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1. Introduction

In 1918, Ramanujan [4] introduced certain sums and associated series expansions. He
defined the sums as follows:

DEFINITION 1.1

For any positive integers r and n,

cr (n) :=
∑

a∈(Z/rZ)∗
ζ anr ,

where ζr denotes a primitive r -th root of unity. These sums are now-a-days known as
Ramanujan sums.

We can also express Ramanujan sums in terms of the Möbius function μ (for details,
see [2]) as follows:

cr (n) :=
∑

d|n,d|r
μ(r/d)d.

Ramanujan sums have various other properties (for details, see [7,9,10]). He used the
sums cr (n) to derive pointwise convergent series expansion of the form

∑
r≥1 f̂ (r)cr (n)
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for various arithmetic functions. These expansions are known as Ramanujan expansions.
More precisely, these expansions are defined as follows.

DEFINITION 1.2

We say an arithmetical function f admits a Ramanujan expansion, if for each integer
n ≥ 1, the functional value f (n) can be written as a convergent series of the form

f (n) =
∑

r≥1

f̂ (r)cr (n)

for some appropriate complex numbers f̂ (r). The complex number f̂ (r) is known as the
r-th Ramanujan coefficient of f with respect to this expansion.

Using these notions, Ramanujan obtained the following results:

σs(n)

ns
= ζ(s + 1)

∞∑

q=1

cq(n)

qs+1 ,

φs(n)

ns
= 1

ζ(s + 1)

∞∑

q=1

μ(q)

φs+1(q)
cq(n),

τ (n) = −
∞∑

q=1

log q

q
cq(n),

r(n) = π

∞∑

q=1

(−1)q−1

2q − 1
c2q−1(n),

where σs(n) = ∑
[d|n]ds with s > 0, ζ(s) is the Riemann zeta function, φs(n) =

ns
∏

p|n(1 − 1/ps), τ (n) = ∑
d|n1, μ is the Möbius function and r(n) is the number

of representations of n as the sum of two squares.
Many results concerning Ramanujan expansion of an arithmetic function of one variable

have been obtained by many mathematicians until now. However, very few results are
known regarding Ramanujan expansions of arithmetic functions of two variables.

Recently, Ushoriya [11] defined Ramanujan expansion for an arithmetical function of
two variables in the following way:

f (n1, n2) =
∞∑

q1,q2

aq1,q2cq1(n1)cq2(n2),

for some complex numbers aq1,q2 . These complex numbers are called (q1, q2) Ramanujan
coefficients of f (n1, n2). He extended Delange’s theorem to the function of two variables
and provided several examples.

Here, we study arithmetical functions of two variables with absolutely convergent
Ramanujan expansions in the context of their partial sums. Following the framework of
[5] and [6], we shall study the sum

∑
n1,n2≤N f (n1, n2) under certain growth conditions

on Ramanujan coefficients and obtain an asymptotic formula with the explicit error term.
More precisely, we prove the following theorems.
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Theorem 1.3. Suppose f is an arithmetical function of two variables with absolutely
convergent Ramanujan expansions

f (n1, n2) =
∞∑

q1,q2=1

aq1,q2cq1(n1)cq2(n2),

and Ramanujan coefficients satisfying the following condition:

∣
∣aq1,q2

∣
∣ � 1

[q1, q2]1+δ

for some δ > 0, where [q1, q2] denotes the least common multiple of q1 and q2. Then, for
a positive integer N , we have

∑

n1,n2≤N

f (n1, n2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N 2a1,1 + O(N 2−δ(log N )
14−5δ

2 ) if δ < 2,

N 2a1,1 + O(log2 N ) if δ = 2,

N 2a1,1 + O(1) if δ > 2.

In the following theorem, we relax the growth condition and obtain the following.

Theorem 1.4. Suppose f is an arithmetical function of two variables with absolutely
convergent Ramanujan expansions

f (n1, n2) =
∞∑

q1,q2,=1

aq1,q2cq1(n1)cq2(n2),

and Ramanujan coefficients satisfying the following condition:

∣
∣aq1,q2

∣
∣ � 1

[q1, q2] logα[q1, q2]
for some α > 7. Then, for a positive integer N , we have

∑

n1,n2≤N

f (n1, n2) = N 2a1,1 + O

(
N 2

(log N )α−7

)

.

