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1. Introduction

The main contribution of the article is to show that contact forms on open manifolds do
satisfy a weak form of stability though Gray’s stability theorem is not true.

Theorem 1.1. Let ξt , t ∈ [0, 1] be a continuous family of contact structures defined by the
contact forms αt on a compact manifold M with boundary. Let (N , ξ̃ = ker η) be a contact
manifold without boundary. Then every isocontact immersion f0 : (M, ξ0) → (N , ξ̃ )

admits a regular homotopy { ft } such that ft : (M, ξt ) → (N , ξ̃ ) is an isocontact immersion
for all t ∈ [0, 1].

In addition, if M contains a compact submanifold V0 in its interior and ξt = ξ0 on
Op(V0) then ft can be chosen to be a constant homotopy on Op(V0).

Theorem 1.1, suggested as an exercise in [5], is an analogue of Ginzburg’s theorem
on weak stability of symplectic forms on open manifolds [8]. The proof of Theorem 1.1
presented here is based on ideas that can be found in [5] and [8] and may be known to
experts.

As a corollary to the above result, we prove that every open contact manifold admits an
isocontact immersion into an arbitrary small neighbourhood of its core.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12044-018-0436-x&domain=pdf
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COROLLARY 1.2

Let (M, α) be an open contact manifold. Then it admits a regular homotopy of contact
immersions ϕt , t ∈ [0, 1], such that ϕ0 = idM and ϕ1 takes M into an arbitrary neigh-
bourhood of a core of M.

Together with Gromov’s theorem for open invariant relations, this immediately leads
to the following result of h-principle. In what follows below, (M, α) will denote an open
contact manifold with contact structure ξ = ker α.

Theorem 1.3. Let R ⊂ Jr (M, N ) be an open relation invariant under the action of the
pseudogroup of local contactomorphisms of (M, α). Then the parametric h-principle holds
forR.

We refer the reader to [11] and [5] for the theory of h-principle. Having observed this, we
proceed to obtain a homotopy classification of contact foliations on open contact manifold
by adapting the techniques of Haefliger to the contact set up.

Suppose that N is any manifold with a foliation FN of codimension 2q which is strictly
less than the dimension of M . Then νFN will denote the normal bundle T N/TFN of FN

and π : T N → νFN will denote the canonical projection map. Let Eα(T M, νFN ) be the
space of all vector bundle morphisms F : T M → T N such that

(1) π ◦ F : T M → ν(FN ) is an epimorphism,
(2) ker(π ◦ F) ∩ ξ is a symplectic subbundle of (ξ, d ′α = dα|ξ ).
Let Trα(M,FN ) consist of all smooth maps f : M → N such that d f belongs to
Eα(T M, νFN ). The inverse images of FN under an f ∈ Trα(M,FN ), namely f −1FN ,
is a contact foliation on (M, α). With C∞-compact open topology on Trα(M,FN ) and
C0-compact open topology on Eα(T M, νFN ), we obtain the following result.

Theorem 1.4. Let (M, α) be an open contact manifold and (N ,FN ) be any foliated
manifold. Suppose that the codimension ofFN is even and is strictly less than the dimension
of M. Then

π ◦ d : Trα(M,FN ) → Eα(T M, νFN )

is a weak homotopy equivalence.

A foliation F on M will be called a contact foliation on M subordinate to α (or simply
a contact foliation on (M, α)) if the leaves of F are contact submanifolds of M . The
tangent distribution TF of a contact foliation is transversal to the contact subbundle ξ ;
moreover, the intersection TF with ξ is a symplectic subbundle of ker α with respect to the
symplectic structure d ′α = dα|ker α . In the above theorem, f −1(FN ) is a contact foliation
for all f ∈ Trα(M,FN ).

Theorem 1.4 is an exact analogue of Phillips’ theorem on homotopy classification of
transversal maps to foliations [21], which was used by Haefliger to obtain a classification
of foliations on open manifolds. Proceeding as in [12] we obtain a homotopy classification
of contact foliations on open contact manifolds. To state the result, let �q be the groupoid
of germs of local diffeomorphisms ofRq and B�q be the classifying space of �q structures
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with the universal �q -structure 	q . The homotopy classes of �q structures on M are in
one-to-one correspondence with the homotopy classes of continuous maps M → B�q (see
[12]). Any �q structure on M is associated with a vector bundle over M , called the normal
bundle of the structure. In particular, we have the normal bundle ν	q of the universal �q -
structure on B�q . Theorem 1.4 leads to the following classification of contact foliations
on open contact manifolds.

Theorem 1.5. The integrable homotopy classes of codimension 2q contact foliations on
M subordinate to α are in one-to-one correspondence with the homotopy classes of bundle
epimorphisms (F, f ) : T M → ν	2q for which ker F ∩ ker α is a symplectic subbundle
of ξ .

The article is organized as follows. We include preliminaries of contact manifolds in
section 2 in order to make the article self-contained. In section 3, we prove Theorem 1.1
and its corollary. In section 4, we recall some preliminaries of h-principle and then prove
Theorem 1.3. In section 5, we prove Theorem 1.4 and Theorem 1.5. In the section 6,
we relate the results of this article with those in [3] and give some examples of contact
foliations on certain subsets of contact spheres. The article is partly expository in nature
and we hope that it will fill up certain gaps in the existing literature.

2. Preliminaries of contact manifolds

In this section, we review basic definitions and results related to contact manifolds.

DEFINITION 2.1

Let M be a 2n + 1 dimensional manifold. A 1-form α on M is said to be a contact form
if α ∧ (dα)n is nowhere vanishing.

If α is a contact form, then

d ′α = dα|ker α

is a symplectic structure on the hyperplane distribution ker α. Also, there is a global vector
field Rα on M defined by the relations

α(Rα) = 1, iRα · α = 0, (1)

where iX denotes the interior multiplication by the vector field X . Thus, T M has the
following decomposition:

T M = ker α ⊕ ker dα, (2)

where ker α is a symplectic vector bundle and ker dα is the 1-dimensional subbundle
generated by Rα . The vector field Rα is called the Reeb vector field of the contact form α.

A codimension 1 hyperplane distribution ξ on M is said to be a contact structure on
M if ξ is locally defined as the kernel of a (local) contact form α. Observe that the local
contact form in this case is defined uniquely up to multiplication by a nowhere vanishing
function f . Moreover, d( f α)|ξ = f.dα|ξ and hence every contact structure is associated
with a conformal symplectic structure.
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If α is a contact form, then the distribution ker α will be called the contact distribution
of α.

Example 2.2.

(1) Every odd dimensional Euclidean space R2n+1 has a canonical contact form given by
α = dz + ∑n

i=1 xi dyi , where (x1, . . . , xn, y1, . . . , yn, z) is the canonical coordinate
system on R

2n+1.
(2) Every even dimensional Euclidean space R

2n has a canonical 1-form λ =∑n
i=1(xidyi − yi dxi ) which is called the Liouville form of R2n , where (x1, . . . , xn ,

y1, . . . , yn) is the canonical coordinate system on R
2n . The restriction of λ on the unit

sphere in R
2n defines a contact form.

A contact form α also defines a canonical isomorphism φ : T M → T ∗M between the
tangent and the cotangent bundles of M given by

φ(X) = iXdα + α(X)α, for X ∈ T M. (3)

It is easy to see that the Reeb vector field Rα corresponds to the 1-form α under φ.

