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1. Introduction and preliminaries

The class of absolutely norm attaining operators (or shortly, AN -operators) between com-
plex Hilbert spaces was introduced and several important class of examples and properties
of these operators were discussed by Carvajal and Neves in [3]. Later, a structure of
these operators on separable Hilbert spaces was proposed in [11]. But, an example of
AN -operator which does not fit into the characterization of [11] was given in [10] and
the authors discussed the structure of positive AN -operators between arbitrary Hilbert
spaces. In this article, first, we give necessary and sufficient conditions for an operator to
be positive and AN . In fact, we show that a bounded operator T defined on an infinite
dimensional Hilbert space is positive and AN if and only if there exists a unique triple
(K , F, α), where K is a positive compact operator, F is a positive finite rank operator, α

is a positive real number such that T = K − F + α I and K F = FK = 0, F ≤ α I
(see Theorem 2.5). In fact, here α = me(T ), the essential minimum modulus of T . This
is an improvement of [10, Theorem 5.1]. Using this result, we give explicit structure of
self-adjoint and AN -operators as well as normal and AN -operators. Finally, we also
obtain structure of general AN -operators. In the process, we also prove several important
properties of AN -operators. All these results are new.

We organize the article as follows: In the remaining part of this section, we explain the
basic terminology, notations and necessary results that will be needed for proving main
theorems. In section 2, we give a characterization of positive AN -operators and prove
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several important properties. In section 3, we discuss the structure of self-adjoint and
normal AN -operators and in section 4, we discuss about the general AN -operators.

Throughout the article we consider complex Hilbert spaces which will be denoted
by H, H1, H2, etc. The inner product and the induced norm are denoted by 〈, 〉 and
‖ · ‖ respectively. The unit sphere of a closed subspace M of H is denoted by SM :=
{x ∈ M : ‖x‖ = 1} and PM denotes the orthogonal projection PM : H → H with range
M . The identity operator on M is denoted by IM .

A linear operator T : H1 → H2 is said to be bounded if there exists a num-
ber k > 0 such that ‖T x‖ ≤ k‖x‖ for all x ∈ H1. If T is bounded, the quantity
‖T ‖ = sup {‖T x‖ : x ∈ SH1} is finite and is called the norm of T . We denote the space of
all bounded linear operators between H1 and H2 by B(H1, H2). In case if H1 = H2 = H ,
then B(H1, H2) is denoted by B(H). For T ∈ B(H1, H2), there exists a unique operator
denoted by T ∗ : H2 → H1 satisfying

〈T x, y〉 = 〈x, T ∗y〉 for all x ∈ H1 and for all y ∈ H2.

This operator T ∗ is called the adjoint of T . The null space and the range spaces of T are
denoted by N (T ) and R(T ) respectively.

Let T ∈ B(H). Then T is said to be normal if T ∗T = T T ∗, self-adjoint if T = T ∗. If
〈T x, x〉 ≥ 0 for all x ∈ H , then T is called positive. It is well known that for a positive
operator T , there exists a unique positive operator S ∈ B(H) such that S2 = T . We write

S = T
1
2 and it is called as the positive square root of T .

If S, T ∈ B(H) are self-adjoint and S − T ≥ 0, then we write this by S ≥ T .
If P ∈ B(H) is such that P2 = P , then P is called a projection. If N (P) and R(P) are

orthogonal to each other, then P is called an orthogonal projection. It is a well known fact
that a projection P is orthogonal if and only if it is self-adjoint if and only if it is normal.

We call an operator V ∈ B(H1, H2) to be an isometry if ‖V x‖ = ‖x‖ for each x ∈ H1.
An operator V ∈ B(H1, H2) is said to be a partial isometry if V |N (V )⊥ is an isometry.
That is ‖V x‖ = ‖x‖ for all x ∈ N (V )⊥. If V ∈ B(H) is isometry and onto, then V is said
to be a unitary operator.

In general, if T ∈ B(H1, H2), then T ∗T ∈ B(H1) is positive and |T | := (T ∗T )
1
2 is

called themodulus of T . In fact, there exists a unique partial isometry V ∈ B(H1, H2) such
that T = V |T | and N (V ) = N (T ). This factorization is called the polar decomposition
of T .

If T ∈ B(H), then T = T+T ∗
2 + i( T−T ∗

2i ). The operators Re(T ) := T+T ∗
2 and Im(T ) :=

T−T ∗
2i are self-adjoint and are called the real and the imaginary parts of T respectively.
A closed subspace M of H is said to be invariant under T ∈ B(H) if T M ⊆ M and

reducing if both M and M⊥ are invariant under T .
For T ∈ B(H), the set

ρ(T ) := {λ ∈ C : T − λI is invertible and (T − λI )−1 ∈ B(H)}
is called the resolvent set and the complement σ(T ) = C \ ρ(T ) is called the spectrum of
T . It is well known that σ(T ) is a non empty compact subset of C. The point spectrum of
T is defined by

σp(T ) = {λ ∈ C : T − λI is not one-to-one}.
Note that σp(T ) ⊆ σ(T ).

A self-adjoint operator T ∈ B(H) is positive if and only if σ(T ) ⊆ [0,∞).
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A bounded linear operator T : H1 → H2 is called finite rank if R(T ) is finite dimen-
sional. The space of all finite rank operators between H1 and H2 is denoted by F(H1, H2)

and we write F(H, H) = F(H). If T ∈ B(H1, H2), then T is said to be compact if for
every bounded set S of H1, the set T (S) is pre-compact in H2. Equivalently, for every
bounded sequence (xn) of H1, (T xn) has a convergent subsequence in H2. We denote the
set of all compact operators between H1 and H2 by K(H1, H2). In case if H1 = H2 = H ,
then K(H1, H2) is denoted by K(H).

