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1. Introduction

The transversal intersection phenomenon for monomial ideals in the polynomial ring hap-
pens to be extremely interesting and it turns out that it is equivalent to having disjoint
supports for their minimal generating sets; see Theorem 2.2. The Taylor complex which
resolves (possibly non-minimally) a monomial ideal has been understood completely for
ideals of the form I 4 J, where I and J are monomial ideals intersecting transversally;
see Theorem 3.2. As an application of this theorem, we prove in Corollary 3.3 that for two
ideals I and J in R intersecting transversally, the ideal / + J is resolved minimally by the
complex M(I), ® M(J)., if M((1), and M(J), denote minimal free resolutions of I and
J respectively. Minimal free resolutions for ideals of the form 7 4 J have an interesting
structure when I and J intersect transversally and are supported simplicially; see 4.3.

2. Monomial ideals

Let R = K|[x1, x2, ..., x,], where x;’s are indeterminates over the field K. Let Mon(R)
denote the set of all monomials in R. Every nonzero polynomial f € Risaunique K -linear
combination of monomials given by f = ZveMon(R) ayv. Let m(f) := {v € Mon(R) |
a, # 0}. Anideal [ in R is said to be a monomial ideal if it is generated by monomials of
R. We list down some standard facts on monomial ideals.
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PROPOSITION 2.1

(1) I is a monomial ideal if and only if f € I = m(f) C I.

(2) Let{uy, ..., uy} be a monomial generating set of an ideal 1, where u;’s are mono-
mials. A monomial v € I if and only if v = u;w for some 1 <i <m.

(3) Each monomial ideal I has a unique minimal monomial set of generators G (I).

Proof. See [1]. U
DEFINITION 1
Let@ # T C Mon(R). We define

supp(T) = {i | x; divides m for some m € T}.

If T = {m}, we simply write supp(m) instead of supp({m}). If S and T are two nonempty
subsets of Mon(R), then, supp(S) N supp(7) = ¢ if and only if supp(f) N supp(g) = ¥
forevery f € Sandg € T.

DEFINITION 2
We say that the ideals I and J of R intersect transversallyif I NJ = 1J.

Theorem 2.2. Let I and J be two monomial ideals of R. Then, I N J = 1J if and only if
supp(G (1)) Nsupp(G(J)) = @.

Proof. Let I N J = IJ. Consider the set

S={lem(f,g) | f€GU),g € G(J), and supp(f)Nsupp(g) # ¥}.

If S = ¢, then for every f € G(I) and g € G(J) we have supp(f) Nsupp(g) = @, which
proves that supp(G (1)) N supp(G(J)) = 0.

Suppose S # (). We define a partial order < on § in the following way: Given s, ¢t € §,
we define s < ¢ if and only s | . Let m be a minimal element (by Zorn’s lemma)
of S; then there exist f, g, such that f € G(I), g € G(J) and (f,g) = m. Since
lem(f,g) e INJand I NJ = 1J, we have lem(f, g) = m € IJ. By Proposition 2.1,
there exist h1 € G(I) and hy € G(J) such that 1A, | m, since the generating set of 1.J
istheset G(I)G(J) ={uv |u € G(I),v € G(J)}.

We claim that supp(/21) Nsupp(h2) = @. If this is not the case, then lem(hy, hy) # hiha,
in fact lem(hy, hy) < hihs and lem(hy, h7) | m; contradicting minimality of m in S.

We now prove that supp(f) N supp(h2) # @. We know that A1hy | lem(f, g) = m.
Therefore, if supp(f) N supp(h2) = @, then hy | g; which contradicts minimality of
the generating set G(J). Similarly, we can prove that supp(g) N supp(h;) # @. Now,
hihy | m = lem(f, g) implies that 4y | m = lem(f, g). Moreover, f | lem(f, g).
Therefore, lem( f, h2) | lem( f, g). Similarly, lem(g, /1) | lem(f, g). Nowiflem(f, h2) <
m or Ilem(g, h1) < lem(f, g) = m, then we have a contradiction, since lem(f, g) and
lem(g, k1) both are in the set S and m is a minimal element in S. Therefore;,c Zve must

2

have lem(f, hy) = lem(g, h1) = lem(f, g) = m = hihyw (say) and ————— =
ged(f, h2)
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h
__&m = hihyw, therefore ; = hjw. Hence, k1 | f and it contradicts
ged(g, hy) . ged(f, h2)
minimality of the generating set G(/). Hence, S = ¥ and we are done.