DEFINITION 2.3

Let (N , ξ) be a contact manifold. A monomorphisn F : T M → (T N , ξ) is called
contact if F is transversal to ξ and F−1(ξ) is a contact structure on M . A smooth map
f : M → (N , ξ) is called contact if its differential d f is contact.

If M is also a contact manifold with a contact structure ξ0, then a monomorphism
F : T M → T N is said to be isocontact if ξ0 = F−1ξ and F : ξ0 → ξ is conformal
symplectic with respect to the conformal symplectic structures on ξ0 and ξ . A smooth map
f : M → N is said to be isocontact if d f is isocontact.

A diffeomorphism f : (M, ξ) → (N , ξ ′) is said to be a contactomorphism if f is
isocontact.

If ξ = ker α for a globally defined 1-form α on N , then f is contact if f ∗α is a contact
form on M . Furthermore, if ξ0 = ker α0, then f is isocontact if f ∗α = ϕα0 for some
nowhere vanishing function ϕ : M → R.

DEFINITION 2.4

A vector field X on a contact manifold (M, α) is called a contact vector field if it satisfies
the relaion LXα = f α for some smooth function f on M , where LX denotes the Lie
derivation operator with respect to X .

Every smooth function H on a contact manifold (M, α) gives a contact vector field
XH = X0 + X̄ H defined as follows:

X0 = HRα and X̄ H ∈ �(ξ) such that i X̄H
dα|ξ = −dH |ξ , (4)

where ξ = ker α; equivalently,

α(XH ) = H and iXH dα = −dH + dH(Rα)α. (5)
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The vector field XH is called the contact Hamiltonian vector field of H .
If φt is a local flow of a contact vector field X , then

d

dt
φ∗
t α = φ∗

t (iX · dα + d(α(X))) = φ∗
t ( f α) = ( f ◦ φt )φ

∗
t α.

Therefore, φ∗
t α = λtα, where λt = e

∫
f ◦φt dt . Thus the flow of a contact vector field

preserves the contact structure.

Theorem 2.5 (Gray’s stability theorem [10]). If ξt , t ∈ I is a smooth family of contact
structures on a closed manifold M , then there exists an isotopy ψt , t ∈ I of M such that

ψt : (M, ξ0) → (M, ξt )

is isocontact for all t ∈ I

Remark 2.6. Gray’s stability theorem is not valid on non-closed manifolds. We shall see
an extension of Theorem 2.5 for such manifolds in Theorem 1.1 which is one of the main
results of this article.

We end this section with the definition of a contact submanifold.

DEFINITION 2.7

A submanifold N of a contact manifold (M, ξ) is said to be a contact submanifold if the
inclusion map i : N → M is a contact map.

Lemma 2.8. A submanifold N of a contact manifold (M, ξ = ker α) is a contact subman-
ifold if and only if T N is transversal to ξ |N and T N ∩ ξ |N is a symplectic subbundle of
(ξ, d ′α).

3. Equidimensional contact immersions

We begin with the following simple observation.

Observation 3.1. Let (M, α) be a contact manifold. The product manifold M × R
2 has a

canonical contact form given by α̃ = α − y dx , where (x, y) are the coordinate functions
on R

2. We shall denote the contact structure associated with α̃ by ξ̃ . Now suppose that
H : M × R → R is a smooth function which vanishes on some open set U . Define
H̄ : M × R → M × R

2 by H̄(u, t) = (u, t, H(u, t)) for all (u, t) ∈ M × R. It is easy to
note that H̄ is transversal to ξ̃ on U .

PROPOSITION 3.2

Let M be a contact manifold with contact form α. Suppose that H is a smooth real-valued
function on M×(−ε, ε)with compact support such that its graph� in M×R

2 is transversal
to the kernel of α̃ = α − y dx. Then there is a diffeomorphism � : M × (−ε, ε) → �

which pulls back α̃|� onto f (α ⊕ 0), where f is a nowhere-vanishing smooth real-valued
function on M × R.
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Proof. Note that if � is a codimension 1 submanifold of a contact manifold (N , α̃) such
that the tangent planes of � are transversal to ξ̃ = ker α̃, then there is a codimension 1
distribution D on � given by the intersection of ker α̃|� and T�. Since D = ker α̃|� ∩ T�

is an odd dimensional distribution, dα̃|D has a 1-dimensional kernel K . The integral curves
of K are called characteristics of � [1].

The main idea in the proof is to get a diffeomorphism � : M × R → � which would
map the lines x × R onto the characteristics of �. The result can be proved by standard
methods in the theory of contact fibration. Consider the trivial fibration π : M ×R → R,
where M × R is endowed with the nowhere vanishing 1-form β̃ = H̄∗α̃ = α − H dt ,
since H̄ is transversal to ξ̃ . Clearly, β̃ = α − H dt restricts to a contact form on M × {t}
for each t ∈ R and hence ker β̃ is transversal to the distribution ker dπ . Hence π is a
contact fibration with the global 1-form β̃ on M ×R [15]. Therefore, the restriction of dβ̃

to ker β̃ has 1-dimensional kernel η. Thus, we get a connection η on M ×R. If we denote
the parallel translations with respect to this connection by maps Pt : M ×{0} → M ×{t},
t ∈ R, then we have the following:

(P̄t )
∗α = ftα,

where P̄t : M → M is defined by projecting Pt . Define a diffeomorphism � : M ×R →
M × R by

�(u, t) = Pt (u), for all t ∈ R and u ∈ M.

It is a general fact that � preserves ker β̃ ∩ ker dπ . Hence, �∗(β̃|Mt ) = ft .(β̃|M0) = ftα.
On the other hand, for a fixed u ∈ U , Pt (u, 0) is an integral curve of η so that �( ∂

∂t ) ∈ η.
Hence it follows that ker �∗β̃ = p∗ξ ⊕R, where p : M ×R → M is the projection map
onto the first factor. Consequently, (H̄ ◦ �)∗α̃ = f.(α ⊕ 0). Hence � = H̄ ◦ � is the
desired map. �

Remark 3.3. If there exists an open subset Ũ of M such that H vanishes on Ũ × (−ε, ε)

then β̃ equals p∗α and therefore, η is tangent to the lines x ×R. Hence, � fixes the points
of Ũ × (−ε, ε).

We shall now recall a result from [5] which will reduce Theorem 1.1 to the special
case in which the contact forms αt are piecewise primitive. In fact, we shall require the
parametric form of this result which we state below in Lemma 3.4.

Lemma 3.4. Let αt , t ∈ [0, 1] be a continuous family of contact forms on a compact
manifold M, possibly with non-empty boundary. Then for each t ∈ [0, 1], there exists a
sequence of primitive 1-forms βl

t = rlt ds
l
t , l = 1, . . . , N such that

(1) αt = α0 + ∑N
1 βl

t for all t ∈ [0, 1],
(2) for each j = 0, . . . , N the form α

( j)
t = α0 + ∑ j

1 βl
t is contact,

(3) for each j = 1, . . . , N the functions r j
t and s jt are compactly supported and supports

are contained in a coordinate neighbourhood.

Furthermore, the forms βl
t depends continuously on t.