All the above mentioned basics of operator theory can be found in [4,8,12,13].
An operator T ∈ B(H1, H2) is said to be norm attaining if there exist x ∈ SH1 such that

‖T x‖ = ‖T ‖. We denote the class of norm attaining operators by N (H1, H2). It is known
that N (H1, H2) is dense in B(H1, H2) with respect to the operator norm of B(H1, H2).
We refer [5] for more details on this topic.

We say T ∈ B(H1, H2) to be absolutely norm attaining or AN -operator (shortly), if
T |M , the restriction of T to M , is norm attaining for every non zero closed subspace M
of H1. That is, T |M ∈ N (M, H2) for every non zero closed subspace M of H1 [3]. This
class contains K(H1, H2), and the class of partial isometries with finite dimensional null
space or finite dimensional range space.

We have the following characterization of norm attaining operators.

PROPOSITION 1.1 [3, Proposition 2.4]

Let T ∈ B(H) be self-adjoint. Then

(1) T ∈ N (H) if and only if either ‖T ‖ ∈ σp(T ) or −‖T ‖ ∈ σp(T ),

(2) if T ≥ 0, then T ∈ N (H) if and only if ‖T ‖ ∈ σp(T ).

For T ∈ B(H1, H2), the quantity

m(T ) := inf {‖T x‖ : x ∈ SH1}
is called the minimum modulus of T . If H1 = H2 = H and T−1 ∈ B(H), then m(T ) =

1

‖T−1‖ (see [1, Theorem 1] for details).

The following definition is available in [9] for densely defined closed operators (not
necessarily bounded) on a Hilbert space, and this holds true automatically for bounded
operators.

DEFINITION 1.2 [9, Definition 8.3 p. 178]

Let T = T ∗ ∈ B(H). Then the discrete spectrum σd(T ) of T is defined as the set of all
eigenvalues of T with finite multiplicities which are isolated points of the spectrum σ(T )

of T . The complement set σess(T ) = σ(T ) \ σd(T ) is called the essential spectrum of T .

By the Weyl’s theorem we can assert that if T = T ∗ and K = K ∗ ∈ K(H), then σess(T+
K ) = σess(T ) (see [9, Corollary 8.16, p. 182] for details). If H is a separable Hilbert space,
the essential minimummodulus of T is defined to be me(T ) := inf {λ : λ ∈ σess(|T |)} (see
[1] for details). The same result in the general case is dealt in [2].

Let H = H1 ⊕ H2 and T ∈ B(H). Let Pj : H → H be an orthogonal projection onto

Hj for j = 1, 2. Then T =
(
T11 T12
T21 T22

)
, where Ti j : Hj → Hi is the operator given by

Ti j = Pi T Pj |Hj . In particular, T (H1) ⊆ H1 if and only if T12 = 0. Also, H1 reduces T
if and only if T12 = 0 = T21 (for details, see [4,13]).
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2. PositiveAN -operators

In this section, we describe the structure of operators which are positive and satisfy the
AN -property. First, we recall the results that are necessary for proving our results.

Theorem 2.1 [10,Theorem5.1]. Let H bea complexHilbert space of arbitrary dimension
and let P be a positive operator on H. Then P is an AN -operator iff P is of the form
P = α I + K + F , where α ≥ 0, K is a positive compact operator and F is a self-adjoint
finite rank operator.

Theorem 2.2 [10, Theorem 3.8]. Let T ∈ B(H) be positive and T ∈ AN (H). Then

T =
∑
α∈�

βαvα ⊗ vα, (2.1)

where {vα : α ∈ �} is an orthonormal basis consisting of entirely eigenvectors of T and
for every α ∈ �, T vα = βαvα with βα ≥ 0 such that

(1) for every non empty set � of �, we have

sup {βα : α ∈ �} = max {βα : α ∈ �},
(2) the spectrum σ(T ) = {βα : α ∈ �} has at most one limit point. Moreover, this unique

limit point (if exists) can only be the limit of an increasing sequence in the spectrum,
(3) the set {βα : α ∈ �} of eigenvalues of T , without counting multiplicities, is countable

and has atmost one eigenvalue with infinite multiplicity,
(4) if σ(T ) has both, i.e., a limit point and an eigenvalue with infinite multiplicity, then

they must be the same.

Here (vα ⊗ vα)(x) = 〈x, vα〉vα for each α ∈ � and for each x ∈ H.

Remark 2.3. In Theorem 2.1, the standing hypothesis is that the operator T is positive. In
particular, if K is a positive compact operator, F is a self-adjoint finite rank operator and
α ≥ 0, it is interesting to know when T := K + F + α I is positive? We will answer this
question later in this article and also discuss about the uniqueness of the representation of
T given in Theorem 2.1.

Lemma 2.4 Let S, T ∈ B(H) be positive such that S ≤ T . Then N (T ) ⊆ N (S).

Proof. If x ∈ H , then ‖S 1
2 x‖2 = 〈Sx, x〉 ≤ 〈T x, x〉 = ‖T 1

2 x‖2. By observing the fact

that for any A ∈ B(H) with A ≥ 0, N (A
1
2 ) = N (A), the conclusion follows. �

Theorem 2.5. Let H be an infinite dimensional Hilbert space and T ∈ B(H). Then the
following statements are equivalent:

(1) T ∈ AN (H) and positive,
(2) there exists a unique triple (K , F, α), where

(a) K ∈ K(H) is positive, α ≥ 0,
(b) F ∈ F(H) and 0 ≤ F ≤ α I ,
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(c) K F = 0,

such that T = K − F + α I .

