

An identity on generalized derivations involving multilinear polynomials in prime rings

B DHARA¹, C GARG^{2,*} and R K SHARMA²

¹Department of Mathematics, Belda College, Belda, Paschim Medinipur 721 424, India ²Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India

*Corresponding author.

E-mail: basu_dhara@yahoo.com; garg88chirag@gmail.com; rksharma@maths.iitd.ac.in

MS received 22 March 2018; accepted 12 July 2018; published online 20 April 2019

Abstract. Let *R* be a prime ring of characteristic different from 2 with its Utumi ring of quotients *U*, extended centroid *C*, $f(x_1, \ldots, x_n)$ a multilinear polynomial over *C*, which is not central-valued on *R* and *d* a nonzero derivation of *R*. By f(R), we mean the set of all evaluations of the polynomial $f(x_1, \ldots, x_n)$ in *R*. In the present paper, we study b[d(u), u] + p[d(u), u]q + [d(u), u]c = 0 for all $u \in f(R)$, which includes left-sided, right-sided as well as two-sided annihilating conditions of the set $\{[d(u), u] : u \in f(R)\}$. We also examine some consequences of this result related to generalized derivations and we prove that if *F* is a generalized derivation of *R* and *d* is a nonzero derivation of *R* such that

$$F^2([d(u), u]) = 0$$

for all $u \in f(R)$, then there exists $a \in U$ with $a^2 = 0$ such that F(x) = xa for all $x \in R$ or F(x) = ax for all $x \in R$.

Keywords. Derivation; generalized derivation; prime ring; extended centroid; Utumi quotient ring.

2010 Mathematics Subject Classification. 16W25, 16W20, 16N60.

1. Introduction

A ring *R* is said to be *prime* if for any $a, b \in R$, $aRb = \{0\}$ implies either a = 0 or b = 0and is said to be *semiprime* if for any $a \in R$, $aRa = \{0\}$ implies a = 0. Let Z(R) denote the center of *R* and *U* be the Utumi ring of quotients of *R* and C = Z(U). The symbols [x, y] denote the Lie commutator xy - yx for any $x, y \in R$. By a *derivation*, we mean an additive mapping $d : R \to R$ such that d(xy) = d(x)y + xd(y) for all $x, y \in R$.

Several authors found a number of results investigating the relationship between the behaviour of additive mappings defined on a prime (or semiprime) ring R and the structure of R. Posner [17] proved that if R is a prime ring and d a nonzero derivation on R such that

 $[d(r), r] \in Z(R)$, then R is commutative. Several authors have generalized the Posner's result.

Lee and Lee in [13] proved that if $[d(f(x_1, \ldots, x_n)), f(x_1, \ldots, x_n)]_k = 0$ for all x_1, \ldots, x_n in some nonzero ideal of R, then $f(x_1, \ldots, x_n)$ is central-valued on R, except when char(R) = 2 and R satisfies $s_4(x_1, x_2, x_3, x_4)$, the standard identity in four variables. Later on, De Filippis and Di Vincenzo [5] considered the situation $\delta([d(f(x_1, \ldots, x_n)), f(x_1, \ldots, x_n)]) = 0$ for all $x_1, \ldots, x_n \in R$, where d and δ are two derivations of R. The statement of De Filippis and Di Vincenzo's theorem is the following:

Let *K* be a noncommutative ring with unity, *R* a prime *K*-algebra of characteristic different from 2, *d* and δ nonzero derivations of *R*, and $f(x_1, \ldots, x_n)$ a multilinear polynomial over *K*. If $\delta([d(f(x_1, \ldots, x_n)), f(x_1, \ldots, x_n)]) = 0$ for all $x_1, \ldots, x_n \in R$, then $f(x_1, \ldots, x_n)$ is central-valued on *R*.

It is natural to consider the situation when derivation δ is replaced by δ^2 , that is, $\delta^2([d(f(x_1, \dots, x_n)), f(x_1, \dots, x_n)]) = 0$ for all $x_1, \dots, x_n \in R$. In the present paper, we investigate a more general case replacing δ^2 with F^2 , where *F* is a generalized derivation of *R*.

On the other hand, Dhara [7] studied $[d^2(f(x_1, ..., x_n)), f(x_1, ..., x_n)] = 0$ for all $x_1, ..., x_n \in \rho$ in prime ring *R*, where *d* is a derivation of *R* and ρ is a nonzero right ideal of *R*.

We will continue the study of analogue problems involving generalized derivations on the appropriate subsets of prime rings. An additive mapping $F : R \to R$ associated with a derivation *d* on *R* such that F(xy) = F(x)y + xd(y) for all $x, y \in R$, is said to be *generalized derivation*. For some fixed $a, b \in U$, an additive mapping $F : R \to R$ defined as F(x) = ax + xb for all $x \in R$ is an example of generalized derivation. In [2], the following result was obtained:

Let *R* be a prime ring of characteristic different from 2 with extended centroid *C*, $f(x_1, \ldots, x_n)$ be a multilinear polynomial over *C*, which is not central valued on *R*. If *d* is a derivation of *R*, and *F* is a generalized derivation of *R* such that $F([d(f(x_1, \ldots, x_n)), f(x_1, \ldots, x_n)]) = 0$ for all $x_1, \ldots, x_n \in R$, then either F = 0 or d = 0.

