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Abstract. Let R be a prime ring of characteristic different from 2 with its Utumi
ring of quotients U , extended centroid C , f (x1, . . . , xn) a multilinear polynomial over
C , which is not central-valued on R and d a nonzero derivation of R. By f (R), we
mean the set of all evaluations of the polynomial f (x1, . . . , xn) in R. In the present
paper, we study b[d(u), u] + p[d(u), u]q + [d(u), u]c = 0 for all u ∈ f (R), which
includes left-sided, right-sided as well as two-sided annihilating conditions of the set
{[d(u), u] : u ∈ f (R)}. We also examine some consequences of this result related to
generalized derivations and we prove that if F is a generalized derivation of R and d is
a nonzero derivation of R such that

F2([d(u), u]) = 0

for all u ∈ f (R), then there exists a ∈ U with a2 = 0 such that F(x) = xa for all
x ∈ R or F(x) = ax for all x ∈ R.

Keywords. Derivation; generalized derivation; prime ring; extended centroid; Utumi
quotient ring.
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1. Introduction

A ring R is said to be prime if for any a, b ∈ R, aRb = {0} implies either a = 0 or b = 0
and is said to be semiprime if for any a ∈ R, aRa = {0} implies a = 0. Let Z(R) denote
the center of R and U be the Utumi ring of quotients of R and C = Z(U ). The symbols
[x, y] denote the Lie commutator xy − yx for any x, y ∈ R. By a derivation, we mean an
additive mapping d : R → R such that d(xy) = d(x)y + xd(y) for all x , y ∈ R.

Several authors found a number of results investigating the relationship between the
behaviour of additive mappings defined on a prime (or semiprime) ring R and the structure
of R. Posner [17] proved that if R is a prime ring and d a nonzero derivation on R such that
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[d(r), r ] ∈ Z(R), then R is commutative. Several authors have generalized the Posner’s
result.

Lee and Lee in [13] proved that if [d( f (x1, . . . , xn)), f (x1, . . . , xn)]k = 0 for all
x1, . . . , xn in some nonzero ideal of R, then f (x1, . . . , xn) is central-valued on R,
except when char(R) = 2 and R satisfies s4(x1, x2, x3, x4), the standard identity in
four variables. Later on, De Filippis and Di Vincenzo [5] considered the situation
δ([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0 for all x1, . . . , xn ∈ R, where d and δ are
two derivations of R. The statement of De Filippis and Di Vincenzo’s theorem is the
following:

Let K be a noncommutative ring with unity, R a prime K -algebra of characteristic
different from 2, d and δ nonzero derivations of R, and f (x1, . . . , xn) a multilinear poly-
nomial over K . If δ([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0 for all x1, . . . , xn ∈ R, then
f (x1, . . . , xn) is central-valued on R.

It is natural to consider the situation when derivation δ is replaced by δ2, that is,
δ2([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0 for all x1, . . . , xn ∈ R. In the present paper,
we investigate a more general case replacing δ2 with F2, where F is a generalized deriva-
tion of R.

On the other hand, Dhara [7] studied [d2( f (x1, . . . , xn)), f (x1, . . . , xn)] = 0 for all
x1, . . . , xn ∈ ρ in prime ring R, where d is a derivation of R and ρ is a nonzero right ideal
of R.

We will continue the study of analogue problems involving generalized derivations on
the appropriate subsets of prime rings. An additive mapping F : R → R associated
with a derivation d on R such that F(xy) = F(x)y + xd(y) for all x, y ∈ R, is said to
be generalized derivation. For some fixed a, b ∈ U, an additive mapping F : R → R
defined as F(x) = ax + xb for all x ∈ R is an example of generalized derivation. In [2],
the following result was obtained:

Let R be a prime ring of characteristic different from 2 with extended centroid
C , f (x1, . . . , xn) be a multilinear polynomial over C , which is not central valued
on R. If d is a derivation of R, and F is a generalized derivation of R such that
F([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0 for all x1, . . . , xn ∈ R, then either F = 0
or d = 0.

In this line of investigation, in [4], De Filippis and Di Vincenzo proved the following:

Let R be a prime algebra over a commutative ring K with unity, and f (x1, . . . , xn)
be a multilinear polynomial over K , not central valued on R. Suppose that d is a
nonzero derivation of R, and F is a nonzero generalized derivation of R such that
d([F( f (r1, . . . , rn)), f (r1, . . . , rn)]) = 0 for all r1, . . . , rn ∈ R. If the characteristic
of R is different from 2, then one of the following holds:

(1) there exists λ ∈ C , the extended centroid of R, such that F(x) = λx , for all x ∈ R;
(2) there exists a ∈ U , the Utumi quotient ring of R, and λ ∈ C = Z(U ) such that

F(x) = ax + xa + λx for all x ∈ R, and f (x1, . . . , xn)2 is central-valued on R.