Conversely, let us assume that supp(G (7)) N supp(G(J)) = @. Without loss of gen-
erality, we can assume that supp(G(/)) = {1,2,...,k} and supp(G(J)) = {k+ 1,k +
2,...,n}. Let f € I N J such that f = ZveMon(R) a,v. We have v € I N J for all
v € m(f). It is therefore enough to show that if m is a monomial and m € I N J, then
me lJ. Letm € I N J;there exist m; € G(I) and my € G(J) such that m; | m and
my | m.Letmym; = m;thenmy | m = mymi. We know that supp(m ;) Nsupp(my) = 0,
therefore m; | m and it follows that m; = m ymy and m = mym ym,. Therefore,m € IJ
sincemymy € 1J. O

Theorem 2.3. Let I and J be two ideals of R such that with respect to some monomial
order <, supp(Lt(1)) N supp(Lt(J)) = @. Then I and J intersect transversally.

Proof. Let G; and G; be Grobner bases with respect to the monomial order < of the ideals
I and J respectively. We assume that f € I N J. There exist polynomials p € G; and
q € Gy such that Lt(p) | Lt(f) and Lt(g) | Lt(f). Since supp(Lt(7)) Nsupp(Lt(J)) = @,
we have Lt(p) - Lt(g) | Lt(f). After division we write f = pg +r. Thenr € I NJ
and Lt(r) < Lt(f). We can apply the same process on r, and after a finite stage, we get
feld. O

3. The Taylor complex

We define the multidegree of a monomial x® = x|'x3*---x," to be the n-tuple
(a1, ..., ay), denoted by mdeg(x?). Hence R = @®,,eMon(r) Km has a direct sum decom-

position as K -vector spaces Km, where Km = {cm | c € K}.

DEFINITION 3 (The Taylor complex)

Let M be a monomial ideal of R minimally generated by the monomials my, ma, ..., mp.
The Taylor complex for M is given by T(M), as follows: T(M); is the free R-module
generated by ej, Aej, A---Aej foralll < j; <--- < j; < p,where{eq, ..., ep}isthe
standard basis for the free R-module R”. The differential §(M). is given by the following:

5(M),'(€jl AR /\ej,.)

lem(mi, ..., mj N
= Z (—1)k—1 (mj, s m;;) (ejy Ao " NeEj A ANejy).
1<k<i lem(mjy,....mj.,....mj)
We define mdeg(ej A, ... A ej;) = mdeg(lem(m;,,...,m};)). The Taylor complex

(T(M).,5(M),) defined above is indeed a chain complex of free R modules and gives
a free resolution for the R-module R/M; see section 26 in [2].

Theorem 3.1. The Taylor complex (T(M),, §(M).) defined above is a free resolution
(though not minimal) of the monomial ideal M called the Taylor resolution of M.

Proof. See Theorem 26.7 in [2]. O
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Theorem 3.2. Let I and J be two monomial ideals of R intersecting transversally. Let
T(I), and T(J), be the Taylor resolutions of I and J respectively. Then the Taylor’s
resolution of I + J is isomorphic to the complex T(I), ® T(J), and hence T(I), @ T(J).
is acyclic.

Proof. We know that T(1); = R() and T, = R((JI‘), where p and g denote the minimal
number of generators of I and J respectively. Then

(T, ® T().)y = B4 jr (T & T(J) )
= @i R @ RV
kS OO
=R"D =1 + D),

A basis of (T(1), @ T(J).), is given by (ex; A -+ Ae,) ® (e]’(, Ao A e,’c,) such that
1 j

i+j=r1<ki<ky<---<ki<pandl <kj<kj<---<Kk| sq.waforeach
r, the free module (T(/), ® T(J).), can be graded with the help of mdeg as follows. We
define

mdeg((ex, A+ Aeg) @ (el’{,1 Ao A e,’{}))

= mdeg(lem(my,, . .., my,) - lcm(m;(,l, . m;{})).

This defines a multi-graded structure for the complex T(/), ® T(J)..