In this line of investigation, in [4], De Filippis and Di Vincenzo proved the following:

Let *R* be a prime algebra over a commutative ring *K* with unity, and $f(x_1, \ldots, x_n)$ be a multilinear polynomial over *K*, not central valued on *R*. Suppose that *d* is a nonzero derivation of *R*, and *F* is a nonzero generalized derivation of *R* such that $d([F(f(r_1, \ldots, r_n)), f(r_1, \ldots, r_n)]) = 0$ for all $r_1, \ldots, r_n \in R$. If the characteristic of *R* is different from 2, then one of the following holds:

- (1) there exists $\lambda \in C$, the extended centroid of *R*, such that $F(x) = \lambda x$, for all $x \in R$;
- (2) there exists $a \in U$, the Utumi quotient ring of R, and $\lambda \in C = Z(U)$ such that $F(x) = ax + xa + \lambda x$ for all $x \in R$, and $f(x_1, \dots, x_n)^2$ is central-valued on R.

Furthermore, Tiwari *et al.* [18] investigated $d([F^2(f(r_1, ..., r_n)), f(r_1, ..., r_n)]) = 0$ for all $r_1, ..., r_n \in R$, where *d* is a nonzero derivation of *R*, and *F* is a generalized derivation of *R*.

In the present paper, we prove the following:

Main Theorem. Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and $f(x_1, ..., x_n)$ a non-central multilinear polynomial over the extended centroid C. If d is a nonzero derivation of R and F is a generalized derivation of R such that

$$F^{2}([d(f(x_{1},...,x_{n})), f(x_{1},...,x_{n})]) = 0$$

for all $x_1, \ldots, x_n \in R$, then there exists $a \in U$ with $a^2 = 0$ such that F(x) = xa for all $x \in R$ or F(x) = ax for all $x \in R$.

Here we give an example which shows that in our result, the primeness of the ring is essential.

Example. Define $R = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} : x, y \in \mathbb{Z} \right\}$ and a multilinear polynomial f(r, s) = rs. We see that *R* is a ring under usual operations and f(r, s) is not central valued on *R*. Also, note that *R* is not a prime ring. Now we define maps $d, F, g : R \to R$ such that $d\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}, F\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ and $g\begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -y \\ 0 & 0 \end{pmatrix}$. Notice that *d* is a nonzero derivation on *R* and *F* is a generalized derivation associated to the derivation *g* on *R*. It can easily be seen that $F^2([d(f(r, s)), f(r, s)]) = 0$ for all $r, s \in R$. Thus *R* satisfies the hypothesis of the main theorem. However, the conclusion of the main theorem does not hold as *g* is a nonzero derivation of *R*.

2. Preliminaries

In what follows, *R* always denotes a prime ring and *U* denotes the Utumi ring of quotients of *R*. $f(x_1, \ldots, x_n)$ denotes the multilinear polynomial over *C* which is in the form

$$f(x_1,\ldots,x_n) = x_1 x_2 \cdots x_n + \sum_{\sigma \in S_n, \sigma \neq id} \alpha_\sigma x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(n)},$$

for some $\alpha_{\sigma} \in C$ and S_n the symmetric group of degree n.

The definition and axiomatic formulation of Utumi quotient ring U can be found in [1] and [3].

We have the following properties which we need:

(1) $R \subseteq U$;

- (2) U is a prime ring with identity;
- (3) The center of U is denoted by C and is called the extended centroid of R. C is a field.

Moreover, we recall some known facts.

Fact 1. Let \mathcal{K} be an algebra over a field \mathbb{E} . A generalized polynomial identity (GPI) of \mathcal{K} is a polynomial expression g in non commutative indeterminates and fixed coefficients from \mathcal{K} between the indeterminates such that g vanishes on all replacements by elements of \mathcal{K} . The generalized polynomial in the context of Utumi quotient ring U is defined as follows:

Suppose that *V* is a set of *C*-independent vectors of *U* and $Y = \{y_1, y_2, y_3, ...\}$ is a countable set, where y_i are non commuting indeterminates. Let $C\langle Y \rangle$ be the free algebra over *C* in the set *Y*. Consider $\mathcal{W} = U_{*C}C\langle Y \rangle$, the free product of *U* and $C\langle Y \rangle$ over *C*. The elements of \mathcal{W} are called generalized polynomials. An element $h \in \mathcal{W}$ of the form $h = s_0x_1s_1x_2s_2...x_ns_n$, where $\{s_0, ..., s_n\} \subseteq U$ and $\{x_1, ..., x_n\} \subseteq Y$ is said to be a monomial. Therefore, each $g \in \mathcal{W}$ can be represented as a finite sum of monomials. A *V*-monomial is of the form $e = v_0x_1v_1x_2v_2...x_nv_n$, where $\{v_0, ..., v_n\} \subseteq V$ and $\{x_1, ..., x_n\} \subseteq Y$. Thus an element $g \in \mathcal{W}$ can be written as $g = \sum_i \beta_i e_i$, where $\beta_i \in C$ and e_i are *V*-monomials. An element $g \in \mathcal{W}$ is trivial if and only if $\beta_i = 0$ for each *i*. For more details, we refer the reader to [1], [3].

Fact 2. If *I* is a two-sided ideal of *R*, then *R*, *I* and *U* satisfy the same generalized polynomial identities (GPIs) with coefficients in U (see [3]).

Fact 3. Every derivation d of R can be uniquely extended to a derivation of U (see Proposition 2.5.1 in [1]).

Fact 4. If *I* is a two-sided ideal of *R*, then *R*, *I* and *U* satisfy the same differential identities (see [14]).