Furthermore, Tiwari et al. [18] investigated d([F2( f (r1, . . . , rn)), f (r1, . . . , rn)]) = 0
for all r1, . . . , rn ∈ R, where d is a nonzero derivation of R, and F is a generalized
derivation of R.
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In the present paper, we prove the following:

Main Theorem. Let R be a prime ring of characteristic different from 2 with Utumi
quotient ringU and f (x1, . . . , xn) a non-central multilinear polynomial over the extended
centroid C. If d is a nonzero derivation of R and F is a generalized derivation of R such
that

F2([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0

for all x1, . . . , xn ∈ R, then there exists a ∈ U with a2 = 0 such that F(x) = xa for all
x ∈ R or F(x) = ax for all x ∈ R.

Here we give an example which shows that in our result, the primeness of the ring is
essential.

Example. Define R =
{(

x y
0 0

)
: x, y ∈ Z

}
and a multilinear polynomial f (r, s) = rs.

We see that R is a ring under usual operations and f (r, s) is not central valued on R.
Also, note that R is not a prime ring. Now we define maps d, F, g : R → R such that

d

(
x y
0 0

)
=

(
0 y
0 0

)
, F

(
x y
0 0

)
=

(
x 0
0 0

)
and g

(
x y
0 0

)
=

(
0 −y
0 0

)
. Notice that

d is a nonzero derivation on R and F is a generalized derivation associated to the derivation
g on R. It can easily be seen that F2([d( f (r, s)), f (r, s)]) = 0 for all r, s ∈ R. Thus R
satisfies the hypothesis of the main theorem. However, the conclusion of the main theorem
does not hold as g is a nonzero derivation of R.

2. Preliminaries

In what follows, R always denotes a prime ring and U denotes the Utumi ring of quotients
of R. f (x1, . . . , xn) denotes the multilinear polynomial over C which is in the form

f (x1, . . . , xn) = x1x2 · · · xn +
∑

σ∈Sn ,σ �=id

ασ xσ(1)xσ(2) . . . xσ(n),

for some ασ ∈ C and Sn the symmetric group of degree n.
The definition and axiomatic formulation of Utumi quotient ring U can be found in [1]

and [3].
We have the following properties which we need:

(1) R ⊆ U ;
(2) U is a prime ring with identity;
(3) The center of U is denoted by C and is called the extended centroid of R. C is a field.

Moreover, we recall some known facts.

Fact 1. Let K be an algebra over a field E. A generalized polynomial identity (GPI) of K is
a polynomial expression g in non commutative indeterminates and fixed coefficients from
K between the indeterminates such that g vanishes on all replacements by elements of K.
The generalized polynomial in the context of Utumi quotient ring U is defined as follows:
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Suppose that V is a set of C-independent vectors of U and Y = {y1, y2, y3, . . .} is a
countable set, where yi are non commuting indeterminates. Let C〈Y 〉 be the free algebra
over C in the set Y. Consider W = U∗CC〈Y 〉, the free product of U and C〈Y 〉 over C.

The elements of W are called generalized polynomials. An element h ∈ W of the form
h = s0x1s1x2s2 . . . xnsn, where {s0, . . . , sn} ⊆ U and {x1, . . . , xn} ⊆ Y is said to be
a monomial. Therefore, each g ∈ W can be represented as a finite sum of monomials.
A V -monomial is of the form e = v0x1v1x2v2 . . . xnvn, where {v0, . . . , vn} ⊆ V and
{x1, . . . , xn} ⊆ Y. Thus an element g ∈ W can be written as g = ∑

i βi ei , where βi ∈ C
and ei are V -monomials. An element g ∈ W is trivial if and only if βi = 0 for each i. For
more details, we refer the reader to [1], [3].

Fact 2. If I is a two-sided ideal of R, then R, I and U satisfy the same generalized
polynomial identities (GPIs) with coefficients in U (see [3]).

Fact 3. Every derivation d of R can be uniquely extended to a derivation of U (see Propo-
sition 2.5.1 in [1]).

Fact 4. If I is a two-sided ideal of R, then R, I andU satisfy the same differential identities
(see [14]).