Proof.

Proof of (1)⇒ (2). By Theorem 2.1, T = K ′ − F ′ + α I , where K ′ ∈ K(H) is pos-
itive, F ′ = F ′∗ ∈ F(H) and α ≥ 0. As K ′ − F ′ is compact, self-adjoint, there
exists an orthonormal set {φn : n ∈ N} of eigenvectors corresponding to the eigenvalues
{λn : n ∈ N}. That is, (K ′−F ′)(φn) = λnφn for each n ∈ N. By [10, Lemma 4.8], K ′−F ′
can have at most finitely many negative eigenvalues. Without loss of generality, assume
that λ1, λ2, . . . , λk are those negative eigenvalues. Define F(x) = ∑k

n=1(−λn)〈x, φn〉φn

and K (x) = ∑∞
n=k+1 λn〈x, φn〉φn for all x ∈ H . Then clearly, FK = K F = 0 and F is a

positive finite rank operator and K is a positive compact operator. Also, K ′ − F ′ = K − F
and hence T = α I + K − F .

Next, T F = (α I − F)F = FT . Since T and F are positive, it follows that T F is
positive. Let λ ∈ σ(F). Then λ ≥ 0 and since FT ≥ 0, by the spectral mapping theorem,
we have that λ(α −λ) ≥ 0. From this, we can conclude that α −λ ≥ 0 for each λ ∈ σ(F).
As α I − F is self-adjoint and σ(α I − F) ⊆ [0,∞), α I − F must be positive. This
concludes that F ≤ ‖F‖I ≤ α I .

Next, we show that the triple satisfying the given conditions is unique. Suppose there
exists two triples (K1, F1, α1), (K2, F2, α2) satisfying the stated conditions. We prove this
by considering all possible cases.

Case 1. α1 = 0. In this case, F1 = 0. Hence K1 = T = K2 − F2 + α2 I . This shows that
α2 I = K1 − K2 + F2, a compact operator. Since H is infinite dimensional, it follows that
α2 = 0. Thus F2 = 0. Hence we can conclude that K1 = K2.

Case 2. F1 = 0, α1 > 0. In this case,

K1 + α1 I = K2 − F2 + α2 I. (2.2)

Then (α2 − α1)I = (K1 − K2) + F2 , a compact operator. Hence α1 = α2.
Now equation (2.2) can be written as K2 = F2 + K1 ≥ F2. By Lemma 2.4, we have

that N (K2) ⊆ N (F2). But, by the condition K2F2 = 0, we have R(F2) ⊆ N (K2), and
hence R(F2) ⊆ N (F2). Thus, F2 = 0. From this, we can conclude that K1 = K2.

Case 3. K1 = 0, F1 �= 0, α1 > 0. We have F1 + α1 I = K2 − F2 + α2 I . Using the
same argument as in the above cases, we can conclude that α1 = α2. Thus we have
F2 = K2 + F1 ≥ K2. Now, by Lemma 2.4, N (F2) ⊆ N (K2). But by the property
K2F2 = 0, it follows that R(F2) ⊆ N (K2). Hence H = N (F2) ⊕ R(F2) ⊆ N (K2). This
shows that K2 = 0. Finally, using this we can get F1 = F2.

Case 4. K1 �= 0, F1 �= 0, α1 > 0. We can prove α1 = α2 by arguing as in the earlier cases.
With this, we have

K1 − F1 = K2 − F2. (2.3)

As F1 commute with K1 and F1, it commute with K2 − F2. So F1 must commute with
(K2 − F2)

2 = K 2
2 + F2

2 = (K2 + F2)
2. Thus, it commute with K2 + F2. Hence we can

conclude that F1 commute with both K2 and F2. Since N (F1) is invariant under K1 and
F1, by equation (2.3), N (F1) is invariant under K2 − F2.
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Now if x ∈ N (F1), then by equation (2.3), we have (K2 − K1)x = F2x . Using the fact
that F2 ≥ 0, we can conclude that K2 ≥ K1 on N (F1). We also show that this will happen
on R(F1).

For x ∈ H , we have F1x ∈ R(F1). Now,

〈(F2 − F1)(F1x), F1x〉 = 〈(K2 − K1)(F1x), F1x〉 = 〈K2(F1x), F1x〉 ≥ 0.

This shows that K2 − K1 = F2 − F1 ≥ 0 on R(F1). Combining with the earlier argument,
we can conclude that K1 ≤ K2. Now, interchanging the roles of K1 and K2, we can
conclude that K2 ≤ K1 and hence K1 = K2. By equation (2.3), we can conclude that
F1 = F2.

Proof of (2)⇒ (1). If T = K − F + α I , where K ∈ K(H) is positive, F ∈ F(H) is
positive, α ≥ 0 and K F = 0. Then by Theorem 2.1, T ∈ AN (H). Since K ≥ 0 and
−F + α I ≥ 0, T must be positive. �

Remark 2.6. Let T be as in Theorem 2.5. Then we have the following:

(1) if α = 0, then F = 0 and hence T = K . In this case σess(T ) = {α},
(2) if α > 0 and F = 0, then T = K + α I . In this case, σess(T ) = {α} and me(T ) =

α = m(T ),
(3) if α > 0, K = 0 and F �= 0, then T = α I − F . In this case also, σess(T ) = {α} and

me(T ) = α,
(4) if α > 0, F �= 0 and K �= 0, then by the Weyl’s theorem, σess(T ) = {α} and

me(T ) = α,
(5) if α = 0 and K = 0, then T = 0,
(6) if N (T ) is infinite dimensional, then 0 is an eigenvalue with infinite multiplicity and

hence α = 0, by Theorem 2.2. In this case, F = 0 and hence T = K .

