . We therefore have the
following diagram of complexes:
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· · · (T(I )� ⊗ T(J )�)r
dr

ψr

(T(I )� ⊗ T(J )�)r−1

ψr−1

· · ·

· · · (T(I + J )�)r
δ(I+J )r

(T(I + J )�)r−1 · · ·

We now show that δ(I + J )r ◦ ψr = ψr−1 ◦ dr . Let us take an arbitrary basis element of
(T(I )� ⊗ T(J )�)r , which is of the form

(ek1 ∧ ek2 ∧ · · · ∧ eki ) ⊗ (ek′
1
∧ ek′

2
∧ · · · ∧ ek′

j
) with i + j = r.

Then

(ψr−1 ◦ dr )((ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
))

= ψr−1(δ(I )i (ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
)

+ (−1)i (ek1 ∧ · · · ∧ eki ) ⊗ δ(J ) j (e
′
k′

1
∧ · · · ∧ e′

k′
j
)).

Let us write

Qt = lcm(mk1, . . . ,mki )

lcm(mk1 , . . . , m̂kt , . . . ,mki )
, 1 ≤ t ≤ i ;

Vt =
lcm(mk1 , . . . ,mki ,m

′
k′

1
, . . . ,m′

k′
j
)

lcm(mk1 , . . . , m̂kt , . . . ,mki ,m
′
k′

1
, . . . ,m′

k′
j
)
, 1 ≤ t ≤ i .

We know that G(I ) and G(J ) have disjoint supports. Therefore,

Vt =
lcm(mk1 , . . . ,mki ) · lcm(m′

k′
1
, . . . ,m′

k′
j
)

lcm(mk1 , . . . , m̂kt , . . . ,mki ) · lcm(m′
k′

1
, . . . ,m′

k′
j
)

= Qt , ∀ 1 ≤ t ≤ i.

Then

(
δ(I )i (ek1 ∧ · · · ∧ eki )

) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
)

=
i∑

t=1

(−1)t Qt · (ek1 ∧ · · · ∧ êkt · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
)

and

ψr−1(δ(I )i (ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
))

=
i∑

t=1

(−1)t Qt · (ek1 ∧ · · · ∧ êkt · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
)

=
i∑

t=1

(−1)t Vt · (ek1 ∧ · · · ∧ êkt ∧ eki ∧ e′
k′

1
∧ · · · ∧ e′

k′
j
).
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The last equality in the above expression follows from the fact that G(I ) and G(J ) have
disjoint supports. Similarly, it can be proved that

ψr−1((ek1 ∧ · · · ∧ eki ) ⊗ (δ(J ) j (e
′
k′

1
∧ · · · ∧ e′

k′
j
)))

=
j∑

l=1

(−1)lWl · (ek1 ∧ · · · ∧ eki ∧ e
′
k′

1
∧ · · · ê′

k′
l
· · · ∧ e

′
k′
j
);

where

Wl =
lcm(mk1 , . . . ,mki ,m

′
k′

1
, . . . ,m′

k′
j
)

lcm(mk1 , . . . ,mki ,m
′
k′

1
, . . . , m̂′

k′
l
, . . . ,m′

k′
j
)
, 1 ≤ l ≤ j.

Hence

(∗) (ψr−1 ◦ dr )((ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
))

=
i∑

t=1

(−1)t Vt · (ek1 ∧ · · · ∧ êkt ∧ eki ∧ e′
k′

1
∧ · · · ∧ e′

k′
j
)

+
j∑

l=1

(−1)i+lWl · (ek1 ∧ · · · ∧ eki ∧ e
′
k′

1
∧ · · · ê′

k′
l
· · · ∧ e

′
k′
j
).

We now introduce i + j new symbols ws such that ws = mks for s ≤ i and ws = m′
k′
s−i

for s > i . We also introduce another set of i + j symbols Es such that Es = eks for s ≤ i
and Es = e′

k′
s−i

for s > i . Hence, the expression after the last equality in (*) can be written

in a compact form as

i+ j∑

k=1

(−1)k
lcm(w1, . . . , wi+ j )

lcm(w1, . . . , ŵk, . . . , wi+ j )
(E1 ∧ · · · ∧ Êk · · · ∧ Ei+ j ).