Fact 5. Let d be a derivation on R. By f d(x1, . . . , xn), f d
2
(x1, . . . , xn) and f d

3
(x1, . . . ,

xn), we denote the polynomials obtained from f (x1, . . . , xn) by replacing each coefficient
ασ with d(ασ ), d2(ασ ) and d3(ασ ), respectively. Then we have

d( f (x1, . . . , xn)) = f d(x1, . . . , xn) +
∑
i

f (x1, . . . , d(xi ), . . . , xn),

d2( f (x1, . . . , xn)) = f d
2
(x1, . . . , xn) + 2

∑
i

f d(x1, . . . , d(xi ), . . . , xn)

+
∑
i

f (x1, . . . , d
2(xi ), . . . , xn)

+
∑
i �= j

f (x1, . . . , d(xi ), . . . , d(x j ), . . . , xn)

and

d3( f (x1, . . . , xn)) = f d
3
(x1, . . . , xn) + 3

∑
i

f d
2
(x1, . . . , d(xi ), . . . , xn)

+ 3
∑
i

f d(x1, . . . , d(xi ), . . . , d(x j ), . . . , xn)

+ 3
∑
i

f d(x1, . . . , d
2(xi ), . . . , xn)

+
∑

i �= j �=k

f (x1, . . . , d(xi ), . . . , d(x j ), . . . , d(xk), . . . , xn)

+ 2
∑
i �= j

f (x1, . . . , d
2(xi ), . . . , d(x j ), . . . , xn)
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+ 2
∑
i �= j

f (x1, . . . , d(xi ), . . . , d
2(x j ), . . . , xn)

+
∑
i

f (x1, . . . , d
3(xi ), . . . , xn).

3. The case when F is inner

In this section, we study all the possible situation of annihilating condition of the set
{[d(x), x]|x ∈ f (R)}, where d is a derivation of R. For any subset S of R, denote by
rR(S) the right annihilator of S in R, that is, rR(S) = {x ∈ R|Sx = 0} and lR(S) the left
annihilator of S in R, that is, lR(S) = {x ∈ R|xS = 0}. If rR(S) = lR(S), then rR(S) is
called an annihilator ideal of R and is written as annR(S).

In [6], De Filippis and Di Vincenzo studied the left annihilating condition of the set
{[d(x), x]|x ∈ f (R)}. More precisely, they proved that if R is a prime ring of char(R) �= 2
and d is a nonzero derivation of R satisfying a[d(x), x] = 0 for all x ∈ f (R), then a = 0.

Now we will study a more general situation, involving left sided, right sided as well as
two-sided annihilating conditions. More specifically, we study the situation b[d(x), x] +
p[d(x), x]q + [d(x), x]c = 0 for all x ∈ f (R), where b, c, p, q ∈ R.

First we consider that d is an inner derivation of R, that is, d(x) = [a, x] for all x ∈ R.
Then

b[d( f (r)), f (r)] + p[d( f (r)), f (r)]q + [d( f (r)), f (r)]c = 0

gives

b
(
a f (r)2 − 2 f (r)a f (r) + f (r)2a) + p(a f (r)2

− 2 f (r)a f (r) + f (r)2a
)
q

+ (
a f (r)2 − 2 f (r)a f (r) + f (r)2a

)
c = 0,

that is,

ba f (r)2 − 2b f (r)a f (r) + b f (r)2a + pa f (r)2q

− 2p f (r)a f (r)q + p f (r)2aq

+ a f (r)2c − 2 f (r)a f (r)c + f (r)2ac = 0

for any r = (r1, . . . , rn) ∈ Rn . We rewrite it as

a1 f (r)
2 − 2a2 f (r)a3 f (r) + a2 f (r)

2a3 + a4 f (r)
2a5

− 2a6 f (r)a3 f (r)a5 + a6 f (r)
2a7

+ a3 f (r)
2a8 − 2 f (r)a3 f (r)a8 + f (r)2a9 = 0

for any r = (r1, . . . , rn) ∈ Rn , where a1 = ba, a2 = b, a3 = a, a4 = pa, a5 = q, a6 =
p, a7 = aq, a8 = c, a9 = ac. Now we study this situation in a matrix ring.
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We need the following:

Lemma 3.1 [4, Lemma 1]. Let F be an infinite field and k ≥ 2. If A1, . . . , An are not
scalar matrices in Mk(F) then there exists some invertible matrix P ∈ Mk(F) such that
any matrices P A1P−1, . . . , PAn P−1 have all non-zero entries.