Let G(I) = {m1,ma,...,mp}and G(J) = {m/, m}, ..., m;} denote the minimal sets
of generators for / and J respectively. Then I 4 J is minimally generated by G(/) UG (J),
by Theorem 2.2, since G(/) and G(J) are of disjoint support. We will now show that the
tensor product complex T(/), ® T(J), is isomorphic to the Taylor resolution T (1 + J),.
We define ¢, : (T(I), ® T(J).)r — (T + J).), as

(et Ao Aer) ® (e Ao Aep) > (e A Ae Aep A Aey).
1 j 1 J
Moreover,
mdeg(eg, A -+ Aeg; A e A A ey)
J
= mdeg(lem(my,, . . ., mks,m;ci, cmy )
X/
= (mdeg(lem(my,, ..., mi,)), mdeg(lcm(m;(i, e m;(,/))),
s

since G (/) and G (J) are with disjoint supports. Hence, the map is a graded isomorphism
between the free modules (T'(/), ® T(J).), and (T(I + J).),. We therefore have the
following diagram of complexes:
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S (T, @ TU).)r — 24 (D). @ T(J) )y —— -

J/‘//r J/wr—l
SUI+J),

e (T 4 0))y s (P A+ ) )y~

We now show that §(1 + J), o ¥ = ¥,—1 o d,. Let us take an arbitrary basis element of
(T(I), ® T(J).),, which is of the form

(kg Newy Nove Ne) @ (e ANegy N+ Nep) with Q4 j=r.
J
Then

(Wr—10dr)((er A Aew) ® (g A Aep))
J
=Vr—1(6(Di(er, A+ Neg) ® (e,/(i Ao Ne)
J

(=D e A Ae) ® () jley Ao A ef))-

Let us write

lcm(mk, yoeeey mki)

0r = — 1<t <i;
lem(my,, ..., mg, ..., mg)
lcm(mkl,...,mki,m;{i,...,m;{/_)
v ! 1<t <i.

lem(my,, ..., Mg, ...,m,m,,...,m,)
K| K

We know that G(/) and G (J) have disjoint supports. Therefore,

lem(mg,, ..., mg,) - lcm(m;c,l, e m;c,_)
J

=0 V1<t<i.

r= lcm(mkl,...,nﬁk\t,...,mki)~lcm(m;(,,...,m;(,)
1 J
Then
(8(D)i(ex, A+ Aew)) ® (e;(/l A Aey)
J
i
:Z(_l)th.(ekl /\/\g];/\ekl)®(el/(/l /\.../\e]/(,.)
=1 /
and

Vr1GDiery A--- Aew) @ (e Ave A e,’(;))

i
:Z(_l)th(ekl/\/\gk\t/\ekz)®(e;(/l/\/\e]/(/)
J
=1

i
:Z(—l)’Vl-(ekI A ANer A e /\e,’({ Ao A,
J
=1
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The last equality in the above expression follows from the fact that G(/) and G(J) have
disjoint supports. Similarly, it can be proved that

Yr—1((exy Ao Neg) ® (5(1)1'(6,/(/1 ARREWA e,’(})))

P

J
’ ’ ’
= 2 :(—l)le-(ekl Ao Aok Ney Neeeey e Ny
1 J
=1

where

lcm(mk,,...,mki,mk,,...,m}(,)
1 j .
W = - ———, l=<l=<]
lcm(mk],...,mki,mki,...,mkl/,...,mk;)

Hence

) (Wr—10dr)((egy A+~ Nek,) ® (6,2/1 ARER /\61/(}))

i
:Z(—l)’Vl-(ekl A Aer A ey /\e,’(/1 AN Aey)
J

=1

’ - ’

J
+ E (=DWy - (exy A Ney, Ney Aoy Aey).
i i
=1

/
ki
for s > i. We also introduce another set of i 4 j symbols E; such that E; = e;, fors <i

and E; = e;(, _fors > i. Hence, the expression after the last equality in (*) can be written

in a compact form as

We now introduce i + j new symbols wy such that wy = my, fors < i and wy, =m

) lem(w Wiy i)
L Lo B (Ey A AEx-- A Eiy)).
p lcm(wl,...,wk,...,wi+j)
Now
U+ Droyr)((ey Ao Neg) @ (e,’(i /\~--/\e,’(}))
=8+ Drlex, Ao New Nep A+ Aep)
1 J
i+j
Iem(wy, ..., wit; —
=) - W Witd) (g n A By A Ei ).
=1 lcm(wl,...,wk,...,wi+j)
Hence the diagram is commutative. |