If αt = α0 on an open neighbourhood of a compact subset V0 contained in the interior
of M, then the functions rlt and slt can be chosen to be equal to zero on some open
neighbourhood of V0.
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U × Iε1

U

π(ϕ(U))

Figure 1.

Proof of Theorem 1.1. In view of Lemma 3.4, it is enough to prove the theorem for a
family of contact forms αt , t ∈ [0, 1], satisfying

αt = α0 + rtdst

for some smooth real-valued functions rt , st which are (compactly) supported in an open
set U of M . We shall first show that f0 : (M, ξ0) → (N , ξ̃ ) can be homotoped to an
isocontact immersion f1 : (M, ξ1) → (N , ξ̃ ) which will give a non-parametric version of
the stated result.

For simplicity of notation, we write (r, s) for (r1, s1) and define a smooth embedding
ϕ : U → U × R

2 by

ϕ(u) = (u, s(u),−r(u)) for u ∈ U.

Since r, s are compactly supported, ϕ(u) = (u, 0, 0) for all u ∈ Op (∂U ) and there exist
positive constants ε1 and ε2 such that Im f is contained in U × Iε1 × Iε2 , where Iε denotes
the open interval (−ε, ε) for ε > 0. Clearly, ϕ∗(α0 − y dx) = α0 + r ds and so

ϕ : (U, ξ1) → (U × R
2, ker(α0 − y dx)) (6)

is an isocontact embedding. The image of ϕ is the graph of a smooth function k = (s,−r) :
U → Iε1 × Iε2 which is compactly supported with support contained in the interior of U .
Further note that π(ϕ(U )) is the graph of s and hence a submanifold of U × Iε1 . Now
let π : U × Iε1 × Iε2 → U × Iε1 be the projection onto the first two coordinates. Since
Imϕ is the graph of k, π |Imϕ is an embedding onto the set π(ϕ(U )) which is the graph of
s. Now observe that Imϕ can also be viewed as the graph of a smooth function, namely
h : π(ϕ(U )) → Iε2 defined by h(u, s(u)) = −r(u). It is easy to see that h is compactly
supported.

In figure 1, the bigger rectangle represents the set U × Iε1 and the central dotted line
represents U × 0. The curve within the rectangle stands for the domain of h, which is also
the graph of s. We can now extend h to a compactly supported function H : U × Iε1 → Iε2

(see [24]) which vanishes on the shaded region and is such that its graph is transversal to
ker(α0 − y dx). Indeed, since ϕ is an isocontact embedding, it is transversal to ker(α0 −
y dx) and hence graph H is transversal to ker(α0 − y dx) on an open neighbourhood of
π(ϕ(U )) for any extension H of h. Since transversality is a generic property, we can assume
(possibly after a small perturbation) that graph of H is transversal to ker(α0 − y dx).
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Let � be the graph of H ; then the image of ϕ is contained in �. By Lemma 3.2, there
exists a diffeomorphism � : � → U × Iε1 with the property that

�∗(ker(α0 ⊕ 0)) = ker((α0 − y dx)|�). (7)

Next, we use f0 to define an immersion F0 : U × R → N × R as follows:

F0(u, x) = ( f0(u), x) for all u ∈ U and x ∈ R.

It is straightforward to see that

• F0(u, 0) ∈ N × 0 for all u ∈ U and
• F∗

0 (η ⊕ 0) is a multiple of α0 ⊕ 0 by a nowhere vanishing function on M × R.

Therefore, the following composition is defined:

U
ϕ−→ �

�−→ U × Iε1

F0−→ N × R
πN−→ N ,

where πN : N × R → N is the projection onto N . Observe that π∗
Nη = η ⊕ 0 and

therefore, it follows from equations (6) and (7) that the composition map f1 = πN F0�ϕ :
(U, ξ1) → (N , ξ̃ ) is isocontact. Such a map is necessarily an immersion.

Let K = (suppr ∪ supp s). Take a compact set K1 in U such that K ⊂ Int K1, and let
Ũ = U \ K1. If u ∈ Ũ , then ϕ(u) = (u, 0, 0). This gives h(u, 0) = 0 for all u ∈ Ũ .
We can choose H such that H(u, t) = 0 for all (u, t) ∈ Ũ × Iε1 . Then by Remark 3.3,
�(u, 0, 0) = (u, 0) for all u ∈ Ũ . Consequently,

f1(u) = πN F0�ϕ(u) = πN F0(u, 0) = πN ( f0(u), 0) = f0(u) for all u ∈ Ũ .

In other words, f1 coincides with f0 outside an open neighbourhood of K .
Now, if we have a continuous family of contact forms αt as in equation (3), then define

ϕt (u) = (u, st (u),−rt (u)) for u ∈ U.

Since each ϕt has compact support, it follows that ∪t∈[0,1]ϕt (U ) is a compact subset of
U×R

2 and therefore, there exist positive constants ε1 and ε2 such thatϕt (U ) ⊂ U×Iε1×Iε2

for all t ∈ [0, 1]. Proceeding exactly as before, we get a continuous family of smooth
functions Ht such that their graphs �t are transversal to ker(α0 − y dx). By applying
Proposition 3.2, we then get a continuous family of homeomorphisms �t : �t → U × Iε1

which pull back ker(α0 ⊕ 0) onto ker(α0 − y dx)|�t . The desired homotopy ft is then
defined by ft = πN F0�tϕt . This completes the proof of the theorem. �

We shall now deduce from the above theorem, the existence of isocontact immersions
of an open manifold M into itself which compress the manifold M into an arbitrary small
neighbourhoods of its ‘core’. It is known that an open manifold admits a Morse function
f without a local maxima. The codimension of the Morse complex of such a function
is, therefore, strictly positive [16,17]. The gradient flow of f brings the manifold into an
arbitrary small neighbourhood of the Morse complex. In fact, one can get a polyhedron
K ⊂ M such that codim K > 0, and an isotopy φt : M → M , t ∈ [0, 1] which fixes
K pointwise and where φ1 takes M into an arbitrarily small neighborhood U of K . The
polyhedron K is called a core of M .
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COROLLARY 3.5

Let (M, ξ = ker α) be an open contact manifold and let K be a core of it. Then for
a given neighbourhood U of K in M there exists a homotopy of isocontact immersions
ft : (M, ξ) → (M, ξ), t ∈ [0, 1] such that f0 = idM and f1(M) ⊂ U.

Proof. Since K is a core of M , there is an isotopy gt such that g0 = idM and g1(M) ⊂ U .
Using gt , we can express M as M = ⋃∞

0 Vi , where V0 is a compact neighbourhood of
K in U and Vi+1 is diffeomorphic to Vi

⋃
(∂Vi × [0, 1]) so that V̄i ⊂ Int (Vi+1) and

Vi+1 deformation retracts onto Vi . If M is a manifold with boundary then this sequence is
finite. We shall inductively construct a homotopy of immersions f it : M → M with the
following properties:

(1) f i0 = idM
(2) f i1 (M) ⊂ U
(3) f it = f i−1

t on Vi−1
(3) ( f it )

∗ξ = ξ on Vi .

