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Abstract. Let n and k be integers with n > 2k, k ≥ 1. We denote by H(n, k) the
bipartite Kneser graph, that is, a graph with the family of k-subsets and (n − k)-subsets
of [n] = {1, 2, . . . , n} as vertices, in which any two vertices are adjacent if and only
if one of them is a subset of the other. In this paper, we determine the automorphism
group of H(n, k). We show that Aut(H(n, k)) ∼= Sym([n]) × Z2, where Z2 is the
cyclic group of order 2. Then, as an application of the obtained result, we give a new
proof for determining the automorphism group of the Kneser graph K (n, k). In fact,
we show how to determine the automorphism group of the Kneser graph K (n, k) given
the automorphism group of the Johnson graph J (n, k). Note that the known proofs
for determining the automorphism groups of Johnson graph J (n, k) and Kneser graph
K (n, k) are independent of each other.
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1. Introduction

For a positive integer n > 1, let [n] = {1, 2, . . . , n} and V be the set of all k-subsets and
(n − k)-subsets of [n]. The bipartite Kneser graph H(n, k) has V as its vertex set, and
two vertices A, B are adjacent if and only if A ⊂ B or B ⊂ A. If n = 2k, it is obvious
that we do not have any edges, and in such a case, H(n, k) is a null graph, and hence we
assume that n ≥ 2k + 1. It follows from the definition of the graph H(n, k) that it has 2

(n
k

)

vertices and the degree of each of its vertices is
(n−k

k

)
=

( n−k
n−2k

)
, hence it is a regular graph.

It is clear that H(n, k) is a bipartite graph. In fact, if V1 = {v ∈ V (H(n, k))| |v| = k} and
V2 = {v ∈ V (H(n, k))| |v| = n− k}, then {V1, V2} is a partition of V (H(n, k)) and every
edge of H(n, k) has a vertex in V1 and a vertex in V2 and |V1| = |V2|. It is an easy task to
show that the graph H(n, k) is a connected graph. The bipartite Kneser graph H(2n+1, n)

is known as the middle cube MQ2n+1 = Q2n+1(n, n + 1) [3] or regular hyperstar graph
HS(2(n + 1), n + 1) [11,13].

The regular hyperstar graph Q2n+1(n, n+1) has been investigated from various aspects,
by various authors and some of the recent works about this class of graphs are [3,6,11,13,
16,17]. Figure 1 shows the graph H(5, 2) (Q5(2, 3)) in a plane. Note that in this figure
the set {i, j, k} ({i, j}) is denoted by i jk (i j).

http://crossmark.crossref.org/dialog/?doi=10.1007/s12044-019-0477-9&domain=pdf
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Figure 1. The bipartite graph H(5, 2).

It was conjectured by Dejter et al. [6] among others, that the middle cube Q2n+1(n, n+
1) is Hamiltonian. Recently, Mütze and Su [17] showed that the bipartite Kneser graph
H(n, k) has a Hamilton cycle for all values of k. Among various interesting properties of
the bipartite Kneser graph H(n, k), we are interested in its automorphism group and we
want to know how this group acts on the vertex set of H(n, k). Mirafzal [13] determined
the automorphism group of HS(2n, n) = H(2n − 1, n − 1) and showed that HS(2n, n)

is a vertex-transitive non-Cayley graph. Also, he showed that HS(2n, n) is arc-transitive.
Some of the symmetry properties of the bipartite Kneser graph H(n, k) are as follows.

PROPOSITION 1.1 [16, Lemma 3.1]

The graph H(n, k) is a vertex-transitive graph.

PROPOSITION 1.2 [16, Theorem 3.2]

The graph H(n, k) is a symmetric (or arc-transitive) graph.

COROLLARY 1.3 [16, Corollary 3.3]

The connectivity of the bipartite Kneser graph H(n, k) is maximum, namely,
(n−k

k

)
.

PROPOSITION 1.4 [16, Proposition 3.5]

The bipartite Kneser graph H(n, 1) is a Cayley graph.