Now

(δ(I + J )r ◦ ψr )((ek1 ∧ · · · ∧ eki ) ⊗ (e′
k′

1
∧ · · · ∧ e′

k′
j
))

= δ(I + J )r (ek1 ∧ · · · ∧ eki ∧ e′
k′

1
∧ · · · ∧ e′

k′
j
)

=
i+ j∑

k=1

(−1)k
lcm(w1, . . . , wi+ j )

lcm(w1, . . . , ŵk, . . . , wi+ j )
(E1 ∧ · · · ∧ Êk · · · ∧ Ei+ j ).

Hence the diagram is commutative. �

COROLLARY 3.3

Let I and J be ideals in R such that I J = I ∩ J . Let M(I )� and M(J )� denote minimal
free resolutions of I and J respectively. ThenM(I )� ⊗M(J )� is a minimal free resolution
of the ideal I + J .
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Proof. The minimal free resolutions M(I )� and M(J )� are direct summands of the Taylor
resolutionsT(I )� andT(J )� respectively. It follows thatM(I )�⊗M(J )� is a direct summand
of T(I )� ⊗ T(J )� = T(I + J )�. Hence M(I )� ⊗ M(J )� is a free resolution of I + J and
it is minimal since M(I )� and M(J )� are both minimal. �

4. A simplicial characterization of transversal intersection of monomial ideals

We first introduce the basic definitions of a simplicial complex; see [1].

DEFINITION 4

A simplicial complex � on the vertex set {1, . . . ,m} is a collection of subsets called faces
or simplices satisfying the following condition: σ ∈ � and τ ⊂ σ imply that τ ∈ �. A
simplex σ ∈ � of cardinality |σ | = r + 1 has dimension r and it is called an r face of �.

DEFINITION 5

A facet is a maximal simplex of a simplicial complex �. Let �(�) denote the set of all
facets of �. Then, the vertex set of � and the set �(�) determine � completely.

DEFINITION 6

A standard simplicial complex of dimension m − 1 on the vertex set {1, . . . ,m} is the
simplicial complex whose �(�) = {{1, . . . ,m}}.

DEFINITION 7

Let �1 and �2 be simplicial complexes on disjoint vertex sets. Let the vertext set of �1
be {1, . . . ,m} and that of �2 be {m + 1, . . . ,m + p}. The join of simplicial complexes �1
and �2 is the simplicial complex �1 ∗ �2, whose vertex set is {1, . . . ,m + p} and

�(�1 ∗ �2) = {σ1 ∪ σ2 | σ1 ∈ �(�1), σ2 ∈ �(�2)}.

We now define a frame as a complex of K -vector spaces with a fixed basis, which
encodes the minimal free resolution of a monomial ideal; see [2].

DEFINITION 8

An r -frame U� is a complex of finite K vector spaces with differential ∂ and a fixed basis
satisfying the following:

(i) Ui = 0 for i < 0;
(ii) U0 = K ;

(iii) U1 = Kr , with basis {w1, . . . , wr };
(iv) ∂(w j ) = 1, for all j = 1, . . . , r .

Construction of a frame of a simplicial complex. Let � be a simplicial complex on the
vertex set {1, . . . ,m}. For each integer i , let �i (�) be the set of all i dimensional faces
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of � and let K�i (�) denote the K -vector space generated by the basis elements eσ for
σ ∈ �i (�). The chain complex of � over K is the complex C(�)�,

0 −→ K�m−1(�) ∂m−1−→ · · · K�i (�) ∂i−→ K�i−1(�) ∂i−1−→ · · · ∂0−→ K�−1(�) −→ 0.

The boundary maps ∂i are defined as

∂i (eσ ) =
∑

j∈σ

sign( j, σ )eσ− j , 0 ≤ i ≤ m − 1

such that sign( j, σ ) = (−1)t−1, where j is the t-th element of the set σ ⊂ {1, . . . ,m}
written in increasing order. If i < −1 or i > m − 1, then K�i (�) = 0 and ∂i = 0. We see
that the chain complex of a simplicial complex is an m-frame.