Fact 5. Let *d* be a derivation on *R*. By $f^d(x_1, \ldots, x_n)$, $f^{d^2}(x_1, \ldots, x_n)$ and $f^{d^3}(x_1, \ldots, x_n)$, we denote the polynomials obtained from $f(x_1, \ldots, x_n)$ by replacing each coefficient α_{σ} with $d(\alpha_{\sigma})$, $d^2(\alpha_{\sigma})$ and $d^3(\alpha_{\sigma})$, respectively. Then we have

$$d(f(x_1, ..., x_n)) = f^d(x_1, ..., x_n) + \sum_i f(x_1, ..., d(x_i), ..., x_n),$$

$$d^2(f(x_1, ..., x_n)) = f^{d^2}(x_1, ..., x_n) + 2\sum_i f^d(x_1, ..., d(x_i), ..., x_n)$$

$$+ \sum_i f(x_1, ..., d^2(x_i), ..., x_n)$$

$$+ \sum_{i \neq j} f(x_1, ..., d(x_i), ..., d(x_j), ..., x_n)$$

and

$$d^{3}(f(x_{1},...,x_{n})) = f^{d^{3}}(x_{1},...,x_{n}) + 3\sum_{i} f^{d^{2}}(x_{1},...,d(x_{i}),...,x_{n}) + 3\sum_{i} f^{d}(x_{1},...,d(x_{i}),...,d(x_{j}),...,x_{n}) + 3\sum_{i} f^{d}(x_{1},...,d^{2}(x_{i}),...,x_{n}) + \sum_{i \neq j \neq k} f(x_{1},...,d(x_{i}),...,d(x_{j}),...,d(x_{k}),...,x_{n}) + 2\sum_{i \neq j} f(x_{1},...,d^{2}(x_{i}),...,d(x_{j}),...,x_{n})$$

+
$$2\sum_{i \neq j} f(x_1, \dots, d(x_i), \dots, d^2(x_j), \dots, x_n)$$

+ $\sum_i f(x_1, \dots, d^3(x_i), \dots, x_n).$

3. The case when *F* is inner

In this section, we study all the possible situation of annihilating condition of the set $\{[d(x), x] | x \in f(R)\}$, where *d* is a derivation of *R*. For any subset *S* of *R*, denote by $r_R(S)$ the right annihilator of *S* in *R*, that is, $r_R(S) = \{x \in R | Sx = 0\}$ and $l_R(S)$ the left annihilator of *S* in *R*, that is, $l_R(S) = \{x \in R | xS = 0\}$. If $r_R(S) = l_R(S)$, then $r_R(S)$ is called an annihilator ideal of *R* and is written as $ann_R(S)$.

In [6], De Filippis and Di Vincenzo studied the left annihilating condition of the set $\{[d(x), x] | x \in f(R)\}$. More precisely, they proved that if *R* is a prime ring of char(*R*) $\neq 2$ and *d* is a nonzero derivation of *R* satisfying a[d(x), x] = 0 for all $x \in f(R)$, then a = 0.

Now we will study a more general situation, involving left sided, right sided as well as two-sided annihilating conditions. More specifically, we study the situation b[d(x), x] + p[d(x), x]q + [d(x), x]c = 0 for all $x \in f(R)$, where $b, c, p, q \in R$.

First we consider that *d* is an inner derivation of *R*, that is, d(x) = [a, x] for all $x \in R$. Then

$$b[d(f(r)), f(r)] + p[d(f(r)), f(r)]q + [d(f(r)), f(r)]c = 0$$

gives

$$b(af(r)^{2} - 2f(r)af(r) + f(r)^{2}a) + p(af(r)^{2} - 2f(r)af(r) + f(r)^{2}a)q + (af(r)^{2} - 2f(r)af(r) + f(r)^{2}a)c = 0,$$

that is,

$$baf(r)^{2} - 2bf(r)af(r) + bf(r)^{2}a + paf(r)^{2}q$$

- 2pf(r)af(r)q + pf(r)^{2}aq
+ af(r)^{2}c - 2f(r)af(r)c + f(r)^{2}ac = 0

for any $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$. We rewrite it as

$$a_1 f(r)^2 - 2a_2 f(r)a_3 f(r) + a_2 f(r)^2 a_3 + a_4 f(r)^2 a_5$$

- 2a_6 f(r)a_3 f(r)a_5 + a_6 f(r)^2 a_7
+ a_3 f(r)^2 a_8 - 2f(r)a_3 f(r)a_8 + f(r)^2 a_9 = 0

for any $r = (r_1, ..., r_n) \in \mathbb{R}^n$, where $a_1 = ba$, $a_2 = b$, $a_3 = a$, $a_4 = pa$, $a_5 = q$, $a_6 = p$, $a_7 = aq$, $a_8 = c$, $a_9 = ac$. Now we study this situation in a matrix ring.

We need the following:

Lemma 3.1 [4, Lemma 1]. Let F be an infinite field and $k \ge 2$. If A_1, \ldots, A_n are not scalar matrices in $M_k(F)$ then there exists some invertible matrix $P \in M_k(F)$ such that any matrices $PA_1P^{-1}, \ldots, PA_nP^{-1}$ have all non-zero entries.

PROPOSITION 3.2

Let $R = M_k(F)$ be the ring of all $k \times k$ matrices over the infinite field F, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over F and $a_1, a_2, \ldots, a_9 \in R$. If

$$a_1 f(r)^2 - 2a_2 f(r)a_3 f(r) + a_2 f(r)^2 a_3 + a_4 f(r)^2 a_5$$

- 2a_6 f(r)a_3 f(r)a_5 + a_6 f(r)^2 a_7
+ a_3 f(r)^2 a_8 - 2f(r)a_3 f(r)a_8 + f(r)^2 a_9 = 0

for all $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$, then either a_3 or a_5 or a_6 is central.