For any real number δ > 0, Ushiroya [11] proved that

σ−1+δ ((n1, n2))

((n1, n2))−1+δ
= ζ(2 + δ)

∞∑

q1,q2=1

1

[q1, q2]1+δ
cq1(n1)cq2(n2)

and

φ−1+δ((n1, n2))

((n1, n2))1+δ
= 1

ζ(2 + δ)

∞∑

q1,q2=1

μ([q1, q2])
φ1+δ([q1, q2])cq1(n1)cq2(n2),
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where (n1, n2) denotes the greatest common divisor of n1 and n2. By taking

f (n1, n2) = σ−1+δ ((n1, n2))

((n1, n2))−1+δ
and f (n1, n2) = φ−1+δ((n1, n2))

((n1, n2))1+δ

in Theorem 1.3, we get the following corollaries.

COROLLARY 1.5

Let δ > 0 be any number. Then, for a positive integer N , we have

∑

n1 ≤ N
n2 ≤ N

σ−1+δ((n1, n2))

((n1, n2))−1+δ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N 2ζ(δ + 1) + O(N 2−δ(log N )
14−5δ

2 ) if δ < 2,

N 2ζ(3) + O(log2 N ) if δ = 2,

N 2ζ(δ + 1) + O(1) if δ > 2.

COROLLARY 1.6

Let δ > 0 be a given real number. Then, for a positive integer N , we have

∑

n1 ≤ N
n2 ≤ N

φ−1+δ((n1, n2))

((n1, n2))−1+δ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N2

ζ(δ+1)
+ O(N 2−δ(log N )

14−5δ
2 ) if δ < 2,

N2

ζ(3)
+ O(log2 N ) if δ = 2,

N2

ζ(δ+1)
+ O(1) if δ > 2.

2. Preliminaries

In this section, we record some results which are useful to prove the main results. We shall
start with the well-known partial summation formula, which will be used frequently, as
follows.

PROPOSITION 2.1

Let a : N → C be an arithmetic function. Let x ≥ 1 be a real number and let f : [1, x] →
C be a function with continuous derivative on [1, x]. Then, we have

∑

n≤x

a(n) f (n) = A(x) f (x) −
∫ x

1
A(t) f ′(t)dt,

where

A(t) =
∑

n≤t

a(n).

Let dk(n) be the number of ways of writing n as a product of k numbers. Note that when
k = 2, we get d2(n) = d(n) divisor function, which counts the number of divisors of n.
When k = 4, we get
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d4(n) =
∑

a, b
ab = n

d(a)d(b).

We need the following asymptotic formula for the average order of the arithmetical function
dk(·), which can be deduced using partial summation formula.

Lemma 2.2. For any real number x ≥ 1 and for any integer k ≥ 2, we have

∑

n≤x

dk(n) = x logk−1 x

(k − 1)! + O(x logk−2 x).

Lemma 2.3 [3]. For all x ≥ 1, we have

∑

n≤x

d2(n) ∼ 1

π2 x(log3 x).

For any positive integer n ≥ 1, we define

N (n) := # {(a, b) ∈ N × N : [a, b] = n} ,

the number of ordered pairs of positive integers a and b whose least common multiple
[a, b] = n. Then, the asymptotic formula for the partial sum of this function is given as
follows.

Lemma 2.4 [8]. For all real numbers x ≥ 2, there exist absolute constants c1 and c2 such
that

∑

n≤x

N (n) = 1

2ζ(2)
x log2 x + c1x log x + c2x + O(x

1
2 +ε)

for any ε > 0.

Regarding the Ramanujan sums, we need the following estimates.

Lemma 2.5. For all positive integers N ≥ 1 and r ≥ 1, we have

∑

n≤N

cr (n) ≤ Nd(r).

Proof. By substituting s = 1 in Lemma 2 of [1] and using c1(n) = 1, the proof follows. �

Lemma 2.6. For all positive integers r ≥ 2 and N ≥ 1, we have

∣
∣
∣
∣
∣
∣

∑

n≤N

cr (n)

∣
∣
∣
∣
∣
∣
≤ r log r.

Proof. By substituting s = 1 in Lemma 2 of [1], the proof follows. �
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Lemma 2.7. For any integer r ≥ 1 and for a positive integers n, we have

|cr (n)| � n log n.