Assuming the existence of f it , let ξt = ( f it )
∗(ξ) (so that ξ0 = ξ and consider a 2-parameter

family of contact structures defined by ηt,s = ξt (1−s). Then for all t, s ∈ I, we have

ηt,0 = ξt , ηt,1 = ξ0 = ξ and η0,s = ξ.

The parametric version of Theorem 1.1 gives a homotopy of immersions f̃t,s : Vi+2 → M ,
(t, s) ∈ I × I, satisfying the following conditions:

(1) f̃t,0, f̃0,s : Vi+2 ↪→ M are the inclusion maps
(2) ( f̃t,s)∗ξt = ηt,s ; in particular, ( f̃t,1)∗ξt = ξ

(3) f̃t,s = id on Vi since ηt,s = ξ0 on Vi .

We now extend the homotopy { f̃t,s |Vi+1} to all of M as immersions such that f̃0,s = idM
for all s. By an abuse of notation, we denote the extended homotopy by the same symbol.
Define the next level homotopy as follows:

f i+1
t = f it ◦ f̃t,1 for t ∈ [0, 1].

This completes the induction step since ( f i+1
t )∗(ξ) = ( f̃t,1)∗ξt = ξ on Vi+2 for all t , and

f i+1
t |Vi = f it |Vi . To start the induction we use the isotopy gt and let ξt = g∗

t ξ . Note that
ξt is a family of contact structures on M defined by contact forms g∗

t α. For starting the
induction, we construct f 0

t as above by setting V−1 = ∅.
Having constructed the family of homotopies { f it } as above, we set ft = limi→∞ f it

which is the desired homotopy of isocontact immersions. �

4. An h-principle for open relations on open contact manifolds

We shall first briefly review some basic definitions and results from the theory of h-
principle. For further details we refer to [11] and [5]. Suppose that M and N are smooth
manifolds. Let Jr (M, N ) be the space of r -jets of germs of local maps from M to N [9].
The canonical map p(r) : Jr (M, N ) → M which takes a jet jrf (x) onto the base point x
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is a fibration. We shall refer to Jr (M, N ) as the r -jet bundle over M . A continuous map
σ : M → Jr (M, N ) is said to be a section of the jet bundle p(r) : Jr (M, N ) → M if
p(r) ◦ σ = idM . A section of p(r) which is the r -jet of some map f : M → N is called a
holonomic section of the jet bundle.

A subset R ⊂ Jr (M, N ) of the r -jet space is called a partial differential relation of
order r (or simply a relation). If R is an open subset of the jet space, then we call it an
open relation. A Cr map f : M → N is said to be a solution of R if the image of its r -jet
extension jrf : M → Jr (M, N ) lies in R.

We denote by �(R) the space of continuous sections of the bundle Jr (M, N ) → N
having images in R. The space of C∞ solutions of R is denoted by Sol(R). If Sol(R)

and �(R) are endowed with the C∞-compact open topology and the C0-compact open
topology respectively, then the r -jet map

jr : Sol(R) → �(R)

taking an f ∈ Sol(R) onto the holonomic section jrf is a continuous map which is clearly
one to one. Therefore, we can identify Sol(R) with the space of holonomic sections of R.

DEFINITION 4.1

A differential relation R is said to satisfy the h-principle if every element σ0 ∈ �(R)

admits a homotopy σt ∈ �(R) such that σ1 is holonomic.
The relationR satisfies the parametric h-principle if the r -jet map jr : Sol(R) → �(R)

is a weak homotopy equivalence.

We shall often talk about (parametric) h-principle for certain function spaces without
referring to the relations of which they are solutions.

Remark 4.2. The space �(R) is referred as the space of formal solutions of R. Finding a
formal solution is a purely (algebraic) topological problem which can be addressed with the
obstruction theory. Finding a solution of R is, on the other hand, a differential topological
problem. Thus, the h-principle reduces a differential topological problem to a problem in
algebraic topology.

Next we define the notion of local h-principle near a subset K of M .

DEFINITION 4.3

Let K be a subset of M . We shall say that a relation R satisfies the h-principle near K if
given an open set U containing K and a section F : U → R|U , there exists an open set
Ũ ⊂ U containing K such that F |Ũ is homotopic to a holonomic section F̃ : Ũ → R in
�(R).

The above h-principle will also be referred as an h-principle on Op K . If K is a subset
of M then by Op K we shall mean an unspecified open set in M containing K . The set
Ck(Op K , N ) will denote the set of all Ck functions which are defined on some open
neighbourhood of K .
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DEFINITION 4.4

A function F : Z → Ck(Op K , N ) defined on any topological space Z will be called
‘continuous’ if there exists an open setU containing K such that each F(z) has an extension
F̃(z) which is defined on U and z �→ F̃(z) is continuous with respect to the Ck-compact
open topology on the function space. A relation R is said to satisfy the parametric h-
principle near K if jr : Sol(R|Op K ) → �(R|Op K ) is a weak homotopy equivalence.

Let Diff(M) be the pseudogroup of local diffeomorphisms of M [7]. There is a natural
(contravariant) action of Diff(M) on Jr (M, N ) given by σ.α := jrf ◦σ (x), where σ is a
local diffeomorphism of M defined near x ∈ M and f is a representative of the r -jet α at
σ(x). Let D be a subgroup of Diff(M). A differential relation R is said to be D-invariant
if the following condition is satisfied:

For every α ∈ R and σ ∈ D, the element σ.α belongs to R provided it is defined.

We shall denote the element σ.α by the notation σ ∗α.
The following result, due to Gromov, is the first general result in the theory of h-principle.

Theorem 4.5. Every open, Diff(M) invariant relationR on an open manifold M satisfies
the parametric h-principle.

The above h-principle can be established in two steps. In the first place, one proves the
local h-principle near the core K of M and then lifts the h-principle to M by a contracting
diffeotopy.

If a relation is invariant under the action of a smaller pseudogroup of diffeomorphism,
say D, then the h-principle can still hold if D has some additional properties.

DEFINITION 4.6 [11]

Let M0 be a submanifold of M of positive codimension and letD be a pseudogroup of local
diffeomorphisms of M . We say that M0 is sharply movable byD, if given any hypersurface
S in an open set U in M0 and any ε > 0, there is an isotopy δt , t ∈ I, in D and a positive
real number r such that the following conditions hold:

(i) δ0|U = idU ,
(ii) δt fixes all points outside the ε-neighbourhood of S,

(iii) dist(δ1(x), M0) ≥ r for all x ∈ S,

where ‘dist’ denotes the distance with respect to any fixed metric on M .

The diffeotopy δt will be referred as a sharply moving diffeotopy. A pseudogroup D is
said to have the sharply moving property if every submanifold M0 of positive codimension
is sharply movable by D. Eliashberg and Mishachev [5] have replaced sharply moving
diffeotopies by capacious subgroup of diffeomorphism.

Recall now the following local h-principle result due to Gromov [11]; also see [5].

Theorem 4.7. LetR ⊂ Jr (M, N ) be an open relation which is invariant under the action
of a pseudogroupD. IfD sharply moves a submanifold M0 in M of positive codimension,
then the parametric h-principle holds for R on Op(M0).
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Remark 4.8. We remark here that the theory of h-principle extends to a more general
situation, namely for sections of an arbitrary fibration. If X → M be a fibration, then we
shall denote the r -jet space of sections of X by X (r). For the sake of simplicity, we have
restricted ourselves in the above discussion to the case of smooth maps between manifolds.
However, we shall consider a general relation in Example 5.8.