Remark 2.7. If we take F = 0 in Theorem 2.5, then we get the structure obtained in [11].

Here we prove some important properties of AN -operators.

PROPOSITION 2.8

Let T = K − F + α I , where K ∈ K(H) is positive, F ∈ F(H) is positive with K F = 0
and F ≤ α I . If α > 0, then the following statements hold:

(1) R(T ) is closed,
(2) N (T ) is finite dimensional,
(3) N (T ) ⊆ N (K ),
(4) Fx = αx for all x ∈ N (T ). Hence N (T ) ⊆ R(F). In this case, ‖F‖ = α,
(5) T is one-to-one if and only if ‖F‖ < α,
(6) T is Fredholm and me(T ) = α.

Proof.

Proof of (1). Since K − F is a compact operator, R(T ) is closed. Here we have used the
fact that for any A ∈ K(H) and λ ∈ C \ {0}, R(A + λI ) is closed.
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Proof of (2). Let x ∈ N (T ). Then

(K − F)x = −αx, (2.4)

that is, α IN (T ) is compact. This concludes that N (T ) is finite dimensional.

Proof of (3). Let x ∈ N (T ). Multiplying Equation (2.4) by K and using the fact that
K F = FK = 0, we have K 2x = −αKx . If Kx �= 0, then −α ∈ σp(K ) contradicts the
positivity of K . Hence Kx = 0.

Proof of (4). Clearly, if T x = 0, then by (3), we have Fx = αx . This also concludes that
N (T ) ⊆ R(F) and ‖F‖ = α.

Proof of (5). If T is not one-to-one, then Fx = αx for x ∈ N (T ) by (3). Suppose T
is one-to-one and ‖F‖ = α. Since F is norm attaining by Proposition 1.1, there exists
x ∈ SH such that Fx = αx . Then T x = Kx − Fx +αx = Kx . But K F = 0 implies that
x ∈ N (K ). So, T x = Kx=0. By the injectivity of T , we have that x = 0. This contradicts
the fact that x ∈ SH . Hence ‖F‖ < α.

Proof of (6). Note that σess(T ) = {α} by the Weyl’s theorem on essential spectrum. Hence
me(T ) = α = me(T ∗). Now T is Fredholm operator by [1, Theorem 2] with index zero.

�

Theorem 2.9. Let T ∈ B(H) and positive. Then T ∈ AN (H) if and only if T 2 ∈
AN (H).

Proof. First we assume that T ∈ AN (H). Then there exists a triple (K , F, α) as in
Theorem 2.5(2). Then T 2 = K1 − F1 +β I , where K1 = K 2 + 2αK is a positive compact
operator, F1 = 2αF − F2 = (2α I − F)F and β = α2. Clearly, F1 ≥ 0 as it is the product
of two commuting positive operators. Also, F1 ∈ F(H). Next, we show that F1 ≤ α2 I .
Clearly, α2 I − F1 is self-adjoint and α2 I − F1 = (α I − F)2 ≥ 0. It can be easily verified
that K1F1 = 0. So, T 2 is also in the same form. Hence by Theorem 2.5, T 2 ∈ AN (H).

Now, let T 2 ∈ AN (H). Then by Theorem 2.5, T 2 = K − F + α I , where K ∈ K(H)

is positive, F ∈ F(H) is positive with FK = K F = 0 and F ≤ α I . If α > 0,

then (T − √
α I )(T + √

α I ) = K − F . Since T is positive T + √
α I is a positive

invertible operator. Hence T − √
α I = (K − F)(T + √

α I )−1. Hence there is a positive
compact operator, namely K1 = K (T +√

α)−1 and a finite rank positive operator, namely
F1 = F(T + √

α I )−1, such that T − √
α I = K1 − F1. Hence T = K1 − F1 + √

α I .
Also, note that since F and K commute with T 2, hence commutes with T . Thus, we can
conclude that F1K1 = 0. Finally,

‖F1‖ ≤ ‖F‖ ‖(T + √
α I )−1‖ ≤ α

1

m(T + √
α I )

= α√
α + m(T )

≤ α√
α

= √
α.

In the third step of the above inequalities, we used the fact thatm(T +√
α I ) = √

α+m(T ),
which follows by [11, Proposition 2.1].
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If α = 0, then clearly F = 0 and hence T 2 = K . So, T = K
1
2 , a compact operator

which is clearly an AN -operator. �

COROLLARY 2.10

Let T ∈ B(H) and positive. Then T ∈ AN (H) if and only if T
1
2 ∈ AN (H).

Proof. Let S = T
1
2 . Then S ≥ 0. The conclusion follows by Theorem 2.9. �

COROLLARY 2.11

Let T ∈ B(H1, H2). Then T ∈ AN (H1, H2) if and only T ∗T ∈ AN (H1).

Proof. Proof follows from the following arguments: T ∗T ∈ AN (H1) ⇔ |T |2 ∈
AN (H1) ⇔ |T | ∈ AN (H1) ⇔ T ∈ AN (H1, H2). �

We have the following consequence.

Theorem 2.12. Let T ∈ AN (H) be self-adjoint and λ be a purely imaginary number.
Then T ± λI ∈ AN (H).

Proof. Let S = T ± λI . Then S∗S = T 2 + |λ|2 I = K − F + (α + |λ|2)I , where the
triple (K , F, α) satisfy conditions Theorem 2.5(2) applied to T 2. Hence by Corollary 2.11,
S ∈ AN (H). �

The following result is well known.

Lemma 2.13. Let S, T ∈ B(H) be such that S−1, T−1 ∈ B(H). Then S−1 − T−1 =
T−1(T − S)S−1.