If � is a standard simplicial complex of dimension m − 1 on the vertex set {1, . . . ,m},
then C(�)� is acyclic and K�i (�) = K (mi ). Therefore, the m-frame of a standard simplicial
complex of dimension m − 1 is nothing but the Koszul complex.

DEFINITION 9

Let M = {m1,m2, . . . ,mr } be a set of monomials in R. An M-complexG� is a multigraded
complex of finitely generated free multigraded R modules with differential � and a fixed
multihomogeneous basis with multidegrees that satisfy

(i) Gi = 0 for i < 0;
(ii) G0 = R;

(iii) G1 = R(m1) ⊕ · · · ⊕ R(mr );
(iv) �(w j ) = m j for each basis vector w j ∈ G1.

Construction. Let U� be an r -frame and M = {m1,m2, . . . ,mr } be a set of monomials
in R. The M-homogenization of U� is defined to be the complex G� with G0 = R and
G1 = R(m1) ⊕ · · · ⊕ R(mr ). Let v̄1, . . . , v̄p and ū1, . . . , ūq be the given bases of Ui and
Ui−1 respectively. Let u1, u2, . . . , uq be the basis of Gi−1 chosen in the previous step of
induction. We take v1, . . . , vp to be a basis of Gi . If

∂(v̄ j ) =
∑

1≤s≤q

αs j ūs

with coefficients αs j ∈ k, then set mdeg(v j ) = lcm
(
mdeg(us)|αs j �= 0

)
, where lcm(∅) =

1. We define

Gi = ⊕1≤i≤p R
(
mdeg(v j )

)
, �(v j ) = 
1≤s≤qαs j

mdeg(v j )

mdeg(us)
us .

DEFINITION 10

Let I ⊂ R be a monomial ideal with G(I ) = {m1, . . . ,mr }. We say that a minimal free
resolution of I is supported by a simplicial complex � on the vertex set {1, . . . , r} if it is
isomorphic to the G(I ) homogenization of the chain complex C(�)� of �.

Lemma 4.1. Let I and J be two monomial ideals such that I ∩ J = I J , |G(I )| = r and
|G(J )| = s, and whose minimal free resolutions are supported by standard simplicial
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complexes �I and �J on the vertex sets {1, . . . , r} and {r + 1, . . . , r + s} respectively.
Then minimal free resolution of I + J is supported by the standard simplicial complex
�I ∗ �J .

Proof. We have seen that if � is a standard simplicial complex of dimension m − 1 on the
vertex set {1, . . . ,m}, then them-frame of � is nothing but the Koszul complex. Therefore,
it follows that if a minimal free resolutionM(I )� of I is supported by the standard simplicial
complex �I , then it is actually isomorphic to the Taylor complex T(I )�. Since I ∩ J = I J ,
by Theorem 2.2, we have G(I )∩G(J ) = ∅, then |G(I )∪G(J )| = r + s. Again �I ∗�J

is also the standard simplicial complex of dimension r + s − 1. Therefore, G(I ) ∪ G(J )-
homogenization of C(�I ∗ �J )� is isomorphic to the Taylor complex T(I + J )�. Thus by
Theorem 3.2, we have

M(I )� ⊗ M(J )� ∼= T(I )� ⊗ T(J )� ∼= T(I + J )�

Again by Corollary 3.3,M(I )�⊗M(J )� is a minimal free resolution of I + J . Therefore,
minimal free resolution of I + J is supported by the standard simplicial complex �I ∗
�J . �

Lemma 4.2. Let �I be a simplicial complex on vertex {1, . . . , r} and �J be another
simplicial complex on vertex {r + 1, . . . , r + s}, i.e., the vertex sets of �I and �J are
disjoint. Then

C(�I )� ⊗ C(�J )� ∼= C(�I ∗ �J )�

Proof. Let �(�I ) = {γ1, . . . , γl1} and �(�J ) = {σ1, . . . , σl2}. We have �(�I ∗ �J ) =
{γi ∪ σ j | 1 ≤ i ≤ l1, 1 ≤ j ≤ l2}. Now assuming