Proof of Theorem 1.3. Theorem 1.3 now follows by a direct application of Theorem 4.7
together with Corollary 3.5. It is known that the group D consisting of (compactly sup-
ported) contact diffeomorphisms of M has the sharply moving property [5]. To see this,
let M0 be a submanifold of M of positive codimension. Take a closed hypersurface S in
M0 and an open set U ⊂ M containing S. We take a vector field X along S which is
transversal to M0. Let H : M → R be a smooth function such that

α(X) = H, iXdα|ξ = −dH |ξ , at points of S.

The contact-Hamiltonian vector field XH is clearly transversal to M0 at points of S. As
transversality is a stable property and U is small, we can assume that XH � U . Now
consider the initial value problem

d

dt
δt (x) = XH (δt (x)), δ0(x) = x . (8)

The solution to this problem exists for small time t , say for t ∈ [0, ε̄], for all x lying in
some small enough neighbourhood of S. Moreover, since XH is transversal to S, there
would exist a positive real number ε such that the integral curves δt (x) for x ∈ S do not
meet M0 during the time interval (0, ε). Let

Sε = ∪t∈[0,ε/2]δt (S).

Take a smooth function ϕ which is identically equal to 1 on a small neighbourhood of
Sε and suppϕ ⊂ ∪t∈[0,ε)δt (S). We now replace XH in the initial value problem (8) by
XϕH . Since XϕH is compactly supported, the flow of XϕH , say δ̄t , is defined for all time
t . Because of the choice of ϕ, the integral curves δ̄t (x0), x0 ∈ M0, cannot come back to
M0 for t > 0. Hence, we have the following:

• δ̄0|U = idU
• δ̄t = id outside a small neighbourhood of Sε

• dist(δ̄1(x), M0) > r for all x ∈ S and for some r > 0.

This proves that D sharply moves any submanifold of M of positive codimension.
In fact, if K is a core of M , then D would also sharply move K . Since the relation R is

open and invariant under the action of D, we can apply Theorem 4.7 to conclude that R
satisfies the parametric h-principle near K . Finally, to conclude the parametric h-principle
for R, we appeal to Corollary 3.5 which guarantees a homotopy of isocontact immersions
gt : (M, ξ) → (M, ξ) satisfying g0 = idM and g1(M) ⊂ U , where U is any open
neighbourhood of K . The argument for lifting of the local h-principle near K to a global
one with the help of gt , t ∈ [0, 1] is the same as that in the smooth case and so we omit
the details of it. �
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We are now in a position to prove Theorem 1.4. We assume that (M, ξ = ker α) is an
open contact manifold and N is a foliated manifold with a smooth foliation FN of even
codimension. We shall denote the normal bundle of the foliation FN by νFN and the
canonical projection map T N → νFN by π . We define a first-order differential relation
R consisting of all 1-jets represented by triples (x, y, F), where x ∈ M, y ∈ N and
F : TxM → TyN is a linear map such that

(1) π ◦ F : TxM → ν(FN )y is an epimorphism,
(2) ker(π ◦ F) ∩ ker αx is a symplectic subspace of (ker αx , d ′αx ).

Now we state the following obvious lemma noting the fact that non-degeneracy condition
on 2-forms is an open conditon.

Lemma 4.9. The relation R defined above is an open relation and invariant under the
action of the pseudogroup of local contactomorphisms of (M, α).

Proof of Theorem 1.4. In view of Theorem 1.3 and Lemma 4.9, it follows that the relation
R satisfies the parametric h-principle, that is, j1 : Sol(R) → �(R) is a weak homo-
topy equivalence. It is easy to see that the space of sections of R can be identified with
Eα(T M, ν(FN )). On the other hand, the solution space of R can be identified with the
space Trα(M,FN ). To see this, first note that f : M → N is transversal to FN means
that π ◦ d f is an epimorphism. Further observe that the following two statements are
equivalent:

(S1) the leaves of the inverse foliation f ∗FN are contact submanifolds (immersed) of M .
(S2) ker(π ◦ d f ) ∩ ker α is a symplectic subbundle of (ker α, d ′α).

This completes the proof of the theorem. �

5. Classification of contact foliations

We shall now prove Theorem 1.5. The proof of Theorem 1.5 follows the same strategy as
that in the smooth case. The existence of universal contact foliation is obtained by using the
original construction of A. Haefliger and keeping track of the contact structure. We refer
the reader to [6] as we closely follow the exposition for the theory of universal foliations
and the proof of A. Haefliger’s theorem. In what follows, �q will denote the groupoid of
germs of local diffeomorphisms of Rn and B�q the classifying space of �q structures;
ν(	q) → B�q will denote the normal bundle of the universal �q structure 	q on B�q .

As before M is an open manifold with contact structure ξ = ker α. Let Fol2qα (M)

denote the space of contact foliations on M of codimension 2q subordinate to α. Let
Eα(T M, ν	2q) be the space of all vector bundle epimorphisms F : T M → ν	2q such
that ker F is transversal to ker α and ker α∩ker F is a symplectic subbundle of (ker α, d ′α),
where d ′α = dα|ξ .

If F ∈ Fol2q(M) and f : M → B�2q is a classifying map of F , then f ∗	2q = F as
�2q -structure. We can define vector bundle epimorphisms T M → ν	2q by the following
(see [12]):
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T M
πF

νF ∼= f ∗(ν	2q)
f̄

ν	2q

M
f

B�2q

, (9)

where πF : T M → ν(F) is the projection map onto the normal bundle and ( f̄ , f )
represents a pull-back diagram. Note that the kernel of this morphism is TF . If F ∈
Fol2qα (M), then TF ∩ ker α is a symplectic subbundle of ker α and therefore, f̄ ◦ πF ∈
Eα(T M, ν	2q). However, the morphism f̄ ◦ πM is unique only up to homotopy. Thus,
there is a function

H ′
α : Fol2qα (M) → π0(Eα(T M, ν	2q)).

DEFINITION 5.1

Two contact foliations F0 and F1 on (M, α) are said to be integrably homotopic relative
to α if there exists a foliation F̃ on (M × I, α ⊕ 0) such that the following conditions are
satisfied:

(1) F̃ is transversal to the trivial foliation of M × I by the leaves M × {t}, t ∈ I;
(2) the foliation Ft on M induced by the canonical injective map it : M → M × I (given

by x �→ (x, t)) is a contact foliation subordinate to α for each t ∈ I;
(3) the induced foliations on M × {0} and M × {1} coincide with F0 and F1 respectively,

Here α ⊕ 0 denotes the pull-back of α by the projection map p1 : M × R → M .

Let π0(Fol2qα (M)) denote the space of integrable homotopy classes of contact foliations
on (M, α). Define

Hα : π0(Fol2qα (M)) → π0(Eα(T M, ν	2q))

by Hα([F]) = H ′
α(F), where [F] denotes the integrable homotopy class of F relative to

α. To see that Hα is well-defined, let F̃ be an integrable homotopy relative to α between
two contact foliations F0 and F1. If F : M × [0, 1] → B�2q is a classifying map of F̃ ,
then similar to (9) we have as follows:

T (M × [0, 1]) π̄
νF̃ ∼= F∗(ν	q)

F̄
ν	2q

M × [0, 1]
F

B�2q

.