Proof. By the hypothesis, we have

$$a_{1}f(r_{1},...,r_{n})^{2} - 2a_{2}f(r_{1},...,r_{n})a_{3}f(r_{1},...,r_{n}) + a_{2}f(r_{1},...,r_{n})^{2}a_{3}$$

+ $a_{4}f(r_{1},...,r_{n})^{2}a_{5} - 2a_{6}f(r_{1},...,r_{n})a_{3}f(r_{1},...,r_{n})a_{5}$
+ $a_{6}f(r_{1},...,r_{n})^{2}a_{7}$
+ $a_{3}f(r_{1},...,r_{n})^{2}a_{8} - 2f(r_{1},...,r_{n})a_{3}f(r_{1},...,r_{n})a_{8}$
+ $f(r_{1},...,r_{n})^{2}a_{9} = 0.$

Suppose that $a_3 \notin Z(R)$, $a_5 \notin Z(R)$ and $a_6 \notin Z(R)$. Then we shall prove that this case leads to a contradiction.

Since $a_3 \notin Z(R)$, $a_5 \notin Z(R)$ and $a_6 \notin Z(R)$, by Lemma 3.1, there exists a *F*-automorphism ϕ of $M_k(F)$ such that $\phi(a_3)$, $\phi(a_5)$ and $\phi(a_6)$ have all nonzero entries. Clearly, *R* satisfies the GPI,

$$\begin{aligned} \phi(a_1) f(r_1, \dots, r_n)^2 &- 2\phi(a_2) f(r_1, \dots, r_n) \phi(a_3) f(r_1, \dots, r_n) \\ &+ \phi(a_2) f(r_1, \dots, r_n)^2 \phi(a_3) + \phi(a_4) f(r_1, \dots, r_n)^2 \phi(a_5) \\ &- 2\phi(a_6) f(r_1, \dots, r_n) \phi(a_3) f(r_1, \dots, r_n) \phi(a_5) \\ &+ \phi(a_6) f(r_1, \dots, r_n)^2 \phi(a_7) \\ &+ \phi(a_3) f(r_1, \dots, r_n)^2 \phi(a_8) - 2f(r_1, \dots, r_n) \phi(a_3) f(r_1, \dots, r_n) \phi(a_8) \\ &+ f(r_1, \dots, r_n)^2 \phi(a_9) = 0. \end{aligned}$$
(1)

As usual, by e_{ij} , $1 \le i$, $j \le k$, we denote the matrix unit whose (i, j)-entry is equal to 1 and all its other entries are equal to 0. Since $f(x_1, ..., x_n)$ is non-central, by [13] (see also [15]), there exist $s_1, ..., s_n \in M_k(F)$ and $\beta \in F \setminus \{0\}$ satisfying $f(s_1, ..., s_n) = \beta e_{st}$ with $s \ne t$. Moreover, since the set $\{f(y_1, ..., y_n) : y_1, ..., y_n \in M_k(F)\}$ is invariant under the action of all *F*-automorphisms of $M_k(F)$, for any $i \neq j$, there exists $u_1, \ldots, u_n \in M_k(F)$ such that $f(u_1, \ldots, u_n) = e_{ij}$. Hence by (1) we have

$$\begin{split} \phi(a_1)e_{ij}^2 &- 2\phi(a_2)e_{ij}\phi(a_3)e_{ij} + \phi(a_2)e_{ij}^2\phi(a_3) + \phi(a_4)e_{ij}^2\phi(a_5) \\ &- 2\phi(a_6)e_{ij}\phi(a_3)e_{ij}\phi(a_5) + \phi(a_6)e_{ij}^2\phi(a_7) \\ &+ \phi(a_3)e_{ij}^2\phi(a_8) - 2e_{ij}\phi(a_3)e_{ij}\phi(a_8) + e_{ij}^2\phi(a_9) = 0. \end{split}$$

Multiplying left side and right side by e_{ij} , we obtain $2e_{ij}\phi(a_6)e_{ij}\phi(a_3)e_{ij}\phi(a_5)e_{ij} = 0$. Since char(R) $\neq 2$, we have $\phi(a_6)_{ji}\phi(a_3)_{ji}\phi(a_5)_{ji} = 0$. This is a contradiction as $\phi(a_3)$, $\phi(a_5)$ and $\phi(a_6)$ have all nonzero entries. Thus we conclude that either a_3 or a_5 or a_6 is central.

PROPOSITION 3.3

Let $R = M_k(F)$ be the ring of all matrices over the field F with char $(R) \neq 2$, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over F and $a_1, a_2, \ldots, a_9 \in R$. If

$$a_1 f(r)^2 - 2a_2 f(r)a_3 f(r) + a_2 f(r)^2 a_3 + a_4 f(r)^2 a_5$$

- 2a_6 f(r)a_3 f(r)a_5 + a_6 f(r)^2 a_7
+ a_3 f(r)^2 a_8 - 2f(r)a_3 f(r)a_8 + f(r)^2 a_9 = 0

for all $r = (r_1, ..., r_n) \in \mathbb{R}^n$, then either a_3 or a_5 or a_6 is central.

Proof. If F is an infinite field, then by Proposition 3.2, we get the desired result. Next, we assume that F is finite.