PROPOSITION 3.2

Let R = Mk(F) be the ring of all k × k matrices over the infinite field F , f (x1, . . . , xn)
a non-central multilinear polynomial over F and a1, a2, . . . , a9 ∈ R. If

a1 f (r)
2 − 2a2 f (r)a3 f (r) + a2 f (r)

2a3 + a4 f (r)
2a5

− 2a6 f (r)a3 f (r)a5 + a6 f (r)
2a7

+ a3 f (r)
2a8 − 2 f (r)a3 f (r)a8 + f (r)2a9 = 0

for all r = (r1, . . . , rn) ∈ Rn , then either a3 or a5 or a6 is central.

Proof. By the hypothesis, we have

a1 f (r1, . . . , rn)
2 − 2a2 f (r1, . . . , rn)a3 f (r1, . . . , rn) + a2 f (r1, . . . , rn)

2a3

+ a4 f (r1, . . . , rn)
2a5 − 2a6 f (r1, . . . , rn)a3 f (r1, . . . , rn)a5

+ a6 f (r1, . . . , rn)
2a7

+ a3 f (r1, . . . , rn)
2a8 − 2 f (r1, . . . , rn)a3 f (r1, . . . , rn)a8

+ f (r1, . . . , rn)
2a9 = 0.

Suppose that a3 /∈ Z(R), a5 /∈ Z(R) and a6 /∈ Z(R). Then we shall prove that this case
leads to a contradiction.

Since a3 /∈ Z(R), a5 /∈ Z(R) and a6 /∈ Z(R), by Lemma 3.1, there exists a F-
automorphism φ of Mk(F) such that φ(a3), φ(a5) and φ(a6) have all nonzero entries.
Clearly, R satisfies the GPI,

φ(a1) f (r1, . . . , rn)
2 − 2φ(a2) f (r1, . . . , rn)φ(a3) f (r1, . . . , rn)

+ φ(a2) f (r1, . . . , rn)
2φ(a3) + φ(a4) f (r1, . . . , rn)

2φ(a5)

− 2φ(a6) f (r1, . . . , rn)φ(a3) f (r1, . . . , rn)φ(a5)

+ φ(a6) f (r1, . . . , rn)
2φ(a7)

+ φ(a3) f (r1, . . . , rn)
2φ(a8) − 2 f (r1, . . . , rn)φ(a3) f (r1, . . . , rn)φ(a8)

+ f (r1, . . . , rn)
2φ(a9) = 0.

(1)

As usual, by ei j , 1 ≤ i, j ≤ k, we denote the matrix unit whose (i, j)-entry is equal to 1
and all its other entries are equal to 0. Since f (x1, . . . , xn) is non-central, by [13] (see also
[15]), there exist s1, . . . , sn ∈ Mk(F) and β ∈ F\{0} satisfying f (s1, . . . , sn) = βest with
s �= t . Moreover, since the set { f (y1, . . . , yn) : y1, . . . , yn ∈ Mk(F)} is invariant under the
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action of all F-automorphisms of Mk(F), for any i �= j , there exists u1, . . . , un ∈ Mk(F)

such that f (u1, . . . , un) = ei j . Hence by (1) we have

φ(a1)e
2
i j − 2φ(a2)ei jφ(a3)ei j + φ(a2)e

2
i jφ(a3) + φ(a4)e

2
i jφ(a5)

− 2φ(a6)ei jφ(a3)ei jφ(a5) + φ(a6)e
2
i jφ(a7)

+ φ(a3)e
2
i jφ(a8) − 2ei jφ(a3)ei jφ(a8) + e2

i jφ(a9) = 0.

Multiplying left side and right side by ei j , we obtain 2ei jφ(a6)ei jφ(a3)ei jφ(a5)ei j = 0.
Since char(R) �= 2, we have φ(a6) j iφ(a3) j iφ(a5) j i = 0. This is a contradiction as φ(a3),
φ(a5) and φ(a6) have all nonzero entries. Thus we conclude that either a3 or a5 or a6 is
central. �

PROPOSITION 3.3

Let R = Mk(F)be the ring of allmatrices over the field F with char(R) �= 2, f (x1, . . . , xn)
a non-central multilinear polynomial over F and a1, a2, . . . , a9 ∈ R. If

a1 f (r)
2 − 2a2 f (r)a3 f (r) + a2 f (r)

2a3 + a4 f (r)
2a5

− 2a6 f (r)a3 f (r)a5 + a6 f (r)
2a7

+ a3 f (r)
2a8 − 2 f (r)a3 f (r)a8 + f (r)2a9 = 0

for all r = (r1, . . . , rn) ∈ Rn , then either a3 or a5 or a6 is central.