Proof. We can write cr (n) = ∑
d|n,d|rμ(r/d)d. By taking modulus on both sides and

estimating, we get

|cr (n)| � σ1((n, r)) ≤ σ1(n) � n log n.

�

3. Proof of Theorem 1.3

Let U be a parameter which tends to infinity be chosen later. For any natural numbers n1
and n2, we consider

f (n1, n2) =
∞∑

q1,q2=1

aq1,q2cq1(n1)cq2(n2)

=
∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2)

+
∑

[q1,q2]>U

aq1,q2cq1(n1)cq2(n2)

=
∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2)

+ O

⎛

⎝
∑

[q1,q2]>U

n1n2 log n1 log n2

[q1, q2]1+δ

⎞

⎠ (using Lemma 2.7)

=
∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2)

+ O

⎛

⎝n1 log n1n2 log n2

∑

[q1,q2]>U

1

[q1, q2]1+δ

⎞

⎠ .

We first break the following sum into two sums as

A :=
∑

[q1,q2]>U

1

[q1, q2]1+δ
=

∑

[q1,q2]>U,(q1,q2)=1

1

[q1, q2]1+δ

+
∑

[q1,q2]>U,(q1,q2)>1

1

[q1, q2]1+δ
.

Since nm = [n,m](n,m) for any natural numbers n and m, we see that the first sum in A
becomes

∑

[q1,q2]>U,(q1,q2)=1

1

[q1, q2]1+δ
=

∑

t>U

d(t)

t1+δ
,
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where d(t) is the divisor function. Since
∑

t≤xd(t) = x log x + (2γ − 1)x + O(
√
x),

where γ is the Euler’s constant, then for any real number x ≥ 2, using Proposition 2.1, we
can estimate as

∑

[q1,q2]>U,(q1,q2)=1

1

[q1, q2]1+δ
=

∑

t>U

d(t)

t1+δ
= O

(
logU

U δ

)

.

Now, we consider the second sum in A. Since (q1, q2) = � > 1, we see that q1 = �r0 and
q2 = �s0. Therefore, we get

[q1, q2] = q1q2

(q1, q2)
= �r0�s0

�
= �r0s0.

Thus,
∑

[q1,q2]>U,(q1,q2)>1

1

[q1, q2]1+δ
=

∑

�≤U

1

�1+δ

∑

r0s0>U/�

1

(r0s0)1+δ

+
∑

�>U

1

�1+δ

∑

r0s0>U/�

1

(r0s0)1+δ
.

Put r0s0 = t to get
∑

[q1,q2]>U,(q1,q2)>1

1

[q1, q2]1+δ
=

∑

�≤U

1

�1+δ

∑

t>U/�

d(t)

t1+δ
+

∑

�>U

1

�1+δ

∑

t>U/�

d(t)

t1+δ
.

Note that in the above expression, the second sum is O
(

1
U δ

)
. Therefore, we can write

∑

[q1,q2]>U,(q1,q2)>1

1

[q1, q2]1+δ
=

∑

�≤U

1

�1+δ

(U/�) log(U/�)

(U/�)1+δ
+ O

(
1

U δ

)

.

By Proposition 2.1, we estimate as

∑

[q1,q2]>U,(q1,q2)>1

1

[q1, q2]1+δ
= O

(
log2 U

U δ

)

.

Thus, the sum A can be estimated as

A = O

(
log2 U

U δ

)

.

Hence,

f (n1, n2) =
∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2)

+ O

(

(n1 log n1)(n2 log n2)
log2 U

U δ

)

.

Now, let N be a large enough positive integer and by summing f (n1, n2) over all the
natural numbers n1 and n2 ≤ N , we get

∑

n1, n2 ≤ N

f (n1, n2) =
∑

n1,n2≤N

∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2)

+ O

(
N 4(log N )2(logU )2

U δ

)
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= N 2a1,1 + B + O

(
N 4(log N )2(logU )2

U δ

)

,

where

B =
∑

2≤[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2).