Let *E* be an infinite field extension of the field *F*. Suppose that $\overline{R} = M_k(E) \cong R \otimes_F E$. Note that the multilinear polynomial $f(r_1, \ldots, r_n)$ is central-valued on *R* if and only if it is central-valued on \overline{R} . *R* satisfies the GPI,

$$\Psi(r_1, \dots, r_n) = a_1 f(r_1, \dots, r_n)^2 - 2a_2 f(r_1, \dots, r_n) a_3 f(r_1, \dots, r_n) + a_2 f(r_1, \dots, r_n)^2 a_3 + a_4 f(r_1, \dots, r_n)^2 a_5 - 2a_6 f(r_1, \dots, r_n) a_3 f(r_1, \dots, r_n) a_5 + a_6 f(r_1, \dots, r_n)^2 a_7 + a_3 f(r_1, \dots, r_n)^2 a_8 - 2 f(r_1, \dots, r_n) a_3 f(r_1, \dots, r_n) a_8 + f(r_1, \dots, r_n)^2 a_9 = 0$$

which is multi-homogeneous of multi-degree (2, ..., 2) in the indeterminates $r_1, ..., r_n$. Thus the complete linearization of $\Psi(r_1, ..., r_n)$ is a multilinear generalized polynomial $\Phi(r_1, ..., r_n, r_1, ..., r_n)$ in 2n indeterminates. Clearly, $\Phi(r_1, ..., r_n, r_1, ..., r_n) = 2^n \Psi(r_1, ..., r_n)$.

Note that the multilinear polynomial $\Phi(r_1, \ldots, r_n, r_1, \ldots, r_n)$ is a generalized polynomial identity for both R and \overline{R} . Since char $(F) \neq 2$, we obtain $\Psi(r_1, \ldots, r_n) = 0$ for all $r_1, \ldots, r_n \in \overline{R}$. Hence by Proposition 3.2, the proof of proposition follows.

Lemma 3.4. Let *R* be a prime ring of characteristic different from 2 with extended centroid *C* and $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over *C*. Suppose that for some $a_1, a_2, \ldots, a_9 \in R$,

$$a_1 f(r)^2 - 2a_2 f(r)a_3 f(r) + a_2 f(r)^2 a_3 + a_4 f(r)^2 a_5$$

- 2a_6 f(r)a_3 f(r)a_5 + a_6 f(r)^2 a_7
+ a_3 f(r)^2 a_8 - 2f(r)a_3 f(r)a_8 + f(r)^2 a_9 = 0

for all $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$, then either a_3 or a_5 or a_6 is central.

Proof. Since *R* satisfies the generalized polynomial identity (GPI),

$$g(x_1, \dots, x_n) = a_1 f(x_1, \dots, x_n)^2 - 2a_2 f(x_1, \dots, x_n) a_3 f(x_1, \dots, x_n) + a_2 f(x_1, \dots, x_n)^2 a_3 + a_4 f(x_1, \dots, x_n)^2 a_5 - 2a_6 f(x_1, \dots, x_n) a_3 f(x_1, \dots, x_n) a_5 + a_6 f(x_1, \dots, x_n)^2 a_7 + a_3 f(x_1, \dots, x_n)^2 a_8 - 2 f(x_1, \dots, x_n) a_3 f(x_1, \dots, x_n) a_8 + v f(x_1, \dots, x_n)^2 a_9 = 0$$
(2)

for all $x_1, \ldots, x_n \in R$. Assume that $a_3 \notin C$, $a_5 \notin C$ and $a_6 \notin C$. By Fact 2, R and U satisfy the same GPI, U satisfies $g(x_1, \ldots, x_n) = 0$. Suppose that $g(x_1, \ldots, x_n)$ is a trivial GPI for U. Let $W = U *_C C\{x_1, x_2, \ldots, x_n\}$, the free product of U and $C\{x_1, \ldots, x_n\}$, the free C-algebra in noncommuting indeterminates x_1, x_2, \ldots, x_n . So $g(x_1, \ldots, x_n)$ is a zero element in $W = U *_C C\{x_1, \ldots, x_n\}$. In equation (2), the term $-2a_6 f(x_1, \ldots, x_n)a_3 f(x_1, \ldots, x_n)a_5$ appears nontrivially, implying that

$$-2a_6f(x_1,\ldots,x_n)a_3f(x_1,\ldots,x_n)a_5 = 0 \in \mathcal{W}.$$

This implies that either a_3 or a_5 or a_6 is central.

Now assume that $g(x_1, \ldots, x_n)$ is a non-trivial GPI for U. In case C is infinite, we have $g(r_1, \ldots, r_n) = 0$ for all $r_1, \ldots, r_n \in U \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Moreover, both U and $U \otimes_C \overline{C}$ are prime and centrally closed algebras [8]. Hence, we substitute U or $U \otimes_C \overline{C}$ in place of R according to C finite or infinite respectively. Without loss of generality, we may suppose that C = Z(R) and R is a centrally closed C-algebra. Using Martindale's theorem [16], R is then a primitive ring having nonzero Socle soc(R) with C as the associated division ring. Hence by Jacobson's theorem [10, p. 75], R is isomorphic to a dense ring of linear transformations of some vector space V over C.

First, suppose that V is finite dimensional over C, that is, $\dim_C V = k$. By density of R, we have $R \cong M_k(C)$. Since $f(r_1, \ldots, r_n)$ is not central-valued on R, R must be noncommutative and so $k \ge 2$. In this case, by Proposition 3.3, we get that either a_3 or a_5 or a_6 is in C, a contradiction.