Theorem 1.5 [16, Theorem 3.6]. Let H(n, 1) be a bipartite Kneser graph. Then,
Aut(H(n, 1)) ∼= Sym([n]) × Z2, where Z2 is the cyclic group of order 2.

In [16] the authors proved the following theorem.

Theorem 1.6 [16, Theorem 3.8]. Let n = 2k − 1. Then, for the bipartite Kneser graph
H(n, k − 1), we have Aut(H(n, k)) ∼= Sym([n]) × Z2, where Z2 is the cyclic group of
order 2.
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In [16], the authors asked the following question.

Question. Is the above theorem true for all possible values of n, k (2k < n)?

In the sequel, we want to answer the above question. We show that the above theorem
is true for all possible values of n, k ( 2k < n).

In fact, to the best of our knowledge, the present work is the first answer to this problem.
We determine the automorphism group of the graph H(n, k) and show that Aut(H(n, k)) ∼=
Sym([n]) × Z2, where Z2 is the cyclic group of order 2. In the final step of our work, we
offer a new proof for determining the automorphism group of the Kneser graph K (n, k)
which we believe that this proof is more elementary than other known proofs of this result.
Note that the known proofs for determining the automorphism groups of the Johnson graph
J (n, k) and the Kneser graph K (n, k) are independent of each other. We show how we can
have the automorphism group of the Kneser graph K (n, k) on the one hand, if we have
the automorphism group of the Johnson graph J (n, k) on the other hand.

There are various important families of graphs �, in which we know that for a particular
group G, we have G ≤ Aut(�), but to show that we have G = Aut(�), is a difficult task.
For example, note the following cases:

(1) The Boolean lattice BLn , n ≥ 1, is the graph whose vertex set is the set of all subsets of
[n] = {1, 2, . . . , n}, where two subsets x and y are adjacent if their symmetric difference
has precisely one element. The hypercube Qn is the graph whose vertex set is {0, 1}n ,
where two n-tuples are adjacent if they differ in precisely one coordinate. It is an easy task
to show that Qn ∼= BLn and Qn ∼= Cay(Zn

2, S), where Z2 is the cyclic group of order 2,
and S = {ei | 1 ≤ i ≤ n}, where ei = (0, . . . , 0, 1, 0, . . . , 0), with 1 at the i-th position.
It is an easy task to show that the set H = { fθ | θ ∈ Sym([n])}, fθ ({x1, . . . , xn}) =
{θ(x1), . . . , θ(xn)} is a subgroup of Aut(BLn), and hence H is a subgroup of the group
Aut(Qn). We know that in every Cayley graph � = Cay(G, S), the group Aut(�) contains
a subgroup isomorphic with the group G. Therefore, Z

n
2 is a subgroup of Aut(Qn). Now,

to show that Aut(Qn) = 〈Zn
2, Sym([n])〉(∼= Z

n
2 � Sym([n])) is not an easy task [14].

(2) Let n, k ∈ N with k < n
2 and let [n] = {1, . . . , n}. The Kneser graph K (n, k) is defined

as the graph whose vertex set is V = {v | v ⊆ [n], |v| = k} and two vertices v,w are
adjacent if and only if |v ∩ w|=0. The Kneser graph K (n, k) is a vertex-transitive graph
[5]. It is an easy task to show that the set H = { fθ | θ ∈ Sym([n])}, fθ ({x1, . . . , xk}) =
{θ(x1), . . . , θ(xk)} is a subgroup of Aut(K (n, k)) [5]. But, showing that