Proof. If F is an infinite field, then by Proposition 3.2, we get the desired result. Next, we
assume that F is finite.

Let E be an infinite field extension of the field F . Suppose that R̄ = Mk(E) ∼= R⊗F E .
Note that the multilinear polynomial f (r1, . . . , rn) is central-valued on R if and only if it
is central-valued on R̄. R satisfies the GPI,

	(r1, . . . , rn) = a1 f (r1, . . . , rn)
2 − 2a2 f (r1, . . . , rn)a3 f (r1, . . . , rn)

+ a2 f (r1, . . . , rn)
2a3 + a4 f (r1, . . . , rn)

2a5

− 2a6 f (r1, . . . , rn)a3 f (r1, . . . , rn)a5 + a6 f (r1, . . . , rn)
2a7

+ a3 f (r1, . . . , rn)
2a8 − 2 f (r1, . . . , rn)a3 f (r1, . . . , rn)a8

+ f (r1, . . . , rn)
2a9 = 0

which is multi-homogeneous of multi-degree (2, . . . , 2) in the indeterminates r1, . . . , rn .
Thus the complete linearization of 	(r1, . . . , rn) is a multilinear generalized polyno-
mial 
(r1, . . . , rn, r1, . . . , rn) in 2n indeterminates. Clearly, 
(r1, . . . , rn, r1, . . . , rn) =
2n	(r1, . . . , rn).

Note that the multilinear polynomial 
(r1, . . . , rn, r1, . . . , rn) is a generalized polyno-
mial identity for both R and R̄. Since char(F) �= 2, we obtain 	(r1, . . . , rn) = 0 for all
r1, . . . , rn ∈ R̄. Hence by Proposition 3.2, the proof of proposition follows. �
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Lemma 3.4. Let R be a prime ring of characteristic different from 2with extended centroid
C and f (x1, . . . , xn) a non-central multilinear polynomial over C. Suppose that for some
a1, a2, . . . , a9 ∈ R,

a1 f (r)
2 − 2a2 f (r)a3 f (r) + a2 f (r)

2a3 + a4 f (r)
2a5

− 2a6 f (r)a3 f (r)a5 + a6 f (r)
2a7

+ a3 f (r)
2a8 − 2 f (r)a3 f (r)a8 + f (r)2a9 = 0

for all r = (r1, . . . , rn) ∈ Rn , then either a3 or a5 or a6 is central.

Proof. Since R satisfies the generalized polynomial identity (GPI),

g(x1, . . . , xn) = a1 f (x1, . . . , xn)
2 − 2a2 f (x1, . . . , xn)a3 f (x1, . . . , xn)

+ a2 f (x1, . . . , xn)
2a3 + a4 f (x1, . . . , xn)

2a5

− 2a6 f (x1, . . . , xn)a3 f (x1, . . . , xn)a5 + a6 f (x1, . . . , xn)
2a7

+ a3 f (x1, . . . , xn)
2a8 − 2 f (x1, . . . , xn)a3 f (x1, . . . , xn)a8

+ v f (x1, . . . , xn)
2a9 = 0

(2)

for all x1, . . . , xn ∈ R. Assume that a3 /∈ C , a5 /∈ C and a6 /∈ C . By Fact 2, R and
U satisfy the same GPI, U satisfies g(x1, . . . , xn) = 0. Suppose that g(x1, . . . , xn)
is a trivial GPI for U . Let W = U ∗C C{x1, x2, . . . , xn}, the free product of U and
C{x1, . . . , xn}, the free C-algebra in noncommuting indeterminates x1, x2, . . . , xn . So
g(x1, . . . , xn) is a zero element in W = U ∗C C{x1, . . . , xn}. In equation (2), the term
−2a6 f (x1, . . . , xn)a3 f (x1, . . . , xn)a5 appears nontrivially, implying that

−2a6 f (x1, . . . , xn)a3 f (x1, . . . , xn)a5 = 0 ∈ W.

This implies that either a3 or a5 or a6 is central.
Now assume that g(x1, . . . , xn) is a non-trivial GPI for U . In case C is infinite, we have

g(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ U ⊗C C̄ , where C̄ is the algebraic closure of C .
Moreover, both U and U ⊗C C̄ are prime and centrally closed algebras [8]. Hence, we
substituteU orU ⊗C C̄ in place of R according to C finite or infinite respectively. Without
loss of generality, we may suppose that C = Z(R) and R is a centrally closed C-algebra.
Using Martindale’s theorem [16], R is then a primitive ring having nonzero Socle soc(R)

with C as the associated division ring. Hence by Jacobson’s theorem [10, p. 75], R is
isomorphic to a dense ring of linear transformations of some vector space V over C .