COROLLARY 3.3

Let I and J be ideals in R such that IJ = I N J. Let M(I), and MI(J), denote minimal
free resolutions of I and J respectively. Then M(I), ® M(J), is a minimal free resolution
of the ideal I + J.
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Proof. The minimal free resolutions M(1), and M(J), are direct summands of the Taylor
resolutions T(7), and T(J), respectively. It follows that M((1), ®MI(J), is adirect summand
of T(1), ® T(J), =T + J).. Hence M(/), ® M(J), is a free resolution of 7 4 J and
it is minimal since M((/), and M(J), are both minimal. O

4. A simplicial characterization of transversal intersection of monomial ideals

We first introduce the basic definitions of a simplicial complex; see [1].
DEFINITION 4

A simplicial complex A on the vertex set {1, ..., m} is a collection of subsets called faces
or simplices satisfying the following condition: 0 € A and T C o imply that 7 € A. A
simplex o € A of cardinality |o| = r 4+ 1 has dimension r and it is called an r face of A.

DEFINITION 5

A facet is a maximal simplex of a simplicial complex A. Let I'(A) denote the set of all
facets of A. Then, the vertex set of A and the set I'(A) determine A completely.

DEFINITION 6

A standard simplicial complex of dimension m — 1 on the vertex set {1, ..., m} is the
simplicial complex whose I'(A) = {{1, ..., m}}.

DEFINITION 7

Let A1 and A, be simplicial complexes on disjoint vertex sets. Let the vertext set of A
be {1,...,m}and thatof Ap be {m + 1, ..., m+ p}. The join of simplicial complexes Ay
and Aj is the simplicial complex A * A, whose vertex setis {1,...,m + p} and

L(A1 % Az) ={o1Uoz |01 € (A1), 02 € T'(A2)).

We now define a frame as a complex of K-vector spaces with a fixed basis, which
encodes the minimal free resolution of a monomial ideal; see [2].

DEFINITION 8

An r-frame U, is a complex of finite K vector spaces with differential 9 and a fixed basis
satisfying the following:
(i) U; =0fori <0,
(i) Uo = K;
(i) U; = K", with basis {wy, ..., w;};
(iv) d(wj) =1,forall j=1,...,r.

Construction of a frame of a simplicial complex. Let A be a simplicial complex on the
vertex set {1, ..., m}. For each integer i, let I'; (A) be the set of all i dimensional faces
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of A and let K'i® denote the K -vector space generated by the basis elements e, for
o € T';(A). The chain complex of A over K is the complex C(A),,

0 s gTma @) It i) O i) Y B pra)
The boundary maps 9; are defined as
dies) = Y _sign(j.0)es—j, 0<i<m—1

jeo
such that sign(j, ) = (—1)'~!, where j is the ¢-th element of the set ¢ C {1, ..., m}
written in increasing order. If i < —1 ori > m — 1, then KTi® =0 and 0; = 0. We see
that the chain complex of a simplicial complex is an m-frame.
If A is a standard simplicial complex of dimension m — 1 on the vertex set {1, ..., m},
then C(A), is acyclicand KTi(®) = K (. Therefore, the m-frame of a standard simplicial
complex of dimension m — 1 is nothing but the Koszul complex.

DEFINITION 9

LetM = {m1, my, ..., m,}beasetof monomialsin R. An M-complex G, is amultigraded
complex of finitely generated free multigraded R modules with differential A and a fixed
multihomogeneous basis with multidegrees that satisfy

(i) G; =0 for i <O
(i) Go = R;
(iii) Gy = R(my) & --- & R(m,);
(iv) A(w;) = m; for each basis vector w; € G.

Construction. Let U, be an r-frame and M = {m, my, ..., m,} be a set of monomials
in R. The M-homogenization of U, is defined to be the complex G, with Gy = R and
G =R(m)®---®R(m,).Letvy,...,v,and uy, ..., u, be the given bases of U; and
U; | respectively. Let uy, us, ..., uy be the basis of G; | chosen in the previous step of
induction. We take v1, ..., v, to be a basis of G;. If
0 = Y ayji
1<s<q

with coefficients ag; € k, then set mdeg(v;) = lem (mdeg(uy)|ay; # 0), where lem () =
1. We define
mdeg(v;)

Gi = ®1<i<pR (mdeg(v))), A(v)) = Elsssqasjmus.
N

DEFINITION 10

Let I C R be a monomial ideal with G(I) = {m1, ..., m;}. We say that a minimal free
resolution of [ is supported by a simplicial complex A on the vertex set {1, ..., r}ifitis
isomorphic to the G (1) homogenization of the chain complex C(A), of A.