Now, we shall estimate the sum B as follows:

B =
∑

2≤[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2)

�
∑

2≤[q1,q2]≤U

q1q2 log q1 log q2
[
q1,q2

]1+δ
(using Lemma 2.6)

≤
⎛

⎝(logU )2
∑

2≤[q1,q2]≤U

q1q2

[q1, q2]1+δ

⎞

⎠

=

⎛

⎜
⎜
⎝(logU )2

∑

2 ≤ [
q1, q2

] ≤ U
(q1, q2) = 1

q1q2

[q1, q2]1+δ

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝(logU )2

∑

2 ≤ [
q1, q2

] ≤ U
(q1, q2) = � > 1

q1q2

[q1, q2]1+δ

⎞

⎟
⎟
⎠.

By Proposition 2.1, we see that

∑

[q1,q2]≤U,(q1,q2)=1

q1q2

[q1, q2]1+δ
=

∑

t≤U

td(t)

t1+δ
=

∑

t≤U

d(t)

tδ
= O(U 1−δ logU ).

Now, consider

∑

[q1,q2]≤U,(q1,q2)>1

q1q2

[q1, q2]1+δ
=

∑

�≤U

∑

r0s0≤U/�

�r0s0

�δ(r0s0)1+δ

=
∑

�≤U

�1−δ
∑

t≤U/�

td(t)

t1+δ
=

∑

�≤U

�1−δ
∑

t≤U/�

d(t)

tδ

=
∑

�≤U

�1−δU

�

log(U/�)

(U/�)δ
= U 1−δ

∑

�≤U

log(U/�).

By evaluating the above two sums, we get

B =

⎧
⎪⎨

⎪⎩

O
(
U 2−δ log2 U

)
if δ < 2,

O(log2 U ) if δ = 2,

O(1) if δ > 2,

(3.1)
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and hence,

∑

n1,n2≤N

f (n1, n2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N 2a1,1 + O(U 2−δ log2 U ) + O
(
N4 log2 N log2 U

U δ

)
if δ < 2,

N 2a1,1 + O(log2 U ) + O
(
N4 log2 N log2 U

U δ

)
if δ = 2,

N 2a1,1 + O(1) + O
(
N4 log2 N log2 U

U δ

)
if δ > 2.

(3.2)

In order to optimize the error term, we choose the parameter U as

U =

⎧
⎪⎨

⎪⎩

N 2 log N if δ < 2,

N 2 log N if δ = 2,

N
4
δ (log N )

4
δ if δ > 2.

(3.3)

This gives us

∑

n1,n2≤N

f (n1, n2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N 2a1,1 + O(N 4−2δ(log N )4−δ) if δ < 2,

N 2a1,1 + O(log2 N ) if δ = 2,

N 2a1,1 + O(1) if δ > 2.

This proves Theorem 1.3 for all δ ≥ 2. Note that when δ < 2, we see for 0 < δ ≤ 1
the error term is of bigger order than that of the main term and hence we cannot obtain
the required asymptotic formula in this case. In order to resolve this problem, we shall
introduce another parameter V < U , tending to infinity which is to be chosen later and
rewrite the sum B as follows:

∑

n1,n2≤N

∑

2≤[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2)

=
∑

2≤[q1,q2]≤V

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2)

+
∑

V<[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2). (3.4)

Now, we shall evaluate the first term of the right-hand side of equation(3.4). Note that the
first term is nothing but B with U replaced by V . So, we get the similar expression as
before. Now, we estimate the second term of the right-hand side of equation (3.4).

By Lemma 2.5 and the hypothesis on Ramanujan coefficients, we get

∑

V<[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2)

≤ N 2
∑

V<[q1,q2]≤U

d(q1)d(q2)

[q1, q2]1+δ
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= N 2
∑

V <
[
q1, q2

] ≤ U
(q1, q2) = 1

d(q1)d(q2)

[q1, q2]1+δ
+ N 2

∑

V <
[
q1, q2

] ≤ U
(q1, q2) > 1

d(q1)d(q2)

[q1, q2]1+δ
.

Now, consider the sum

∑

V <
[
q1, q2

] ≤ U
(q1, q2) = 1

N 2d(q1)d(q2)

[q1, q2]1+δ
= N 2

∑

t≤U

d4(t)

t1+δ
− N 2

∑

t≤V

d4(t)

t1+δ

= O

(
N 2 log3 U

U δ

)

+ O

(
N 2 log3 V

V δ

)

.