First, suppose that V is finite dimensional over C , that is, dimCV = k. By density
of R, we have R ∼= Mk(C). Since f (r1, . . . , rn) is not central-valued on R, R must be
noncommutative and so k ≥ 2. In this case, by Proposition 3.3, we get that either a3 or a5
or a6 is in C , a contradiction.

IfV is infinite dimensional overC , then for any e2 = e ∈ soc(R), we have eRe ∼= Mt (C)

with t = dimCV e. Since a3, a5 and a6 are not in C , there exist h1, h2, h3 ∈ soc(R) such
that [a3, h1] �= 0, [a5, h2] �= 0 and [a6, h3] �= 0. By Litoff’s theorem [9], there exists
idempotent e ∈ soc(R) such that a3h1, h1a3, a5h2, h2a5, a6h3, h3a6, h1, h2,
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h3 ∈ eRe. Since R satisfies GPI, it follows that

e{a1 f (ex1e, . . . , exne)
2 − 2a2 f (ex1e, . . . , exne)a3 f (ex1e, . . . , exne)

+ a2 f (ex1e, . . . , exne)
2a3 + a4 f (ex1e, . . . , exne)

2a5

− 2a6 f (ex1e, . . . , exne)a3 f (ex1e, . . . , exne)a5 + a6 f (ex1e, . . . , exne)
2a7

+va3 f (ex1e, . . . , exne)
2a8 − 2 f (ex1e, . . . , exne)a3 f (ex1e, . . . , exne)a8

+ f (ex1e, . . . , exne)
2a9}e = 0,

where the subring eRe satisfies

ea1e f (x1, . . . , xn)
2 − 2ea2e f (x1, . . . , xn)ea3e f (x1, . . . , xn)

+ ea2e f (x1, . . . , xn)
2ea3e + ea4e f (x1, . . . , xn)

2ea5e

− 2ea6e f (x1, . . . , xn)ea3e f (x1, . . . , xn)ea5e + ea6e f (x1, . . . , xn)
2ea7e

+ ea3e f (x1, . . . , xn)
2ea8e − 2 f (x1, . . . , xn)ea3e f (x1, . . . , xn)ea8e

+ f (x1, . . . , xn)
2ea9e = 0.

Then by the above finite dimensional case, either ea3e or ea5e or ea6e is the central
element of eRe. This leads to a contradiction, since a3h1 = (ea3e)h1 = h1ea3e = h1a3,
a5h2 = (ea5e)h2 = h2(ea5e) = h2a5 and a6h3 = (ea6e)h3 = h3(ea6e) = h3a6.

Hence we have proved that either a3 or a5 or a6 is in C . �

Theorem 3.5. Let R be a prime ring of characteristic different from 2, f (x1, . . . , xn) a
non-central multilinear polynomial over C and d a nonzero derivation of R. Suppose that
for some b, c, p, q ∈ R, b[d(u), u] + p[d(u), u]q + [d(u), u]c = 0 for all u ∈ f (R).
Then one of the following holds:

(1) b, p, pq + c ∈ C and b + pq + c = 0;
(2) b + pq, q, c ∈ C and b + pq + c = 0.

Proof. Let d be an inner derivation of R, that is, d(x) = [a, x] for all x ∈ R. By hypothesis,
R satisfies

b[[a, f (r)], f (r)] + p[[a, f (r)], f (r)]q + [[a, f (r)], f (r)]c = 0, (3)

that is,

ba f (r)2 − 2b f (r)a f (r) + b f (r)2a + pa f (r)2q

− 2p f (r)a f (r)q + p f (r)2aq

+ a f (r)2c − 2 f (r)a f (r)c + f (r)2ac = 0

for all r = (r1, . . . , rn) ∈ Rn . Since d is nonzero, a /∈ C . In this case, by Lemma 3.4, we
have either p ∈ C or q ∈ C .

Case i. Let p ∈ C . Then by hypothesis, R satisfies

b[[a, f (r)], f (r)] + [[a, f (r)], f (r)](pq + c) = 0.
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By Lemma 3.3 in [2], b, pq + c and (b + pq + c)a are in C . Since a /∈ C , we conclude
that b + pq + c = 0. This is our conclusion (1).

Case ii. Let q ∈ C . By hypothesis, R satisfies

(b + pq)[[a, f (r)], f (r)] + [[a, f (r)], f (r)]c = 0.

By Lemma 3.3 in [2], b + pq, c and (b + pq + c)a are in C . Since a /∈ C , we conclude
that b + pq + c = 0. This is our conclusion (2).