Let it : M → M × {t} ↪→ M × R denote the canonical injective map of M into M × {t}
and ft : M → B�2q be defined as ft (x) = F(x, t) for (x, t) ∈ M × [0, 1]. Since

F̄ ◦ π̄ ◦ dit = πFt ◦ f̄t : T M → νFt → ν	2q

where Ft = f ∗
t 	2q , it follows from the definition of H ′ that

H ′
α(Ft ) = [F̄ ◦ π̄ ◦ dit ].

Thus we conclude that H ′
α(F0) = H ′

α(F1). This proves that Hα is well-defined. We now
restate Theorem 1.5 as follows.
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Theorem 5.2. If M is open then Hα : π0(Fol
2q
α (M)) −→ π0(Eα(T M, ν	2q)) is bijec-

tive.

We first prove a lemma.

Lemma 5.3. Let N be a smooth manifold with a foliation FN of codimension 2q. If g :
N → B�2q classifies FN , then we have a commutative diagram as follows:

π0(Trα(M,FN ))
P

∼= π0(π◦d)

π0(Fol
2q
α (M))

Hα

π0(Eα(T M, νFN ))
G∗

π0(Eα(T M, ν	2q))

, (10)

where the left vertical arrow is the isomorphism defined by Theorem 1.4. P is induced
by a map which takes an f ∈ Trα(M,FN ) onto the inverse foliation f −1FN and G∗ is
induced by the bundle homomorphism G : νFN → ν	2q covering g.

Proof. We shall first show that the horizontal arrows in (10) are well defined. If f ∈
Trα(M,FN ), then the inverse foliation f −1FN belongs to Fol2qα (M). Furthermore, if ft
is a homotopy in Trα(M,FN ), then the map F : M × I → N defined by F(x, t) = ft (x)
is clearly transversal to FN and so F̃ = F−1FN is a foliation on M × I. The restriction of
F̃ to M×{t} is the same as the foliation f −1

t (FN ), which is a contact foliation subordinate
to α. Hence, we get a map

π0(Trα(M,FN ))
P−→ π0(Fol2qα (M))

defined by

[ f ] �−→ [ f −1FN ],

where [ f −1FN ] denotes the integrable homotopy class of the foliation f −1FN . On the
other hand, since g : N → B�2q classifies the foliation FN , we have the canonical
projection map G : νFN ∼= g∗ν	2q → ν	2q covering g. This induces a map

G∗ : π0(Eα(T M, νFN )) → π0(Eα(T M, ν	2q))

which takes an element [F] ∈ π0(Eα(T M, ν(FN ))) onto [G ◦ F]. We now prove the
commutativity of (10). Note that if f ∈ Trα(M,FN )), then g ◦ f : M → B�2q classifies
the foliation f −1FN . Let d̃ f : ν( f −1FN ) → ν(FN ) be the unique map making the
following diagram commutative:

T M
d f

πM

T N

πN

ν( f −1FN )
d̃ f

ν(FN )

,
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where πM : T M → ν( f −1FN ) is the projection map onto the normal bundle of f −1FN .
Observe that G ◦ d̃ f : ν( f −1FN ) → ν(	2q) covers the map g ◦ f and (G ◦ d̃ f , g ◦ f ) is
a pullback diagram. Therefore, we have

Hα([ f −1FN ]) = [(G ◦ d̃ f ) ◦ πM ] = [G ◦ (π ◦ d f )].
This proves the commutativity of (10). �

Proof of Theorem 5.2. The proof is exactly similar to that of Haefliger’s classification
theorem. The main idea is to reduce the classification to Theorem 1.4 by using Lemma 5.3
and working along Haefliger. �

We shall now see how the elements of π0(Eα(T M, νFN )) are related to homotopy
liftings of the classifying map τ of ker α.

Theorem 5.4. Let (M, α) be an open contact manifold and let τ : M → BU (n) be a
map classifying the symplectic vector bundle ξ = ker α. Then there is a bijection between
the elements of π0(Eα(T M, ν	2q)) and the homotopy classes of triples ( f, f0, f1), where
f0 : M → BU (q), f1 : M → BU (n − q) and f : M → B�2q such that

(1) ( f0, f1) is homotopic to τ in BU (n) and
(2) Bd ◦ f is homotopic to Bi ◦ f0 in BGL2q .

In other words, the homotopy commutative diagrams are as follows:

B�(2q)

Bd

M
f0

f

BU (q)
Bi

BGL(2q)

BU (q) × BU (n − q)

⊕

M
τ

( f0, f1)

BU (n)

.

Proof. For the sake of simplicity, we shall denote 	2q by 	. An element (F, f ) ∈
Eα(T M, ν	) defines a (symplectic) splitting of the bundle ξ as

ξ ∼= (ker F ∩ ξ) ⊕ (ker F ∩ ξ)d
′α

since ker F ∩ ξ is a symplectic subbundle of ξ . Let F ′ denote the restriction of F to
(ker F ∩ ξ)d

′α . It is easy to see that (F ′, f ) : (ker F ∩ ξ)d
′α → ν(	) is a vector bundle

map which is fibrewise isomorphism. If f0 : M → BU (q) and f1 : M → BU (n − q) are
continuous maps classifying the vector bundles ker F ∩ ξ and (ker F ∩ ξ)d

′α respectively,
then the classifying map τ of ξ must be homotopic to ( f0, f1) : M → BU (q)×BU (n−q)

in BU (n). Recall that the isomorphism classes of symplectic vector bundles are clas-
sified by homotopy classes of continuous maps into BU [14]. Furthermore, note that
(ker F ∩ ξ)d

′α ∼= f ∗(ν	) = f ∗(Bd∗EGL2q(R)); therefore, Bd ◦ f is homotopic to f0
in BGL(2q).

Conversely, take a triple ( f, f0, f1) such that

Bd ◦ f ∼ Bi ◦ f0 and ( f0, f1) ∼ τ.
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Then ξ has a symplectic splitting given by f ∗
0 EU (q) ⊕ f ∗

1 EU (n − q). Further, since
Bd ◦ f ∼ Bi ◦ f0, we have f ∗

0 EU (q) ∼= f ∗ν(	). Hence there is an epimorphism

F : ξ
p2−→ f ∗

0 EU (q) ∼= f ∗ν(	) whose kernel f ∗
1 EU (n − q) is a symplectic subbundle

of ξ . Finally, F can be extended to an element of Eα(T M, ν	) by defining its value on Rα

equal to zero. �

DEFINITION 5.5

Let N be a contact submanifold of (M, α) such that Tx N is transversal to ξx for all x ∈ N .
Then T N ∩ ξ |N is a symplectic subbundle of ξ . The symplectic complement of T N ∩ ξ |N
with respect to d ′α will be called the normal bundle of the contact submanifold N

The following result is a direct consequence of Theorem 1.5 and Theorem 5.4.

COROLLARY 5.6

Let (M, α) be an open contact manifold. Let B be a symplectic subbundle of ξ with a
classifying map f0 : M → BU (q). The integrable homotopy classes of contact foliations
on M with their normal bundles isomorphic to B are in one-to-one correspondence with
the homotopy classes of lifts of Bi ◦ f0 in B�2q .