If *V* is infinite dimensional over *C*, then for any $e^2 = e \in \text{soc}(R)$, we have $eRe \cong M_t(C)$ with $t = \dim_C Ve$. Since a_3, a_5 and a_6 are not in *C*, there exist $h_1, h_2, h_3 \in \text{soc}(R)$ such that $[a_3, h_1] \neq 0$, $[a_5, h_2] \neq 0$ and $[a_6, h_3] \neq 0$. By Litoff's theorem [9], there exists idempotent $e \in \text{soc}(R)$ such that $a_3h_1, h_1a_3, a_5h_2, h_2a_5, a_6h_3, h_3a_6, h_1, h_2$,

 $h_3 \in eRe$. Since R satisfies GPI, it follows that

$$e\{a_1 f(ex_1e, \dots, ex_ne)^2 - 2a_2 f(ex_1e, \dots, ex_ne)a_3 f(ex_1e, \dots, ex_ne) \\ + a_2 f(ex_1e, \dots, ex_ne)^2a_3 + a_4 f(ex_1e, \dots, ex_ne)^2a_5 \\ - 2a_6 f(ex_1e, \dots, ex_ne)a_3 f(ex_1e, \dots, ex_ne)a_5 + a_6 f(ex_1e, \dots, ex_ne)^2a_7 \\ + va_3 f(ex_1e, \dots, ex_ne)^2a_8 - 2f(ex_1e, \dots, ex_ne)a_3 f(ex_1e, \dots, ex_ne)a_8 \\ + f(ex_1e, \dots, ex_ne)^2a_9\}e = 0,$$

where the subring *eRe* satisfies

$$ea_{1}ef(x_{1},...,x_{n})^{2} - 2ea_{2}ef(x_{1},...,x_{n})ea_{3}ef(x_{1},...,x_{n}) + ea_{2}ef(x_{1},...,x_{n})^{2}ea_{3}e + ea_{4}ef(x_{1},...,x_{n})^{2}ea_{5}e - 2ea_{6}ef(x_{1},...,x_{n})ea_{3}ef(x_{1},...,x_{n})ea_{5}e + ea_{6}ef(x_{1},...,x_{n})^{2}ea_{7}e + ea_{3}ef(x_{1},...,x_{n})^{2}ea_{8}e - 2f(x_{1},...,x_{n})ea_{3}ef(x_{1},...,x_{n})ea_{8}e + f(x_{1},...,x_{n})^{2}ea_{9}e = 0.$$

Then by the above finite dimensional case, either ea_3e or ea_5e or ea_6e is the central element of eRe. This leads to a contradiction, since $a_3h_1 = (ea_3e)h_1 = h_1ea_3e = h_1a_3$, $a_5h_2 = (ea_5e)h_2 = h_2(ea_5e) = h_2a_5$ and $a_6h_3 = (ea_6e)h_3 = h_3(ea_6e) = h_3a_6$.

Hence we have proved that either a_3 or a_5 or a_6 is in C.

Theorem 3.5. Let R be a prime ring of characteristic different from 2, $f(x_1, \ldots, x_n)$ a non-central multilinear polynomial over C and d a nonzero derivation of R. Suppose that for some $b, c, p, q \in R$, b[d(u), u] + p[d(u), u]q + [d(u), u]c = 0 for all $u \in f(R)$. Then one of the following holds:

(1) $b, p, pq + c \in C$ and b + pq + c = 0; (2) $b + pq, q, c \in C$ and b + pq + c = 0.

Proof. Let d be an inner derivation of R, that is, d(x) = [a, x] for all $x \in R$. By hypothesis, *R* satisfies

$$b[[a, f(r)], f(r)] + p[[a, f(r)], f(r)]q + [[a, f(r)], f(r)]c = 0,$$
(3)

that is,

$$baf(r)^{2} - 2bf(r)af(r) + bf(r)^{2}a + paf(r)^{2}q$$

- 2pf(r)af(r)q + pf(r)^{2}aq
+ af(r)^{2}c - 2f(r)af(r)c + f(r)^{2}ac = 0

for all $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$. Since d is nonzero, $a \notin C$. In this case, by Lemma 3.4, we have either $p \in C$ or $q \in C$.

Case i. Let $p \in C$. Then by hypothesis, *R* satisfies

$$b[[a, f(r)], f(r)] + [[a, f(r)], f(r)](pq + c) = 0.$$

By Lemma 3.3 in [2], b, pq + c and (b + pq + c)a are in C. Since $a \notin C$, we conclude that b + pq + c = 0. This is our conclusion (1).

Case ii. Let $q \in C$. By hypothesis, *R* satisfies

$$(b + pq)[[a, f(r)], f(r)] + [[a, f(r)], f(r)]c = 0.$$

By Lemma 3.3 in [2], b + pq, c and (b + pq + c)a are in C. Since $a \notin C$, we conclude that b + pq + c = 0. This is our conclusion (2).

Next, suppose that *d* is an outer derivation of *R*. By using Fact 5 and Kharchenko's theorem [11], we can replace $d(x_i)$ with y_i and then *R* satisfies

$$b[f^{d}(x_{1},...,x_{n}) + \sum_{i} f(x_{1},...,y_{i},...,x_{n}), f(x_{1},...,x_{n})] + p[f^{d}(x_{1},...,x_{n}) + \sum_{i} f(x_{1},...,y_{i},...,x_{n}), f(x_{1},...,x_{n})]q + [f^{d}(x_{1},...,x_{n}) + \sum_{i} f(x_{1},...,y_{i},...,x_{n}), f(x_{1},...,x_{n})]c = 0.$$

In particular, R satisfies blended component

$$b[\sum_{i} f(x_{1}, \dots, y_{i}, \dots, x_{n}), f(x_{1}, \dots, x_{n})] + p[\sum_{i} f(x_{1}, \dots, y_{i}, \dots, x_{n}), f(x_{1}, \dots, x_{n})]q + [\sum_{i} f(x_{1}, \dots, y_{i}, \dots, x_{n}), f(x_{1}, \dots, x_{n})]c = 0.$$
(4)

Since *R* is noncommutative, we choose $a' \in R$ such that $a' \notin C$. Replacing $[a', x_i]$ in place of y_i in equation (4), we get

$$b[[a', f(r)], f(r)] + p[[a', f(r)], f(r)]q + [[a', f(r)], f(r)]c = 0$$

for all $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$, which is the same as equation (3). Then by the same argument as above, we have our conclusions.