Next, suppose that d is an outer derivation of R. By using Fact 5 and Kharchenko’s
theorem [11], we can replace d(xi ) with yi and then R satisfies

b[ f d(x1, . . . , xn) +
∑
i

f (x1, . . . , yi , . . . , xn), f (x1, . . . , xn)]

+ p[ f d(x1, . . . , xn) +
∑
i

f (x1, . . . , yi , . . . , xn), f (x1, . . . , xn)]q

+[ f d(x1, . . . , xn) +
∑
i

f (x1, . . . , yi , . . . , xn), f (x1, . . . , xn)]c = 0.

In particular, R satisfies blended component

b[�
i
f (x1, . . . , yi , . . . , xn), f (x1, . . . , xn)]

+ p[�
i
f (x1, . . . , yi , . . . , xn), f (x1, . . . , xn)]q

+ [�
i
f (x1, . . . , yi , . . . , xn), f (x1, . . . , xn)]c = 0.

(4)

Since R is noncommutative, we choose a′ ∈ R such that a′ /∈ C . Replacing [a′, xi ] in
place of yi in equation (4), we get

b[[a′, f (r)], f (r)] + p[[a′, f (r)], f (r)]q + [[a′, f (r)], f (r)]c = 0

for all r = (r1, . . . , rn) ∈ Rn , which is the same as equation (3). Then by the same
argument as above, we have our conclusions. �

In particular, for right-sided annihilator condition, we have the following.

COROLLARY 3.6

Let R be a prime ring of characteristic different from 2, f (x1, . . . , xn) a non-central
multilinear polynomial over C and d a nonzero derivation of R. Suppose that for some
a ∈ R, [d(u), u]a = 0 for all u ∈ f (R). Then a = 0.

In particular, for two-sided annihilator condition, we have the following.

COROLLARY 3.7

Let R be a prime ring of characteristic different from 2, f (x1, . . . , xn) a non-central
multilinear polynomial over C and d a nonzero derivation of R. Suppose that for some
a, b ∈ R, a[d(u), u]b = 0 for all u ∈ f (R). Then either a = 0 or b = 0.
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Putting p = 0 and q = 0 in Theorem 3.5, we have the inner part of Theorem 5.3 of [2].
More precisely, we obtain the following.

COROLLARY 3.8

Let R be a prime ring of characteristic different from 2, f (x1, . . . , xn) a non-central
multilinear polynomial over C and d a nonzero derivation of R. Suppose that for some
b, c ∈ R, b[d(u), u] + [d(u), u]c = 0 for all u ∈ f (R). Then b = −c ∈ C.

Replacing b by s2, c by t2, p = 2s and q = t in Theorem 3.5, we obtain the following.

COROLLARY 3.9

Let R be a prime ring of characteristic different from 2 and f (x1, . . . , xn) a non-central
multilinear polynomial over C. If d is a nonzero derivation of R, and F is an inner
generalized derivation of R such that

F2([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0

for all x1, . . . , xn ∈ R, then there exists a ∈ U such that F(x) = xa for all x ∈ R or
F(x) = ax for all x ∈ R, with a2 = 0.

In the next section, we will extend Corollary 3.9 to the arbitrary generalized derivation.
Now we are ready to prove the main theorem.

4. The proof of the main theorem

Lee [12] proved that every generalized derivation can be uniquely extended to a generalized
derivation of U , and thus all generalized derivations of R will be implicitly assumed to be
defined on the whole U . In particular, Lee proved that every generalized derivation g on a
dense right ideal of R can be uniquely extended to U and has the form g(x) = ax + d(x)
for some a ∈ U and a derivation d of R.

Theorem 4.1. Suppose that R is a prime ring of characteristic different from 2 and
f (x1, . . . , xn) is a non-central multilinear polynomial over C. If d is a nonzero derivation
of R, and F is a generalized derivation of R such that

F2([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0

for all x1, . . . , xn ∈ R, then there exists a ∈ U such that F(x) = xa for all x ∈ R or
F(x) = ax for all x ∈ R, with a2 = 0.