We end this article with an example to show that a contact foliation F on a contact
manifold need not be transversally symplectic, though its normal bundle is a symplectic
vector bundle.

DEFINITION 5.7 [12]

A codimension 2q-foliation F on a manifold M is said to be transversally symplectic if
F can be represented by Haefliger cocycles which take values in the groupoid of local
symplectomorphisms of (R2q , ω0).

Thus the normal bundle of a transversally symplectic foliation has a symplectic structure.
It can be shown that if F is transversally symplectic then there exists a closed 2-form ω

on M such that ωq is nowhere vanishing and ker ω = TF .

Example 5.8. Let us consider a closed almost-symplectic manifold V 2n which is not sym-
plectic (e.g., we may take V to be S6) and let ωV be a non-degenerate 2-form on V defining
the almost symplectic structure. Set M = V ×R

3 and let F be the foliation on M defined
by the fibres of the projection map π : M → V . Thus the leaves are {x} × R

3, x ∈ V .
Consider the standard contact form α = dz + xdy on the Euclidean space R

3 and let α̃

denote the pull-back of α by the projection map p2 : M → R
3. The 2-form β = ωV ⊕ dα

on M is of rank 2n + 2 and it is easy to see that β restricted to ker α̃ is non-degenerate.
Therefore (α̃, β) is an almost contact structure on M . Moreover, α̃ ∧ β|TF is non-zero on
each fibre.

We claim that there exists a contact form η on M such that its restrictions to the leaves
of F are contact. Indeed, there exists a surjective map

(T ∗M)(1) D→ ∧1T ∗M ⊕ ∧2T ∗M
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such that D ◦ j1(α) = (α, dα) for any 1-form α on M (see [4]). Let

r : ∧1T ∗M ⊕ ∧2T ∗M → ∧1T ∗F ⊕ ∧2T ∗F

be the restriction map defined by the pull-back of forms and let A ⊂ T ∗M⊕∧2T ∗M be the
set of all pairs (η,	) such that η∧	n+1 is nowhere vanishing and let B ⊂ T ∗F⊕∧2T ∗F
be the set of all pairs (α, β) ∈ T ∗F ⊕ ∧2T ∗F whose restrictions to the fibres of TF are
non-zero. Now set R ⊂ (T ∗M)(1) as

R = D−1(A) ∩ (r ◦ D)−1(B).

Since both A and B are open, so is R. Now if we consider the fibration M
π→ V then it is

easy to see that the diffeotopies of M preserving the fibers of π sharply moves V × 0 and
R is invariant under the action of such diffeotopies. Hence, by Theorem 4.7 there exists a
contact form η on Op(V × 0) = V × D

3
ε for some ε > 0, such that η restricted to each

leaf of the foliation F is also contact. Now take a diffeomorphism g : R3 → D
3
ε . Then

η′ = (idV × g)∗η is a contact form on M . Further, F is a contact foliation relative to η′
since idV × g is foliation preserving.

But F can not be transversally symplectic; otherwise, there would exist a closed 2-form
β whose restriction to νF = π∗(T V ) would be non-degenerate. This would imply that V
is a symplectic manifold contradicting our hypothesis.

6. Examples of contact foliations on contact manifolds

We shall first derive some corollaries of Theorem 1.4 related to simple foliations.

DEFINITION 6.1

A smooth submersion f : (M, α) → N will be called a contact submersion if the level
sets of f are contact submanifolds of M .

Let Cα(M, N ) denote the space of contact submersions (M, α) → N and let
Eα(T M, T N ) be the space of epimorphisms F : T M → T N for which ker F ∩ ker α is a
symplectic subbundle of (ker α, d ′α). Taking FN to be the zero-dimensional foliation on
N in Theorem 1.4, we get the following result.

COROLLARY 6.2

Let (M, α) be an open contact manifold. The derivative map

d : Cα(M, N ) → Eα(T M, T N )

is a weak homotopy equivalence.

Remark 6.3. Suppose that F0 ∈ Eα(T M, T N ) and D is the kernel of F0. Since M is an
open manifold, the bundle epimorphism F0 : T M → T N is homotopic (in the space
of epimorphism) to the derivative of a submersion f : M → N (see [20]). Hence the
distribution ker F0 is homotopic to the tangent distribution of a foliation, namely the one
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given by the submersion. Since D ∩ ker α is a symplectic vector bundle, it then follows
from a result in [4] that D is homotopic to the tangent distribution of a contact foliation
F on M . Theorem 1.4 further guarantees that it is possible to get a foliation F which is
subordinate to α and is defined by a submersion.

Next, we interpret Corollary 6.2 in terms of certain 2n-frames in M , when the target
manifold is an Euclidean space. Recall that the tangent bundle T M of a contact manifold
(M, α) splits as ker α ⊕ ker dα. Let P : T M → ker α be the projection morphism onto
ker α relative to this splitting. We shall denote the projection of a vector field X on M under
P by X̄ . For any smooth function h : M → R, Xh will denote the contact Hamiltonian
vector field defined.

Lemma 6.4. Let (M, α) be a contact manifold and f : M → R
2n be a submersion with

coordinate functions f1, f2, . . . , f2n. Then the following statements are equivalent:
(C1) f is a contact submersion.
(C2) The restriction of dα to the bundle spanned by X f1 , . . . , X f2n defines a symplectic

structure.
(C3) The vector fields X̄ f1 , . . . , X̄ f2n span a symplectic subbundle of (ξ, d ′α).

Proof. If f : (M, α) → R
2n is a contact submersion, then the following relation holds

pointwise:

ker d f ∩ ker α = 〈X̄ f1 , . . . , X̄ f2n 〉⊥d′α , (11)

where the right-hand side represents the symplectic complement of the subbundle spanned
by X̄ f1 , . . . , X̄ f2n with respect to d ′α. Indeed, for any v ∈ ker α,

d ′α(X̄ fi , v) = −d fi (v), for all i = 1, . . . , 2n

Therefore, v ∈ ker α ∩ ker d f if and only if d ′α(X̄ fi , v) = 0 for all i = 1, . . . , 2n, that is,
v ∈ 〈X̄ f1 , . . . , X̄ f2n 〉⊥d′α . Thus, the equivalence of (C1) and (C3) is a consequence of the
equivalence between (S1) and (S2). The equivalence of (C2) and (C3) follows from the
relation dα(X,Y ) = dα(X̄ , Ȳ ), where X,Y are any two vector fields on M . �

An ordered set of vectors e1(x), . . . , e2n(x) in ξx will be called a symplectic 2n-frame
in ξx if the subspace spanned by these vectors is a symplectic subspace of ξx with respect
to the symplectic form d ′αx . Let T2nξ be the bundle of symplectic 2n-frames in ξ and
�(T2nξ) denote the space of sections of T2nξ with the C0 compact open topology.

For any smooth submersion f : (M, α) → R
2n , define the contact gradient of f by

� f (x) = (X̄ f1(x), . . . , X̄ f2n (x)),

where fi , i = 1, 2, . . . , 2n, are the coordinate functions of f . If f is a contact submersion
then X̄ f1(x), . . . , X̄ f2n (x)) span a symplectic subspace of ξx for all x ∈ M , and hence � f
becomes a section of T2nξ .