In particular, for right-sided annihilator condition, we have the following.

COROLLARY 3.6

Let *R* be a prime ring of characteristic different from 2, $f(x_1, ..., x_n)$ a non-central multilinear polynomial over *C* and *d* a nonzero derivation of *R*. Suppose that for some $a \in R$, [d(u), u]a = 0 for all $u \in f(R)$. Then a = 0.

In particular, for two-sided annihilator condition, we have the following.

COROLLARY 3.7

Let *R* be a prime ring of characteristic different from 2, $f(x_1, ..., x_n)$ a non-central multilinear polynomial over *C* and *d* a nonzero derivation of *R*. Suppose that for some $a, b \in R$, a[d(u), u]b = 0 for all $u \in f(R)$. Then either a = 0 or b = 0.

Putting p = 0 and q = 0 in Theorem 3.5, we have the inner part of Theorem 5.3 of [2]. More precisely, we obtain the following.

COROLLARY 3.8

Let *R* be a prime ring of characteristic different from 2, $f(x_1, ..., x_n)$ a non-central multilinear polynomial over *C* and *d* a nonzero derivation of *R*. Suppose that for some $b, c \in R$, b[d(u), u] + [d(u), u]c = 0 for all $u \in f(R)$. Then $b = -c \in C$.

Replacing b by s^2 , c by t^2 , p = 2s and q = t in Theorem 3.5, we obtain the following.

COROLLARY 3.9

Let *R* be a prime ring of characteristic different from 2 and $f(x_1, ..., x_n)$ a non-central multilinear polynomial over *C*. If *d* is a nonzero derivation of *R*, and *F* is an inner generalized derivation of *R* such that

 $F^{2}([d(f(x_{1},...,x_{n})), f(x_{1},...,x_{n})]) = 0$

for all $x_1, \ldots, x_n \in R$, then there exists $a \in U$ such that F(x) = xa for all $x \in R$ or F(x) = ax for all $x \in R$, with $a^2 = 0$.

In the next section, we will extend Corollary 3.9 to the arbitrary generalized derivation. Now we are ready to prove the main theorem.

4. The proof of the main theorem

Lee [12] proved that every generalized derivation can be uniquely extended to a generalized derivation of U, and thus all generalized derivations of R will be implicitly assumed to be defined on the whole U. In particular, Lee proved that every generalized derivation g on a dense right ideal of R can be uniquely extended to U and has the form g(x) = ax + d(x) for some $a \in U$ and a derivation d of R.

Theorem 4.1. Suppose that R is a prime ring of characteristic different from 2 and $f(x_1, \ldots, x_n)$ is a non-central multilinear polynomial over C. If d is a nonzero derivation of R, and F is a generalized derivation of R such that

 $F^{2}([d(f(x_{1},...,x_{n})), f(x_{1},...,x_{n})]) = 0$

for all $x_1, \ldots, x_n \in R$, then there exists $a \in U$ such that F(x) = xa for all $x \in R$ or F(x) = ax for all $x \in R$, with $a^2 = 0$.

Proof. In light of [12, Theorem 3], we may assume that there exist $b \in U$ and derivation δ of U such that $F(x) = bx + \delta(x)$ and so, $F^2(x) = b^2x + 2b\delta(x) + \delta(b)x + \delta^2(x)$. Since R and U satisfy the same generalized polynomial identities (see Fact 2) as well as the same differential identities (see Fact 4), without loss of generality, we have

$$F^{2}[d(f(r_{1},...,r_{n})), f(r_{1},...,r_{n})] = 0$$

for all $r_1, \ldots, r_n \in U$. If *F* is an inner generalized derivation of *R*, then assume that F(x) = bx + xc for all $x \in R$, with some $b, c \in U$. In this case, by the hypothesis

$$b^{2}[d(r), r] + 2b[d(r), r]c + [d(r), r]c^{2} = 0$$

for all $r \in f(R)$. Then by Theorem 3.5, one of the following holds:

- (i) $b^2, b, 2bc + c^2 \in C$ and $b^2 + 2bc + c^2 = 0$, that is $(b + c)^2 = 0$. In this case, F(x) = x(b + c) for all $x \in R$ with $(b + c)^2 = 0$.
- (ii) $b^2 + 2bc, c, c^2 \in C$ and $b^2 + 2bc + c^2 = 0$, that is, $(b + c)^2 = 0$. In this case, F(x) = (b + c)x for all $x \in R$ with $(b + c)^2 = 0$.

Now, we assume that F is outer. By the hypothesis, U satisfies

$$b^{2}[d(r), r] + 2b\delta([d(r), r]) + \delta(b)[d(r), r] + \delta^{2}([d(r), r]) = 0$$
(5)

for all $r \in f(R)$.

Case I. Let *d* and δ be *C*-dependent modulo inner derivations of *U*, that is, $\alpha d + \beta \delta = ad_q$, where $\alpha, \beta \in C, q \in U$ and $ad_q(x) = [q, x]$ for all $x \in U$. If $\alpha = 0$, then δ must be inner and so *F* is inner, a contradiction. Hence $\alpha \neq 0$, and hence $d = \lambda \delta + ad_p$, where $\lambda = -\alpha^{-1}\beta$ and $p = \alpha^{-1}q$.

Then by the hypothesis, it follows that

$$b^{2}[\lambda\delta(r) + [p, r], r] + 2b\delta([\lambda\delta(r) + [p, r], r]) + \delta(b)[\lambda\delta(r) + [p, r], r] + \delta^{2}([\lambda\delta(r) + [p, r], r]) = 0$$
(6)

for all $r \in f(R)$.