H = {
fθ | θ ∈ Sym([n])} = Aut(K (n, k))

is a rather difficult work [5, Chapter 7].
(3) Let n and k be integers with n > k ≥ 1 and let [n] = {1, 2, . . . , n}. We now consider the
bipartite Kneser graph � = H(n, k). Let A, B be m-subsets of [n] and let |A∩ B| = t . Let
θ be a permutation in Sym([n]). It is an easy task to show that | fθ (A)∩ fθ (B)| = t , where
fθ ({x1, . . . , xm}) = {θ(x1), . . . , θ(xm)}. Moreover, if A ⊂ B, then fθ (A) ⊂ fθ (B).
Therefore, if θ ∈ Sym([n]), then

fθ : V (H(n, k)) −→ V (H(n, k)), fθ ({x1, . . . , xk}) = {θ(x1), . . . , θ(xk)}
is an automorphism of H(n, k) and the mapping, ψ : Sym([n]) → Aut(H(n, k)), defined
by the rule ψ(θ) = fθ is an injection. Therefore, the set H = { fθ | θ ∈ Sym([n])}
is a subgroup of Aut(H(n, k)) which is isomorphic with Sym([n]). Also, the mapping
α : V (�) → V (�), defined by the rule, α(v) = vc, where vc is the complement of the
subset v in [n], is an automorphism of the graph H(n, k). In fact, if A ⊂ B, then Bc ⊂ Ac,
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and hence if {A, B} is an edge of the graph H(n, k), then {α(A), α(B)} is an edge of the
graph H(n, k). Therefore, we have 〈H, α〉 ≤ Aut(H(n, k)).

In this paper, we show that for the bipartite Kneser graph H(n, k), we have, in fact,
Aut(H(n, k)) = 〈H, α〉(∼= Sym([n]) × Z2).

2. Preliminaries

In this paper, a graph � = (V, E) is considered as a finite undirected simple graph, where
V = V (�) is the vertex-set and E = E(�) is the edge-set. For all the terminologies and
notations not defined here, we follow [1,4,5].

The graphs �1 = (V1, E1) and �2 = (V2, E2) are called isomorphic, if there is a
bijection α : V1 −→ V2 such that {a, b} ∈ E1 if and only if {α(a), α(b)} ∈ E2 for all
a, b ∈ V1. In such a case, the bijection α is called an isomorphism. An automorphism of
a graph � is an isomorphism of � with itself. The set of automorphisms of � with the
operation of composition of functions is a group, called the automorphism group of � and
is denoted by Aut(�).

The group of all permutations of a set V is denoted by Sym(V ) or just Sym(n) when
|V | = n. A permutation group G on V is a subgroup of Sym(V ). In this case, we say that
G acts on V. If X is a graph with vertex-set V, then we can view each automorphism as a
permutation of V, and so Aut(X) is a permutation group. If G acts on V, we say that G is
transitive (or G acts transitively on V ), when there is just one orbit. This means that given
any two elements u and v of V, there is an element β of G such that β(u) = v.

The graph � is called vertex-transitive, if Aut(�) acts transitively on V (�). For v ∈
V (�) and G = Aut(�), the stabilizer subgroup Gv is the subgroup of G consisting of all
automorphisms that fix v. We say that � is symmetric (or arc-transitive) if, for all vertices
u, v, x, y of � such that u and v are adjacent, x and y are also adjacent, and there is an
automorphism π in Aut(�) such that π(u) = x and π(v) = y.

Let n, k ∈ N with k ≤ n
2 , and let [n] = {1, . . . , n}. The Johnson graph J (n, k) is

defined as the graph whose vertex set is V = {v | v ⊆ [n], |v| = k} and two vertices
v,w are adjacent if and only if |v ∩ w| = k − 1. The Johnson graph J (n, k) is a vertex-
transitive graph [5]. It is an easy task to show that the set H = { fθ | θ ∈ Sym([n])},
fθ ({x1, . . . , xk}) = {θ(x1), . . . , θ(xk)} is a subgroup of Aut(J (n, k)) [5]. It has been
shown that Aut(J (n, k)) ∼= Sym([n]), if n �= 2k, and Aut(J (n, k)) ∼= Sym([n]) × Z2, if
n = 2k, where Z2 is the cyclic group of order 2 [2,9,15].

Although, in most situations it is difficult to determine the automorphism group of a
graph � and how it acts on the vertex set of �, there are some recent works in the literature
[7–10,12–16,18,19].