Lemma 4.1. Let I and J be two monomial ideals such that I N J = 1J,|G(I)| = r and
|G(J)| = s, and whose minimal free resolutions are supported by standard simplicial
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complexes Ay and Ay on the vertex sets {1,...,r}and {r + 1, ..., r + s} respectively.
Then minimal free resolution of I + J is supported by the standard simplicial complex
ArxAy.

Proof. We have seen that if A is a standard simplicial complex of dimension m — 1 on the
vertex set {1, ..., m}, then the m-frame of A is nothing but the Koszul complex. Therefore,
itfollows that if a minimal free resolution Ml(/), of I is supported by the standard simplicial
complex Ay, then it is actually isomorphic to the Taylor complex T(7),. Since INJ = 1J,
by Theorem 2.2, we have G(I) NG (J) = @, then |GI)UG(J)| =r+s. Again Ajx Ay
is also the standard simplicial complex of dimension r 4+ s — 1. Therefore, G(1) U G(J)-
homogenization of C(A; * Ay), is isomorphic to the Taylor complex T(/ + J),. Thus by
Theorem 3.2, we have

M), @ M(J/). =T). @ T(J), =T + J).

Again by Corollary 3.3, M((/), ® MI(J), is a minimal free resolution of / 4 J. Therefore,
minimal free resolution of I + J is supported by the standard simplicial complex Aj *

Ay. O
Lemma 4.2. Let A; be a simplicial complex on vertex {1,...,r} and Ayj be another
simplicial complex on vertex {r + 1,...,r + s}, i.e., the vertex sets of A; and A are

disjoint. Then
C(AD.®C(A)). =C(ArxAy).

Proof. LetI'(Ay) = {y1,...,yytand I'(Ay) = {o1,...,0,}). Wehave '(A; x Ay) =
viVoj | 1 <i <1,1 <j < b} Nowassummg() 0 for s < t, we have

|F (A]) |— le (Iyt)foralll<p<ll and|F (AJ) |— Z] ](l(;j‘) foralll§q§
l>.On the other hand, | T, (A7 % Ay) |= Z i (el = Zlle Yo (el =
D ptg= IZ le (‘};I) (lU’) Therefore, the map

6r : (C(AD. ®C(A)).); —> (C(ApxAy))y
defined by
et(ey Rey) = €yUo

is an isomorphism, where y € Aj, |y |[=pando € Ay,|y |[=qand p +q = t. We,
therefore, have to show that the following diagram commutes:

(O(AN®I(A))):

(C(AD.- ®C(A))) > (C(AD. ®C(A)))i-1

Jo o

d '
C(A; % Ay O@r=2,) y C(A* Ap)t.

Lety e Aj,|y |=pando € Ay,| y |=¢q besuch that p + g = ¢. Then

010 (3(A)) @ I(A))); (ey ® e5)
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=0,-1((0(ADpey) ®es + (—D)Pe, ® (3(A)pes))

=01 | D_sign(j.y)ey—j | ® e + (=1)Pey ® (Z sign(s, U)eg_s)

jey s€ET

= Z sign(j, y)eyUa—j + (_1)p (Z Sign(sv a)eVUU—S>

jey se€a

= Y sign(j,y Uoleyuo—j = (A1 % Ap) 0 6;) (e ® eo).
jeyUo

O

Theorem 4.3. Let I and J be two monomial ideals suchthat INJ = 1J,|G(I)| = r and
|G (J)| = s, and their minimal free resolutions are supported by the simplicial complexes
Ay and Ay onthe vertex sets {1, ..., r}and {r +1, ..., r+s} respectively. Then minimal
free resolution of I + J is supported by the simplicial complex Ay % A .

Proof. Wehave I NJ = IJ. Therefore, supp(G (1)) Nsupp(G(J)) = @, by Theorem 2.2.
Again, by Lemma 4.2,

C(AD.Q®C(Ay). =C(AxAy),

Since MI(1), is the G (1)-homogenization of the complex C(Aj), and M(J), is the G (J)-
homogenization of the complex C(A )., we can proceed in the same way as Lemma 4.2 to
prove that M(1), @ MI(J), is the G (I)UG (J)-homogenization of the complex C(A;*Aj),.
Again, by Corollary 3.3, M((1), ® M(J), is a minimal free resolution of I + J. Therefore,
minimal free resolution of I + J is supported by the simplicial complex A x A . (]
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