Using Fact 5, substitute the values of $\delta(f(r_1, \ldots, r_n))$, $\delta^2(f(r_1, \ldots, r_n))$ and $\delta^3(f(r_1, \ldots, r_n))$ in equation (6). Then by Kharchenko's theorem [11], we can replace $\delta(r_i)$ with y_i , $\delta^2(r_i)$ with w_i and $\delta^3(r_i)$ with z_i in equation (6) and then U satisfies the blended component

$$[\lambda \sum_{i} f(r_1,\ldots,z_i,\ldots,r_n), f(r_1,\ldots,r_n)] = 0.$$

We choose $q \in U$ such that $q \notin C$ and replace z_i by $[q, r_i]$. Then U satisfies

$$[\lambda q, f(r_1,\ldots,r_n)]_2 = 0.$$

By [13, Theorem], $\lambda q \in C$. Since $q \notin C$, $\lambda = 0$. Hence by equation (6),

$$b^{2}[[p,r],r] + 2b\delta([[p,r],r]) + \delta(b)[[p,r],r] + \delta^{2}([[p,r],r]) = 0$$
(7)

for all $r \in f(R)$.

Putting the values of $\delta(f(r_1, \ldots, r_n))$ and $\delta^2(f(r_1, \ldots, r_n))$ in equation (7), then again by Kharchenko's theorem [11], we can replace $\delta(r_i)$ with y_i and $\delta^2(r_i)$ with w_i in (7), and then U satisfies the blended component

Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:40

$$[[p, \sum_{i} f(r_1, \dots, w_i, \dots, r_n)], f(r_1, \dots, r_n)] + [[p, f(r_1, \dots, r_n)], \sum_{i} f(r_1, \dots, w_i, \dots, r_n)] = 0.$$

By taking $w_1 = r_1$ and $w_2 = \cdots = w_n = 0$, U satisfies

$$2[[p, f(r_1, \ldots, r_n)], f(r_1, \ldots, r_n)] = 0.$$

Since char(R) \neq 2, by [13, Theorem] $p \in C$. This gives that d = 0, a contradiction.

Case II. Let *d* and δ be *C*-independent modulo inner derivations of *U*. Then by applying Fact 5 and Kharchenko's theorem [11] to equation (5), we can replace $d(r_i)$ with y_i , $\delta(r_i)$ with z_i , $\delta d(r_i)$ with s_i , $\delta^2(r_i)$ with t_i and $\delta^2 d(r_i)$ with u_i . Then *U* satisfies the blended component

$$\left[\sum_{i} f(r_1,\ldots,u_i,\ldots,r_n), f(r_1,\ldots,r_n)\right] = 0.$$

In particular, replacing u_i with $[q, r_i]$ for some $q \notin C$, U satisfies

$$[q, f(r_1, \ldots, r_n)]_2 = 0.$$

Again by [13, Theorem], $q \in C$, a contradiction.

COROLLARY 4.2

Let *R* be a prime ring of characteristic different from 2 with extended centroid *C* and $f(x_1, ..., x_n)$ a multilinear polynomial over *C*. If *d* and δ are two nonzero derivations of *R* such that

$$\delta^2([d(f(x_1, \dots, x_n)), f(x_1, \dots, x_n)]) = 0$$

for all $x_1, \ldots, x_n \in R$, then $f(x_1, \ldots, x_n)$ is central-valued on R.

References

- [1] Beidar K I, Martindale W S and Mikhalev V, Rings with generalized identities, Pure and Applied Math (1996) (New York: Dekker)
- [2] Carini L, De Filippis V and Di Vincenzo O M, On some generalized identities with derivations on multilinear polynomials, *Algebra Collog.* 17 (2010) 319–336
- [3] Chuang C L, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103(3) (1988) 723–728
- [4] De Filippis V and Di Vincenzo O M, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, *Comm. Algebra* 40 (2012) 1918–1932
- [5] De Filippis V and Di Vincenzo O M, Posner's second theorem, multilinear polynomials and vanishing derivations, J. Aust. Math. Soc. 76 (2004) 357–368
- [6] De Filippis V and Di Vincenzo O M, Posner's second theorem and an annihilator condition, Mathematica Pannonica 12/1 (2001) 69–81
- [7] Dhara B and Sharma R K, Right-sided ideals and multilinear polynomials with derivation on prime rings, *Rend. Sem. Mat. Univ. Padova* 121 (2009) 243–257

 \square

- [8] Erickson T S, Martindale III W S and Osborn J M, Prime nonassociative algebras, *Pacific J. Math.* 60 (1975) 49–63
- [9] Faith C and Utumi Y, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung. 14 (1963) 369–371
- [10] Jacobson N, Structure of rings, Amer. Math. Soc. Colloq. Pub. 37, Amer. Math. Soc., Providence (1964)
- [11] Kharchenko V K, Differential identity of prime rings, Algebra and Logic. 17 (1978) 155-168
- [12] Lee T K, Generalized derivations of left faithful rings, Comm. Algebra 27(8) (1999) 4057-4073
- [13] Lee P H and Lee T K, Derivations with Engel conditions on multilinear polynomials, Proc. Amer. Math. Soc. 124(9) (1996) 2625–2629
- [14] Lee T K, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20(1) (1992) 27–38
- [15] Leron U, Nil and power central polynomials in rings, *Trans. Amer. Math. Soc.* 202 (1975) 97–103
- [16] Martindale III W S, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576–584
- [17] Posner E C, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100
- [18] Tiwari S K, Sharma R K and Dhara B, Derivations vanishing on commutators with generalized derivations of order 2 in prime rings, *Comm. Algebra*, **45**(8) (2017) 3542–3554

COMMUNICATING EDITOR: B Sury