3. Main results

Lemma 3.1. Let n and k be integers with n
2 > k ≥ 1, and let � = (V, E) = H(n, k) be a

bipartite Kneser graph with partition V = V1 ∪ V2, V1 ∩ V2 = ∅, where V1 = {v | v ⊂
[n], |v| = k} and V2 = {w | w ⊂ [n], |w| = n − k}. If f is an automorphism of � such
that f (v) = v for every v ∈ V1, then f is the identity automorphism of �.

Proof. First, note that since f is a permutation of the vertex set V and f (V1) = V1, then
f (V2) = V2. Let w ∈ V2 be an arbitrary vertex in V2. Since f is an automorphism of the
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graph �, then for the set N (w) = {v|v ∈ V1, v ↔ w}, we have f (N (w)) = { f (v)|v ∈
V1, v ↔ w} = N ( f (w)). On the other hand, since for every v ∈ V1, f (v) = v, then
f (N (w)) = N (w), and therefore N ( f (w)) = N (w). In other words, w and f (w) are
(n − k)-subsets of [n] such that their family of k-subsets are the same. Now, it is an easy
task to show that f (w) = w. Therefore, for every vertex x in �, we have f (x) = x and
thus f is the identity automorphism of �. �

Remark 3.2. If, in the assumptions of the above lemma, we replace with f (v) = v for
every v ∈ V2, then we can show, by a similar discussion, that f is the identity automorphism
of �.

Lemma 3.3. Let � = (V, E) be a connected bipartite graph with partition V = V1 ∪ V2,
V1 ∩ V2 = ∅. Let f be an automorphism of � such that for a fixed vertex v ∈ V1, we have
f (v) ∈ V1. Then, f (V1) = V1 and f (V2) = V2. Or, for a fixed vertex v ∈ V1, we have
f (v) ∈ V2. Then, f (V1) = V2 and f (V2) = V1.

Proof. In the first step, we show that if w ∈ V1, then f (w) ∈ V1. We know that if
w ∈ V1, then d�(v,w) = d(v,w), the distance between v and w in the graph �, is an
even integer. Assume d(v,w) = 2l, 0 ≤ 2l ≤ D, where D is the diameter of �. We
prove by induction on l, that f (w) ∈ V1. If l = 0, then d(v,w) = 0, thus v = w, and
hence f (w) = f (v) ∈ V1. Suppose that if w1 ∈ V1 and d(v,w1) = 2(k − 1), then
f (w1) ∈ V1. Assume w ∈ V1 and d(v,w) = 2k. Then, there is a vertex u ∈ � such that
d(v, u) = 2k − 2 = 2(k − 1) and d(u, w) = 2. We know (by the induction assumption)
that f (u) ∈ V1 and since d( f (u), f (w)) = 2, therefore f (w) ∈ V1. Now, it follows that
f (V1) = V1 and consequently f (V2) = V2. �

COROLLARY 3.4

Let � = H(n, k) = (V, E) be a bipartite Kneser graph with partition V = V1 ∪ V2,
V1 ∩ V2 = ∅. If f is an automorphism of the graph �, then f (V1) = V1 and f (V2) = V2,
or f (V1) = V2 and f (V2) = V1.

In the sequel, we need the following result for proving our main theorem.

Lemma 3.5. Let l, m and u be positive integers with l > u and m > u. If l > m, then
( l
u

)

>
(m
u

)
.

Proof. The proof is straightforward. �

Theorem 3.6. Let n and k be integers with n
2 > k ≥ 1, and let � = (V, E) = H(n, k) be

a bipartite Kneser graph with partition V = V1 ∪ V2, V1 ∩ V2 = ∅, where V1 = {v | v ⊂
[n], |v| = k} and V2 = {w | w ⊂ [n], |w| = n − k}. Then, Aut(�) ∼= Sym([n]) × Z2,
where Z2 is the cyclic group of order 2.