The above estimation is done using Proposition 2.1 and Lemma 2.2. Suppose (q1, q2) =
� ≥ 2 and hence, q1 = �r0 and q2 = �s0. This gives

N 2
∑

V <
[
q1, q2

] ≤ U
(q1, q2) > 1

d(q1)d(q2)

[q1, q2]1+δ
≤ N 2

∑

�≤U

∑

r0s0≤U/�

d2(�)d(r0)d(s0)

�1+δ(r0s0)1+δ

− N 2
∑

�≤V

∑

r0s0≤V/�

d2(�)d(r0)d(s0)

�1+δ(r0s0)1+δ

= N 2
∑

�≤U

d2(�)

�1+δ

∑

t≤U/�

d4(t)

t1+δ

− N 2
∑

�≤V

d2(�)

�1+δ

∑

t≤V/�

d4(t)

t1+δ

= N 2
∑

�≤U

d2(�)

�1+δ

�δ

U δ
log3(U/�)

+ N 2
∑

�≤V

d2(�)

�1+δ

�δ

V δ
log3(V/�)

≤ N 2 log3 U

U δ

∑

�≤U

d2(�)

�
+ N 2 log3 V

V δ

∑

�≤V

d2(�)

�

= O

(
N 2 log7 U

U δ

)

+ O

(
N 2 log7 V

V δ

)

.

The above estimation is done using Proposition 2.1 and Lemmas 2.2–2.3 repeatedly. Thus,
we get

∑

V<[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)

∑

n2≤N

cq2(n2) = O

(
N 2 log7 U

U δ

)

+ O

(
N 2 log7 V

V δ

)

.
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Therefore, for the case 0 < δ < 2, we obtain

∑

n1,n2≤N

f (n1, n2) = N 2a1,1 + O(V 2−δ log2 V ) + O

(
N 2 log7 V

V δ

)

+ O

(
N 2 log7 U

U δ

)

+ O

(
N 4 log2 N log2 U

U δ

)

. (3.5)

Now, we choose the parameters U and V as

U = exp((log NN )
2
5 ) and V = N (log N )

5
2 .

Putting the values of U and V in (3.5), we get the required asymptotic formula and
hence the theorem.

4. Proof of Theorem 1.4

Let U be the parameter to be chosen later. For the given integers n1 and n2, we consider

f (n1, n2) =
∞∑

q1,q2=1

aq1,q2cq1(n1)cq2(n2)

=
∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2) +
∑

[q1,q2]>U

aq1,q2cq1(n1)cq2(n2)

=
∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2)

+ O

⎛

⎝
∑

[q1,q2]>U

n1n2 log n1 log n2

[q1, q2] (log[q1, q2])α

⎞

⎠ (using Lemma 2.7).

By the definition of N (t), we get

∑

[q1,q2]>U

1

[q1,q2](log[q1, q2])α =
∑

t>U

N (t)

t logα t
= O

(
1

logα−2 U

)

.

The above estimation is done using Lemma 2.1 and Lemma 2.4. Therefore, we get

∑

n1,n2≤N

f (n1,n2) =
∑

n1,n2≤N

∑

[q1,q2]≤U

aq1,q2cq1(n1)cq2(n2) + O

(
N 4(log N )2

(logU )α−2

)

= N 2a1,1 + C + O

(
N 4(log N )2

(logU )α−2

)

,

where

C =
∑

2≤[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2).
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By Lemma 2.6 and the hypothesis on Ramanujan coefficients, we get

C �
∑

2≤[q1,q2]≤U

q1q2 log q1 log q2
[
q1,q2

]
logα[q1, q2]

≤
⎛

⎝(logU )2
∑

2≤[q1,q2]≤U

q1q2

[q1, q2] logα[q1, q2]

⎞

⎠

=

⎛

⎜
⎜
⎝(logU )2

∑

2 ≤ [
q1, q2

] ≤ U
(q1, q2) = 1

q1q2

[q1, q2] logα[q1, q2]

⎞

⎟
⎟
⎠

+

⎛

⎜
⎜
⎝(logU )2

∑

2 ≤ [
q1, q2

] ≤ U
(q1, q2) = �

q1q2

[q1, q2] logα[q1, q2]

⎞

⎟
⎟
⎠

=
∑

2≤r≤U

d(r)

r logα r
+

∑

�≤U

�
∑

2≤r≤U
l

d(r)

r logα r
.