Theorem 2.14. Let T = K − F + α I , where (K , F, α) satisfy conditions of Theo-
rem 2.5(2). Then

(1) R(F) reduces T ,

(2) T =
(
K0 + α IN (F) 0

0 α IR(F) − F0

)
, where K0 = K |N (F) and F0 = F |R(F),

(3) if T is one-to-one and α > 0, then T−1 ∈ B(H) and

T−1 =
(

α−1 IN (F) − α−1K0(K0 + α IN (F))
−1 0

0 α−1 IR(F) + α−1F0(α IR(F) − F0)
−1

)
.

Proof.

Proof of (1). First note that T ≥ 0 and T ∈ AN (H). Let y = Fx for some x ∈ H .
Then T y = T Fx = (K − F + α I )Fx = (α I − F)(Fx) = F(α I − F)x ∈ R(F). This
shows that R(F) is invariant under T . As T is positive, it follows that R(F) is a reducing
subspace for T .
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Proof of (2). First, we show that K0 is a map on N (F). For this we show that N (F) is
invariant under K . If x ∈ N (F), then FK x = 0 since FK = 0. This proves that N (F) is
invariant under K . Thus K0 ∈ K(N (F)). Also, clearly, R(F) is invariant under F . Thus
F0 : R(F) → R(F) is a finite dimensional operator. With respect to the pair of subspaces
(N (F), R(F)), K has the decomposition(

K0 0
0 0

)
.

Similarly the operators F and α I has the following block matrix forms:
(

0 0
0 F0

)
and

(
α IN (F) 0
0 α IR(F)

)
.

With these representations of K , F and α I , by definition, T can be represented as in (2).

Proof of (3). By Proposition 2.8(1), R(T ) is closed. As T is one-to-one, T is bounded
below. Since T is positive, T−1 ∈ B(H). In this case, ‖F0‖ = ‖F‖ < α, by (5) of
Proposition 2.8. Hence we have

T−1 =
(

(K0 + α IN (F))
−1 0

0 (α IR(F) − F0)
−1

)
. (2.5)

By Lemma 2.13, we have

(K0 + α IN (F))
−1 − α−1 IN (F) = −α−1K0(K0 + α IN (F))

−1,

and hence

(K0 + α IN (F))
−1 = α−1 IN (F) − α−1K0(K0 + α IN (F))

−1.

With similar arguments, we can obtain (α IR(F)−F0)
−1 = α−1 IR(F)+α−1F0(α IR(F)−

F0)
−1. Substituting these quantities in equation (2.5), we obtain the representation of T−1

as in (3). �

Remark 2.15. Let

β = α−1,

K1 =
(

α−1K0(K0 + α IN (F))
−1 0

0 0

)

and

F1 =
(

0 0
0 α−1F0(α IR(F) − F0)

−1

)
.

Then T−1 = β I − K1 + F1. Note that ‖K1‖ ≤ β, since ‖K0(α IN (F) + K0)
−1‖ ≤ 1.

Clearly, by definition, K1F1 = 0. This is exactly the structure of absolutely minimum
attaining operators (shortly AM-operators) in the case when T is positive and one-to-
one. We refer [6] for more details of the structure of these operators. We recall that A ∈
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B(H1, H2) is said to be minimum attaining if there exists x0 ∈ SH1 such that ‖Ax0‖ =
m(A) and absolutely minimum attaining if A|M is minimum attaining for each non zero
closed subspace M of H1.

PROPOSITION 2.16

Let T ∈ B(H) satisfy condition (2) of Theorem 2.5. Then,with respect the pair of subspace
(N (K ), N (K )⊥), T has the following decomposition:

T =
(

α IN (K ) − F0 0
0 K0 + α IN (K )⊥

)
,

where F0 = F |N (K ) and K0 = K |N (K )⊥ .

Proof. First, we show that N (K ) is a reducing subspace for T . Since T ≥ 0, it suffices to
show that N (K ) is invariant under T . For this, let x ∈ N (K ). Then T x = (α I − F)(x)
and K (T x) = (α I − F)(Kx) = 0. This proves the claim. Next, if x ∈ N (K ), then
T x = (α I − F)(x). That is, T |N (K ) = α IN (K ) − F |N (K ).

If y ∈ N (K )⊥ = R(K ), then there exists a sequence (xn) ⊂ H such that y =
limn→∞ Kxn . So Fy = limn→∞ FK xn = 0. Thus we have T y = Ky + αy. So
T |N (K )⊥ = KN (K )⊥ + α IN (K )⊥ . �

3. Self-adjoint and normal AN -operators

In this section, we first discuss the structure of self-adjointAN -operators. Later, we extend
this to the case of normal operators.

Theorem 3.1. Let T = T ∗ ∈ AN (H). Then there exists an orthonormal basis consisting
of eigenvectors of T .

Proof. The proof follows along the similar lines of [10, Theorem 3.1]. For the sake of
completeness, we provide the details here. Let B = {xα : α ∈ I } be the maximal set
of orthonormal eigenvectors of T . This set is non empty as T = T ∗ ∈ AN (H). Let
M = span{xα : α ∈ I }. Then we claim that M = H . If not, M⊥ is a proper non-zero
closed subspace of H and it is invariant under T . Since T = T ∗ ∈ AN (H), we have either
||T |M⊥|| or −||T |M⊥|| is an eigenvalue for T |M⊥. Hence there is a non-zero vector, say
x0 in M⊥, such that T x0 = ±||T |M⊥||x0. Hence x0 ∈ M . Since M ∩ M⊥ = {0}, a
contradiction. �

PROPOSITION 3.2

Let T = T ∗ ∈ AN (H). Then the following holds:

(1) T can have atmost two eigenvalues with infinite multiplicity. Moreover, if α and β

are such eigenvalues, then α = ±β,
(2) if T has an eigenvalue α with infinite multiplicity and β is a limit point of σ(T ), then

α = ±β,
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(3) σ(T ) can have atmost two limit points. If α and β are such points, then α = ±β.