Proof. Let α : V (�) → V (�), defined by the rule α(v) = vc, where vc is the com-
plement of the subset v in [n]. Also, let H = { fθ | θ ∈ Sym([n])}, fθ ({x1, . . . , xk}) =
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{θ(x1), . . . , θ(xk). We have seen already that H(∼= Sym([n])) and 〈α〉(∼= Z2) are sub-
groups of the group G = Aut(�). We can see that α /∈ H , and for every θ ∈ Sym([n]),
we have fθα = α fθ [15]. Therefore, Sym([n]) × Z2 ∼= H × 〈α〉 ∼= 〈H, α〉 = { fγ αi | γ ∈
Sym([n]), 0 ≤ i ≤ 1} = S is a subgroup of G. We now want to show that G = S. Let
f ∈ Aut(�) = G. We show that f ∈ S. There are two cases:

(i) There is a vertex v ∈ V1 such that f (v) ∈ V1, and hence by Lemma 3.3, we have
f (V1) = V1.

(ii) There is a vertex v ∈ V1 such that f (v) ∈ V2, and hence by Lemma 3.3, we have
f (V1) = V2.

Now let us consider the first case.

Case (i). Let f (V1) = V1. Then, for every vertex v ∈ V1, we have f (v) ∈ V1, and therefore
the mapping g = f|V1 : V1 → V1 is a permutation of V1, where f|V1 is the restriction of
f to V1. Let �2 = J (n, k) be the Johnson graph with the vertex set V1. Then, the vertices
v,w ∈ V1 are adjacent in �2 if and only if |v ∩ w| = k − 1.

We assert that the permutation g = f|V1 is an automorphism of the graph �2.
For proving our assertion, it is sufficient to show that if v,w ∈ V1 are such that |v∩w| =

k − 1, then we have |g(v) ∩ g(w)| = k − 1. Note that since v,w are k-subsets of [n],
then if u is a common neighbour of v,w in the bipartite Kneser graph � = H(n, k), then
the set u contains the sets v and w. In particular, u contains the (k + 1)-subset v ∪ w. We
now see that the number of vertices u, such that u is adjacent in � to both the vertices v

and w is
( n−k−1
n−2k−1

)
. Note that if t is a positive integer such that k + 1 + t = n − k, then

t = n − 2k − 1. Now, if we adjoin to the (k + 1)-subset v ∪ w of [n], n − 2k − 1 elements
of the complement of v ∪ w in [n], then we obtain a subset u of [n] such that v ∪ w ⊆ u
and u is a (n− k)-subset of [n]. Now, since v and w have

( n−k−1
n−2k−1

)
common neighbours in

the graph �, the vertices g(v) and g(w) must have
( n−k−1
n−2k−1

)
=
(n−k−1

k

)
neighbours in �, and

therefore |g(v) ∩ g(w)|= k − 1. In fact, if |g(v) ∩ g(w)| = k − h < k − 1, then h > 1 and
hence |g(v) ∪ g(w)| = k + h. Thus, if t is a positive integer such that k + h + t = n − k,
then t = n − 2k − h. Hence, for constructing a (n − k)-subset u ⊇ g(v) ∪ g(w), we
must adjoin t = n − 2k − h elements of the complement of g(v) ∪ g(w) in [n], to the
set g(v) ∪ g(w). Therefore the number of common neighbours of vertices g(v) and g(w)

in the graph � is
( n−k−h
n−2k−h

)
=
(n−k−h

k

)
. Note that by Lemma 3.5. it follows that

(n−k−h
k

) �=
(n−k−1

k

)
.

Our argument shows that the permutation g = f|V1 is an automorphism of the Johnson
graph �2 = J (n, k), and therefore by [2, chapter 9, 15], there is a permutation θ ∈
Sym([n]) such that g = fθ .

On the other hand, we know that fθ by its natural action on the vertex set of the bipartite
Kneser graph � = H(n, k) is an automorphism of �. Therefore, l = f −1

θ f is an automor-
phism of the bipartite Kneser graph � such that l is the identity automorphism on the subset
V1. We can now conclude, by Lemma 3.1 that l = f −1

θ f is the identity automorphism of
�, and therefore f = fθ .

In other words, we have proved that if f is an automorphism of � = H(n, k) such that
f (V1) = V1, then f = fθ , for some θ ∈ Sym([n]), and hence f ∈ S.