(s
t

) = 0 for s < t , we have

| �p(�I ) |= ∑l1
i=1

(|γi |
p

)
for all 1 ≤ p ≤ l1 and | �q(�J ) |= ∑l2

j=1

(|σ j |
q

)
for all 1 ≤ q ≤

l2. On the other hand, | �t (�I ∗�J ) |= ∑l2
j=1

∑l1
i=1

(|γi∪σ j |
t

) = ∑l2
j=1

∑l1
i=1

(|γi |+|σ j |
t

) =
∑

p+q=t
∑l2

j=1

∑l1
i=1

(|γi |
p

)(|σ j |
q

)
. Therefore, the map

θt : (C(�I )� ⊗ C(�J )�)t −→ (C(�I ∗ �J )�)t

defined by

θt (eγ ⊗ eσ ) = eγ∪σ

is an isomorphism, where γ ∈ �I , | γ |= p and σ ∈ �J , | γ |= q and p + q = t . We,
therefore, have to show that the following diagram commutes:

(C(�I )· ⊗ C(�J )·)t (C(�I )· ⊗ C(�J )·)t−1

C(�I ∗ �J )t C(�I ∗ �J )t−1.

(∂(�I )⊗∂(�J ))t

θt θt−1

(∂(�I ∗�J ))t

Let γ ∈ �I , | γ |= p and σ ∈ �J , | γ |= q be such that p + q = t . Then

θt−1 ◦ (∂(�I ) ⊗ ∂(�J ))t (eγ ⊗ eσ )
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= θt−1((∂(�I )peγ ) ⊗ eσ + (−1)peγ ⊗ (∂(�J )peσ ))

= θt−1

⎛

⎝
∑

j∈γ

sign( j, γ )eγ− j

⎞

⎠ ⊗ eσ + (−1)peγ ⊗
(

∑

s∈σ

sign(s, σ )eσ−s

)

=
∑

j∈γ

sign( j, γ )eγ∪σ− j + (−1)p

(
∑

s∈σ

sign(s, σ )eγ∪σ−s

)

=
∑

j∈γ∪σ

sign( j, γ ∪ σ)eγ∪σ− j = (∂(�I ∗ �J )t ◦ θt ) (eγ ⊗ eσ ).

�

Theorem 4.3. Let I and J be two monomial ideals such that I ∩ J = I J , |G(I )| = r and
|G(J )| = s, and their minimal free resolutions are supported by the simplicial complexes
�I and �J on the vertex sets {1, . . . , r} and {r +1, . . . , r + s} respectively. Then minimal
free resolution of I + J is supported by the simplicial complex �I ∗ �J .

Proof. We have I ∩ J = I J . Therefore, supp(G(I ))∩ supp(G(J )) = ∅, by Theorem 2.2.
Again, by Lemma 4.2,

C(�I )� ⊗ C(�J )� ∼= C(�I ∗ �J )�

Since M(I )� is the G(I )-homogenization of the complex C(�I )� and M(J )� is the G(J )-
homogenization of the complex C(�J )�, we can proceed in the same way as Lemma 4.2 to
prove thatM(I )�⊗M(J )� is theG(I )∪G(J )–homogenization of the complexC(�I ∗�J )�.
Again, by Corollary 3.3, M(I )� ⊗M(J )� is a minimal free resolution of I + J . Therefore,
minimal free resolution of I + J is supported by the simplicial complex �I ∗ �J . �

Acknowledgements

This research was supported by the research Project EMR/2015/000776 sponsored by the
SERB, Government of India.

References

[1] Miller E and Sturmfels B, Combinatorial Commutative Algebra (2005) (Springer, GTM 227)
[2] Peeva I, Graded Syzygies (2011) (London: Springer)

Communicating Editor: B Sury


	Transversal intersection of monomial ideals
	1.  Introduction
	2.  Monomial ideals
	3.  The Taylor complex
	4.  A simplicial characterization of transversal intersection of monomial ideals
	Acknowledgements
	References