Proof.

Proof of (1). Let α j ∈ σp(T ) be such that N (T − α j I ) is infinite dimensional for each
j = 1, 2, 3. Then α2

j ∈ σp(T 2) and we have N (T − α j I ) ⊆ N (T 2 − α2
j I ) for each

j = 1, 2, 3. Since T 2 ∈ AN (H) and positive, by (3) of Theorem 2.2, it follows that
α2

1 = α2
2 = α2

3. Thus α1 = ±α2 = ±α3.

Proof of (2). Let α ∈ σp(T ) with infinite multiplicity and β ∈ σ(T ), which is a limit
point. Since σ(T 2) = {λ2 : λ ∈ σ(T )}, it follows that α2 is an eigenvalue of T 2 with
infinite multiplicity as N (T − α I ) ⊆ N (T 2 − α2 I ) and β2 is a limit point σ(T 2). Since
T 2 ∈ AN (H) is positive, by (4) of Theorem (2.2), α2 = β2. Thus α = ±β.

Proof of (3). Let α, β ∈ σ(T ) be limit points of σ(T ). Then α2, β2 ∈ σ(T 2) are limit
points of σ(T 2) and since T 2 ∈ AN (H) and positive, by Theorem 2.2(2), α2 = β2,
concluding that α = ±β. By arguing as in Proof of (1), we can show that there are at most
two limit points for the spectrum. �

The following decomposition of a self-adjoint operator is used in the sequel:

Let T = T ∗ ∈ B(H) and have the polar decomposition T = V |T |. Let H0 =
N (T ), H+ = N (I − V ) and H− = N (I + V ). Then H = H0 ⊕ H+ ⊕ H−. All
these subspaces are invariant under T . Let T0 = T |N (T ), T+ = T |H+ and T− = T |H− .
Then T = T0 ⊕ T+ ⊕ T−. Further more, T+ is strictly positive, T− is strictly negative
and T0 = 0 if N (T ) �= {0}. Let P0 = PN (T ), P± = PH± . Then P0 = I − V 2 and
P± = 1

2 (V 2 ± V ). Thus V = P+ − P−. Moreover, |T | = T+ ⊕ (−T−) ⊕ T0. For details,
see [9, Example 7.1, p. 139]. Note that the operators T+ and T− are different than those
used in Theorem 2.5.

Theorem 3.3. Let T ∈ AN (H) be self-adjoint with the polar decomposition T = V |T |.
Then

(1) the operator T has the representation

T = K − F + αV,

where K ∈ K(H), F ∈ F(H) are self-adjoint with K F = 0 = FK , α ≥ 0 and
F2 ≤ α2 I ,

(2) if T is not a compact operator, then V ∈ AN (H),
(3) K 2 + 2αRe(V K ) ≥ 0.

Proof.

Proof of (1). Since T is self-adjoint, by considering H0, H± and T0, T± as in the earlier
discussion, we can write H = H0 ⊕ H+ ⊕ H− and T = T0 ⊕ T+ ⊕ T−. Note that T0 = 0
if H0 �= {0}. Since H± reduces T , we have T± ∈ B(H±). As T ∈ AN (H), we have that
T± ∈ AN (H±). Hence by Theorem 2.5, we have T+ = K+ − F+ + α IH+ such that K+
is a positive compact operator, F+ is a finite rank positive operator with the property that
K+F+ = 0 and F+ ≤ α IH+ . As T+ is strictly positive, α > 0, in fact, α = me(T+).

Similarly, T− ∈ AN (H−) and strictly negative. Hence there exists a triple (K−, F−, β)

such that −T− = K− − F− + β IH− , where K− ∈ K(H−) is positive, F− ∈ F(H−) is
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positive with K−F− = 0, F− ≤ β IH− and β > 0, in fact, β = me(T−). Hence we can
write T− = −K− + F− − β IH− . So, we have

T =
⎛
⎝ T+ 0 0

0 T− 0
0 0 T0

⎞
⎠

=
⎛
⎝ K+ − F+ + α IH+ 0 0

0 −K− + F− − β IH− 0
0 0 0

⎞
⎠

=
⎛
⎝ K+ 0 0

0 −K− 0
0 0 0

⎞
⎠ −

⎛
⎝ F+ 0 0

0 −F− 0
0 0 0

⎞
⎠ +

⎛
⎝α IH− 0 0

0 −β IH− 0
0 0 0

⎞
⎠ .

Note that |T | = T+ ⊕ (−T−) ⊕ T0 (see [9, Example 7.1, p. 139] for details). That is,

|T | =
⎛
⎝ K+ 0 0

0 K− 0
0 0 0

⎞
⎠ −

⎛
⎝ F+ 0 0

0 F− 0
0 0 0

⎞
⎠ +

⎛
⎝α IH− 0 0

0 −β IH− 0
0 0 0

⎞
⎠

=
⎛
⎝ K+ 0 0

0 K− 0
0 0 0

⎞
⎠ −

⎛
⎝ F+ 0 0

0 F− 0
0 0 α IH0

⎞
⎠ +

⎛
⎝α IH− 0 0

0 −β IH− 0
0 0 α IH0

⎞
⎠ .

Let K =
⎛
⎝ K+ 0 0

0 −K− 0
0 0 0

⎞
⎠ and F =

⎛
⎝ F+ 0 0

0 −F− 0
0 0 α IH0

⎞
⎠.