Proof. In light of [12, Theorem 3], we may assume that there exist b ∈ U and derivation
δ of U such that F(x) = bx + δ(x) and so, F2(x) = b2x + 2bδ(x) + δ(b)x + δ2(x).
Since R and U satisfy the same generalized polynomial identities (see Fact 2) as well as
the same differential identities (see Fact 4), without loss of generality, we have

F2[d( f (r1, . . . , rn)), f (r1, . . . , rn)] = 0
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for all r1, . . . , rn ∈ U . If F is an inner generalized derivation of R, then assume that
F(x) = bx + xc for all x ∈ R, with some b, c ∈ U . In this case, by the hypothesis

b2[d(r), r ] + 2b[d(r), r ]c + [d(r), r ]c2 = 0

for all r ∈ f (R). Then by Theorem 3.5, one of the following holds:

(i) b2, b, 2bc + c2 ∈ C and b2 + 2bc + c2 = 0, that is (b + c)2 = 0. In this case,
F(x) = x(b + c) for all x ∈ R with (b + c)2 = 0.

(ii) b2 + 2bc, c, c2 ∈ C and b2 + 2bc + c2 = 0, that is, (b + c)2 = 0. In this case,
F(x) = (b + c)x for all x ∈ R with (b + c)2 = 0.

Now, we assume that F is outer. By the hypothesis, U satisfies

b2[d(r), r ] + 2bδ([d(r), r ]) + δ(b)[d(r), r ] + δ2([d(r), r ]) = 0 (5)

for all r ∈ f (R).

Case I. Let d and δ beC-dependent modulo inner derivations ofU , that is, αd+βδ = adq ,
where α, β ∈ C , q ∈ U and adq(x) = [q, x] for all x ∈ U . If α = 0, then δ must be
inner and so F is inner, a contradiction. Hence α �= 0, and hence d = λδ + adp, where
λ = −α−1β and p = α−1q.

Then by the hypothesis, it follows that

b2[λδ(r) + [p, r ], r ] + 2bδ([λδ(r) + [p, r ], r ])
+ δ(b)[λδ(r) + [p, r ], r ]
+ δ2([λδ(r) + [p, r ], r ]) = 0

(6)

for all r ∈ f (R).
Using Fact 5, substitute the values of δ( f (r1, . . . , rn)), δ2( f (r1, . . . , rn)) and δ3( f (r1,

. . . , rn)) in equation (6). Then by Kharchenko’s theorem [11], we can replace δ(ri ) with
yi , δ2(ri ) with wi and δ3(ri ) with zi in equation (6) and then U satisfies the blended
component

[λ�
i
f (r1, . . . , zi , . . . , rn), f (r1, . . . , rn)] = 0.

We choose q ∈ U such that q /∈ C and replace zi by [q, ri ]. Then U satisfies

[λq, f (r1, . . . , rn)]2 = 0.

By [13, Theorem], λq ∈ C . Since q /∈ C , λ = 0. Hence by equation (6),

b2[[p, r ], r ] + 2bδ([[p, r ], r ]) + δ(b)[[p, r ], r ] + δ2([[p, r ], r ]) = 0 (7)

for all r ∈ f (R).
Putting the values of δ( f (r1, . . . , rn)) and δ2( f (r1, . . . , rn)) in equation (7), then again

by Kharchenko’s theorem [11], we can replace δ(ri ) with yi and δ2(ri ) with wi in (7), and
then U satisfies the blended component
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[[p, �
i
f (r1, . . . , wi , . . . , rn)], f (r1, . . . , rn)]

+ [[p, f (r1, . . . , rn)], �
i
f (r1, . . . , wi , . . . , rn)] = 0.

By taking w1 = r1 and w2 = · · · = wn = 0, U satisfies

2[[p, f (r1, . . . , rn)], f (r1, . . . , rn)] = 0.

Since char(R) �= 2, by [13, Theorem] p ∈ C . This gives that d = 0, a contradiction.

Case II. Let d and δ be C-independent modulo inner derivations of U . Then by applying
Fact 5 and Kharchenko’s theorem [11] to equation (5), we can replace d(ri ) with yi , δ(ri )
with zi , δd(ri ) with si , δ2(ri ) with ti and δ2d(ri ) with ui . Then U satisfies the blended
component

[�
i
f (r1, . . . , ui , . . . , rn), f (r1, . . . , rn)] = 0.

In particular, replacing ui with [q, ri ] for some q /∈ C , U satisfies

[q, f (r1, . . . , rn)]2 = 0.

Again by [13, Theorem], q ∈ C , a contradiction. �

COROLLARY 4.2

Let R be a prime ring of characteristic different from 2 with extended centroid C and
f (x1, . . . , xn) a multilinear polynomial over C. If d and δ are two nonzero derivations of
R such that

δ2([d( f (x1, . . . , xn)), f (x1, . . . , xn)]) = 0

for all x1, . . . , xn ∈ R, then f (x1, . . . , xn) is central-valued on R.
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