On evaluating the above two sums using Proposition 2.1 and Lemma 2.2, we get

C = O

(
U 2

logα−2 U

)

.

This gives us

∑

n1,n2≤N

f (n1,n2) = N 2a1,1 + O

(
U 2

(logU )α−2

)

+ O

(
N 4(log N )2

(logU )α−2

)

.

In order to optimize the error term, we choose the parameter U as

U = N 2 log N .

This choice of U gives us

∑

n1,n2≤N

f (n1,n2) = N 2a1,1 + O

(
N 4

(log N )α−4

)

.

In the above expression for partial sums of f (n1, n2), the error term is of a bigger order
than that of the main term and hence we cannot get the required asymptotic formula. In
order to resolve this problem, we shall introduce another parameter V < U which tends
to infinity and is to be chosen later. We rewrite the sum C as follows:
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∑

2≤[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2)

=
∑

2≤[q1,q2]≤V

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2)

+
∑

V<[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2). (4.1)

Note that the first term of the right-hand side of equation (4.1) is nothing but C with U
being replaced by V . Hence, as before, we get

∑

2≤[q1,q2]≤V

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2) = O

(
V 2

logα−2 V

)

.

Now, we shall estimate the second term of the right-hand side of equation (4.1). Using
Lemma 2.5 and the hypothesis on the Ramanujan coefficients, we get

∑

V<[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2)

� N 2
∑

V<[q1,q2]≤U

d(q1)d(q2)

[q1, q2] logα[q1, q2]

= N 2
∑

V <
[
q1, q2

] ≤ U
(q1, q2) = 1

d(q1)d(q2)

[q1, q2] logα[q1, q2]

+ N 2
∑

V <
[
q1, q2

] ≤ U
(q1, q2) > 1

d(q1)d(q2)

[q1, q2] logα[q1, q2] .

The first term of the above expression becomes

N 2
∑

V <
[
q1, q2

] ≤ U
(q1, q2) = 1

d(q1)d(q2)

[q1, q2] logα[q1, q2] = N 2
∑

r≤U

d4(r)

r logα r
− N 2

∑

r≤V

d4(r)

r logα r

= O

(
N 2

logα−3 U

)

+ O

(
N 2

logα−3 V

)

,

The above estimation is done using Proposition 2.1 and Lemma 2.2. Consider the other
sum

N 2
∑

V <
[
q1, q2

] ≤ U
(q1, q2) = � > 1

d(q1)d(q2)

[q1, q2] logα[q1, q2] = N 2
∑

�≤U

∑

r0s0≤U/�

d(�r0)d(�s0)

�r0s0 logα(�r0s0)

− N 2
∑

�≤V

∑

r0s0≤V/�

d(�r0)d(�s0)

�r0s0 logα(�r0s0)



3 Page 14 of 15 Proc. Indian Acad. Sci. (Math. Sci.) (2019) 129:3

≤ N 2
∑

�≤U

d2(�)

�

∑

t≤U/�

d4(t)

t logα(�t)

+ N 2
∑

�≤V

d2(�)

�

∑

t≤V/�

d4(t)

t logα(�t)

= O

(
N 2

logα−7 U

)

+ O

(
N 2

logα−7 V

)

.

The above estimation is done using Proposition 2.1 and Lemmas 2.2–2.3 repeatedly. Thus,
we conclude that

∑

V<[q1,q2]≤U

aq1,q2

∑

n1≤N

cq1(n1)
∑

n2≤N

cq2(n2) = O

(
N 2

logα−7 U

)

+ O

(
N 2

logα−7 V

)

.

Hence by the above calculation, we get

∑

n1,n2≤N

f (n1,n2) = N 2a1,1 + O

(
V 2

(log V )α−2

)

+ O

(
N 2

(log V )α−7

)

+ O

(
N 2

(logU )α−7

)

+ O

(
N 4(log N )2

(logU )α−2

)

.

In order to optimize the error term, we choose our parameters U = exp((log NN )
2
5 ) and

V = N log
5
2 N , and hence we get

∑

n1,n2≤N

f (n1,n2) = N 2a1,1 + O

(
N 2

(log N )α−7

)

.
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