Since |T | ∈ AN (H) and positive, by the uniqueness of the representation, we get that
α = β.

Now let, V =
⎛
⎝ IH+ 0 0

0 −IH− 0
0 0 0

⎞
⎠. Then T = K − F +αV and K and F satisfy the stated

properties.
If T is one-to-one, then N (T ) = {0}. In this case, H = H+ ⊕ H− and T = T+ ⊕ T−.

Arguing as above, we can obtain the representation for T = K − F + αV , where

K =
(
K+ 0
0 −K−

)
, F =

(
F+ 0
0 −F−

)
, V =

(
α IH+ 0

0 −α IH−

)
.

Proof of (2). Note that if α = 0, then T is compact. If α > 0 and V is a finite rank operator,
then also T is compact. Since we assumed that T is not compact, it must be the case that
α > 0 and R(V ) is infinite dimensional. But by Proposition 2.8, N (T ) = N (V ) is finite
dimensional. So the conclusion follows by [3, Proposition 3.14].

Proof of (3). First note that since T = T ∗, it follows that V = V ∗. As V K = KV , KV is
self-adjoint. Hence K 2 + 2 Re(V ∗K ) = K 2 + 2V K . Thus

K 2 + 2V K =
⎛
⎝ K 2+ + 2K+ 0 0

0 K 2− − 2K− 0
0 0 0

⎞
⎠ .
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Since the (1, 1) entry of the above matrix is positive, to get the conclusion, it suffices to
prove that the (2, 2) entry is positive. Clearly, K 2− − 2K− is self-adjoint. Next, we show
that σ(K 2− −2K−) is positive. Let λ ∈ σ(K−). Then λ ≤ 0 and λ2 −2λ ∈ σ(K 2− −2K−).
But λ2 − 2λ = λ(λ − 2) ≥ 0. Hence K 2− − 2K− is positive. �

COROLLARY 3.4

Let T = T ∗ ∈ AN (H). Then σ(T ) is countable.

Proof. Since T = T+ ⊕T− ⊕T0, all these operators T+, T− and T0 are AN operators. We
know that σ(T+), σ (T0) are countable, as they are positive. Also, −T− is a positive AN -
operator and hence σ(T−) is countable. Hence, we can conclude that σ(T ) = σ(T+) ∪
σ(T−) ∪ σ(T0) is countable. �

Next, we can get the structure of normalAN -operators. Here we use a different approach
to the one used in Theorem 3.3.

PROPOSITION 3.5

Let T ∈ AN (H) be normal with the polar decomposition T = V |T |. Then there exists
a compact normal operator K, a finite rank normal operator F ∈ B(H) and α ≥ 0 such
that

(1) T has the representation

T = K − F + αV (3.1)

with K F = 0 and F∗F ≤ α2 I ,
(2) K ∗K + 2αRe(V ∗K ) ≥ 0,
(3) V, K , F commutes mutually,
(4) if α > 0, then V ∈ AN (H).

Proof.

Proof of (1). Since T is normal, |T | = |T ∗|. Hence |T ∗|2 = T T ∗ = V |T |2V ∗. That is
V ∗|T ∗|2 = V ∗V |T |2V ∗ = |T |2V ∗ or V |T |2 = |T |2V . By the square root property, it
follows that V |T | = |T |V .

Since |T | ∈ AN (H), we have |T | = K1 − F1 + α I , where K1 ∈ K(H) is positive,
F1 ∈ F(H) is positive and F1 ≤ α I .

Next, we show that V is normal. We have N (T ∗) = N (T ) = N (V ). Hence

V ∗V = PN (V )⊥ = PN (T )⊥ = PN (T ∗)⊥ = PR(T ) = PR(V ) = VV ∗.

So T = K − F + αV , where K = V K1 and F = V F1. Next, we show that K and F
are normal. As T is normal, V commutes with |T |, we have

V (K1 − F1) = (K1 − F1)V . (3.2)

Since V commutes with K1 − F1, it also commutes with (K1 − F1)
2. But, (K1 − F1)

2 =
K 2

1 + F2
1 = (K1 + F1)

2. With this, we can conclude that V (K1 + F1)
2 = (K1 + F1)

2V .
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Hence,

V (K1 + F1) = (K1 + F1)V . (3.3)

Thus by equations (3.2) and (3.3), we can conclude that V K1 = K1V and V F1 = F1V .
By the Fuglede’s theorem we can conclude that V ∗K1 = K1V ∗ and V ∗F1 = F1V ∗. Next,

K ∗K = K1V
∗V K1 = K1VV ∗K1 = V K1V

∗K1 = V K1K1V
∗ = KK ∗.

With similar arguments we can show that F is normal.
Next, we show that K F = 0. Since V commutes with K1 and F1, we have K F =

V K1V F1 = V 2K1F1 = 0.
Finally, F∗F = F1V ∗V F1 ≤ ‖V ‖2F2

1 ≤ α2 I .

Proof of (2). Using the relations V K1 = K1V and V ∗K1 = K1V ∗, we get

K ∗K + α(V ∗K + K ∗V ) = K1V
∗V K1 + α(V ∗V K1 + K1V

∗V )

= V ∗V (K 2
1 + 2αK1)

= PN (V )⊥(K 2
1 + 2αK1)

= K 2
1 + 2αK1

≥ 0.

In the fourth step of the above equations, we have used the fact that PN (V )⊥K1 =
PR(V )K1 = PR(|T |)K1 = K1.

Proof of (3). We have V K = VV K1 = V K1V = KV and V F = VV F1 = V F1V =
FV . Also, K F = 0 = FK .