Case (ii). We now assume that f (V1) �= V1. Then, f (V1) = V2. Since the mapping α is
an automorphism of the graph �, then f α is an automorphism of � such that f α(V1) =
f (α(V1)) = f (V2) = V1. Therefore, by what is proved in (i), we have f α = fθ , for some
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θ ∈ Sym([n]). Now since α is of order 2, then f = fθα ∈ S = { fγ αi | γ ∈ Sym([n]), 0 ≤
i ≤ 1}. �

Let n, k be integers and n > 4, k < n
2 , [n] = {1, 2, . . . , n}. Let K (n, k) = � be a

Kneser graph. It is a well known fact that Aut(�) ∼= Sym([n]) [5, Chap. 7]. In fact, the
proof in [5, Chap. 7] shows that the automorphism group of the Kneser graph K (n, k) is
the group H = { fθ | θ ∈ Sym([n])}(∼= Sym([n])). The proof of this result that appears
in [5, Chap. 7] uses the following fact which is one of the fundamental results in extremal
set theory.

Fact (Erdős-Ko-Rado). If n > 2k, then α(K (n, k)) =
(n−1
k−1

)
, where α(K (n, k)) is the

independence number of the Kneser graph K (n, k).

In the sequel, we provide a new proof for determining the automorphism groups of
Kneser graphs. The main tool which we use in our method is Theorem 3.6. Note that
the main tool which we use for proving Theorem 3.6 is the automorphism group of the
Johnson graph J (n, k), which have been already obtained in [2, Chapter 9] and [15] by
using elementary and relevant facts of graph theory and group theory.

Theorem 3.7. Assume that n, k are integers and n > 4, k < n
2 , [n] = {1, 2, . . . , n}. If

K (n, k) = � is a Kneser graph, then we have Aut(�) ∼= Sym([n]).

Proof. Let g be an automorphism of the graph �. We now consider the bipartite Kneser
graph �1 = H(n, k) = (V, E) with partition V = V1 ∪ V2, V1 ∩ V2 = ∅, where
V1 = {v | v ⊂ [n], |v| = k} and V2 = {w | w ⊂ [n], |w| = n− k}. We define the mapping
f : V → V by the following rule:

f (v) =
{
g(v) v ∈ V1,

(αgα)(v) v ∈ V2.

It is an easy task to show that f is a permutation of the vertex set V such that f (V1) =
V1 = g(V1). We show that f is an automorphism of the bipartite Kneser graph �1. Let
{v,w} be an edge of the graph �1 with v ∈ V1. Then v ⊂ w, and hence v ∩ wc =
v ∩ α(w) = ∅. In other words, {v, α(w)} is an edge of the Kneser graph �. Now, since
the mapping g is an automorphism of the Kneser graph �, then {g(v), g(α(w))} is an
edge of the Kneser graph �, and therefore we have g(v) ∩ g(α(w)) = ∅. This implies that
g(v) ⊂ (g(α(w)))c = α(g(α(w))). In other words, {g(v), α(g(α(w)))} = { f (v), f (w)}
is an edge of the bipartite Kneser graph �1. Therefore f is an automorphism of the bipartite
Kneser graph H(n, k). Now, since f (V1) = V1, then by Theorem 3.6, there is a permutation
θ in Sym([n]) such that f = fθ . Then, for every v ∈ V1, we have g(v) = f (v) = fθ (v),
and therefore g = fθ . We now can conclude that Aut(K (n, k)) is a subgroup of the
group H = { fγ | γ ∈ Sym([n])}. On the other hand, we can see that H is a subgroup
of Aut(K (n, k)), and therefore we have Aut(K (n, k)) = H = { fγ | γ ∈ Sym([n])} ∼=
Sym([n]). �

4. Conclusion

In this paper, we studied one of the algebraic properties of the bipartite Kneser graph
H(n, k). We determined the automorphism group of this graph for all n, k, where 2k <
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n (Theorem 3.6). Then, by Theorem 3.6 we offered a new proof for determining the
automorphism group of the Kneser graph K (n, k) (Theorem 3.7).
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