Proof of (4). Note that by applying Proposition 2.8(2) to |T |, we can conclude that N (|T |) =
N (T ) = N (V ) is finite dimensional. Now the conclusion follows by [3, Proposition 3.14].

�

COROLLARY 3.6

Let T ∈ B(H) be normal. Then T ∈ AN (H) if and only if T ∗ ∈ AN (H).

Proof. We know that T ∈ AN (H) if and only if T ∗T ∈ AN (H), by Corollary 2.11.
Since T ∗T = T T ∗, by Corollary 2.11 again, it follows that T T ∗ ∈ AN (H) if and only if
T ∗ ∈ AN (H). �

4. General case

In this section, we prove the structure of absolutely norm attaining operators defined
between two different Hilbert spaces.

Theorem 4.1. Let T ∈ AN (H1, H2) with the polar decomposition T = V |T |. Then
T = K − F + αV,

where K ∈ K(H1, H2), F ∈ F(H1, H2) such that K ∗F = 0 = K F∗ and α2 I ≥ F∗F.
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Proof. Since |T | ∈ AN (H1) and positive, we have by Theorem 2.5, |T | = K1 − F1 +α I ,
where the triple (K1, F1, α) satisfy conditions in Theorem 2.5(2). Now, T = K −F+αV ,
where K = V K1, F = V F1. Clearly,

K ∗F = K1V
∗V F1 = K1PN (V )⊥F1 = K1(I − PN (V ))F1

= K1F1 − K1PN (V )F1

= 0 (since N (V ) = N (|T |) ⊆ N (K1)).

Also, clearly, K F∗ = V K1F1V ∗ = 0.
Finally, F∗F = F1V ∗V F1 ≤ ‖V ∗V ‖F2

1 ≤ F2
1 ≤ α2 I . �

PROPOSITION 4.2

Let T ∈ B(H) and U ∈ B(H) be unitary such that T ∗ = U∗TU. Then T ∈ AN (H) if
and only if T ∗ ∈ AN (H).

Proof. This follows by [3, Theorem 3.5]. �

Next, we discuss a possible converse in the general case.

Theorem 4.3. Let K ∈ K(H1, H2), F ∈ F(H1, H2), α ≥ 0 and V ∈ B(H1, H2) be a
partial isometry. Further, assume that

(1) V ∈ AN (H1, H2),
(2) K ∗K + α(V ∗K + K ∗V ) ≥ 0.

Then T := K − F + αV ∈ AN (H1, H2).

Proof. If α = 0, then T ∈ K(H1, H2). Hence T ∈ AN (H1, H2). Next assume that
α > 0. We prove this case by showing T ∗T ∈ AN (H1). By a simple calculation, we can
get T ∗T = K − F + α2PN (V )⊥ , where

K = K ∗K + α(V ∗K + K ∗V ), F = F∗F − F∗K − K ∗F − α(V ∗F + F∗V ).

Since V ∈ AN (H1, H2), either N (V ) or N (V )⊥ is finite dimensional by [3, Proposition
3.14]. If N (V )⊥ is finite dimensional, then T ∗T ∈ K(H1). Hence T ∈ K(H1, H2).

If N (V ) is finite dimensional, then T ∗T = K − (F − α2PN (V )) + α2 I . Note that the
operator F − α2PN (V ) is a finite rank self-adjoint operator. Hence T ∗T ∈ AN (H1), by
Theorem 2.1. Now the conclusion follows by Corollary 2.11. �

COROLLARY 4.4

Suppose that K ∈ K(H), F ∈ F(H) are normal and V ∈ B(H) is a normal partial
isometry such that V, F, K commute mutually. Let α ≥ 0. Then

(1) T := K − F + αV is normal,
(2) if K ∗K + 2αV ∗K ≥ 0 and V ∈ AN (H), then T ∈ AN (H).
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Proof.

Proof of (1). We observe that if A and B are commuting normal operators, then A + B is
normal (see [12, p. 342, Exercise 12] for details). By this observation, it follows that T is
normal.

Proof of (2). Since V K = KV , by Fuglede’s theorem [12, p. 315], V ∗K = KV ∗. With
this observation and Theorem 4.3, the conclusion follows. �

COROLLARY 4.5

Suppose that K ∈ K(H), F ∈ F(H) are self-adjoint and V ∈ B(H) is a self-adjoint,
partial isometry and α ≥ 0 such that

(a) V ∈ AN (H),
(b) K 2 + 2α(V K ) ≥ 0.

Then T := K − F + αV is self-adjoint AN -operator.

Proof. The proof directly follows by Theorem 4.3. �

DEFINITION 4.6 [4, p. 349]

Let T ∈ B(H1, H2). Then T is called left-semi-Fredholm if there exists B ∈ B(H2, H1) and
K ∈ K(H1) such that BT = K+I , and right-semi-Fredholm if there exists A ∈ B(H2, H1)

and K ′ ∈ K(H2) such that T A = K ′ + I .
If T is both left-semi-Fredholm and right-semi-Fredholm, then T is called Fredholm.

Remark 4.7. Note that T is left semi-Fredholm if and only if T ∗ is right semi-Fredholm
(see [4, section 2, p. 349] for details).

COROLLARY 4.8

Let T ∈ AN (H1, H2) but not compact. Then T is left-semi-Fredholm.

Proof. Let T = V |T | be the polar decomposition of T . Then |T | = V ∗T . As |T | ∈
AN (H1), by Theorem 2.5, there exists a triple (K , F, α) satisfying conditions in Theo-
rem 2.5, such that V ∗T = K − F + α I . Let K

′ = K − F . Then V ∗T = K
′ + α I . By

Definition 4.6, it follows that T is left-semi-Fredholm. �
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