Theorem 6.5. Let (M2m+1, α) be an open contact manifold. Then the contact gradient
map � : Cα(M,R2n) → �(T2nξ) is a weak homotopy equivalence.
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Proof. As TR2n is a trivial vector bundle, the map

i∗ : Eα(T M,R2n) → Eα(T M, TR2n)

induced by the inclusion i : 0 ↪→ R
2n is a homotopy equivalence, where R

2n is regarded
as the vector bundle over 0 ∈ R

2n . The homotopy inverse c is given by the following
diagram. For any F ∈ Eα(T M, TR2n), c(F) is defined by as p2 ◦ F ,

T M
F−→ TR2n = R

2n × R
2n p2−→ R

2n

↓ ↓ ↓
M −→ R

2n −→ 0

where p2 is the projection map onto the second factor.
Since d ′α is non-degenerate, the contraction of d ′α with a vector X ∈ ker α defines an

isomorphism

φ : ker α → (ker α)∗.

We define a map σ : ⊕2n
i=1T

∗M → ⊕2n
i=1ξ by

σ(G1, . . . ,G2n) = −(φ−1(Ḡ1), . . . , φ
−1(Ḡ2n)),

where Ḡi = Gi |ker α . Then noting that

ker(G1, . . . ,G2n) ∩ ker α = 〈φ−1(Ḡ1), . . . , φ
−1(Ḡ2n)〉⊥d′α ,

we get a map σ̃ by restricting σ to E(T M,R2n):

σ̃ : E(T M,R2n) −→ �(M, T2nξ),

Moreover, the contact gradient map � factors as � = σ̃ ◦ c ◦ d:

Cα(M,R2n)
d→ Eα(T M, TR2n)

c→ Eα(T M,R2n)
σ̃→ �(T2nξ). (12)

To see this, take any f : M → R
2n . Then, c(d f ) = (d f1, . . . , d f2n), and hence

σ̃c(d f ) = (φ−1(d f1|ξ ), . . . , φ−1(d f2n|ξ )) = (X̄ f1, . . . , X̄ f2n ) = �( f )

which gives σ̃ ◦ c ◦ d( f ) = � f .
We claim that σ̃ : Eα(T M,R2n) → �(T2nξ) is a homotopy equivalence. To prove this,

we define a map τ : ⊕2n
i=1ξ → ⊕2n

i=1T
∗M by the formula

τ(X1, . . . , X2n) = (iX1dα, . . . , iX2n dα)

which induces a map τ̃ : �(T2nξ) → E(T M,R2n). It is easy to verify that σ̃ ◦ τ̃ = id.
In order to show that τ̃ ◦ σ̃ is homotopic to the identity, take any G ∈ Eα(T M,R2n) and
let Ĝ = (τ ◦ σ)(G). Then Ĝ equals G on ker α. Define a homotopy between G and Ĝ by
Gt = (1−t)G+t Ĝ. ThenGt = G on ker α and hence ker Gt∩ker α = ker G∩ker α. This
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also implies that each Gt is an epimorphism. Thus, the homotopy Gt lies in Eα(T M,R2n).
This shows that τ̃ ◦ σ̃ is homotopic to the identity map.

This completes the proof of the theorem since d : C(M,R2n) → E(T M, TR2n) is a
weak homotopy equivalence (Theorem 1.4) and c, σ̃ are homotopy equivalences. �

We shall now relate the results of this article with those in [3] by means of the operations
symplectization and contactization. IfF is a contact foliation on a contact manifold (M, α),
then the projection p : M × R → M pulls back F to a symplectic foliation on the
symplectization (M × R, d(esα)). Thus, for any contact submersion f : (M, α) → P ,
f ◦ p : M × R → P is a symplectic submersion on the symplectization. In fact, the
symplectic submersions on M × R which are lifts of contact submersions on M can be
viewed as R-invariant symplectic submersions. Note that R has a natural action on M ×R

given by

� : (t, (x, s)) �→ (x, s + t), t ∈ R, (x, s) ∈ M × R

and ϕt = �(t, ) pulls back the symplectic form ω = d(esα) onto etω. The differentials
of ϕt , t ∈ R, define an action of R on the tangent bundle T (M × R). We can therefore
interpret Corollary 6.2 as follows:

COROLLARY 6.6

Let (M, α) be an open contact manifold and (M×R, ω) its symplectization. The derivative
map

d : S inv
ω (M × R, N ) → E inv

ω (T (M × R), T N )

is a weak homotopy equivalence,where Sinv
ω (M×R, N ) and E inv

ω (T (M×R), T N ) respec-
tively denote the space of symplectic submersions and symplectic epimorphisms which are
invariant under R-action.

On the other hand, if (M, ω) is a symplectic manifold with ω integral, then there is a
circle bundle q : M̃ → M over M which is referred as contact pre-quantization bundle.
Boothby and Wang [2] proved the existence of a contact form α on M̃ satisfying the
relation q∗ω = dα. The S1-action on M̃ preserves the contact structure ξ = ker α. If F is
a symplectic foliation on M , then q−1(F) is a contact foliation on M̃ . Since the symplectic
submersions on (M, ω) [3] are in one-to-one correspondence with the S1-invariant contact
submersions on the contact pre-quantization (M̃, α), we can deduce the following corollary
from [3].

COROLLARY 6.7

Let (M, ω) be an open symplectic manifold and M̃ its contact prequantization. The deriva-
tive map

d : Cinv
α (M̃, N ) → E inv

α (T M̃, T N )

is a weak homotopy equivalence, where Cinv
α (M̃, N ) and E inv

α (T M̃, T N ) respectively
denote the space of contact submersions and contact epimorphisms which are invariant
under S1-action.
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Thus we have the following commutative diagram in which the vertical arrows are weak
homotopy equivalences and the horizontal arrows are inclusions.

Cinv
α (M̃, N )

d

Cα(M̃, N )

d

E inv
α (T M̃, T N ) Eα(T M̃, T N )

. (13)

We end this article with a family of contact foliations on certain open subsets of contact
spheres.

Example 6.8. Let S2n+1 denote the unit sphere in C
n+1 ∼= R

2n+2,

S
2n+1 =

{

(z1, . . . , zn+1) ∈ C
n+1 :

n+1∑

1

|zi |2 = 1

}

.

The unit sphere has a canonical contact form α0 which is induced from the Liouville form
λ0 = ∑n+1

i=1 (xi dyi − yi dxi ) on R
2n+2. For n > k, we consider the open manifold Sn,k

obtained from S
2n+1 by removing a (2k + 1)-sphere:

Sn,k = S
2n+1 \ S2k+1,

where

S
2k+1 = {(z1, . . . , zk+1, 0, . . . , 0) ∈ R

2n+2 : �k+1
1 |zi |2 = 1}.

Then Sn,k is a contact submanifold of S
2k+1 which is homotopically equivalent to

S
2(n−k)−1.
The canonical projection map q : S2n+1 → CPn defines S2n+1 as a circle bundle over

the symplectic manifold CPn , where the symplectic form σ on CPn satisfies the relation
q∗σ = dα. As we have observed above, a foliation on CPn is symplectic if and only
if q−1(F) is a contact foliation on S

2n+1. It follows from [3] that CPn \ CPk admits
symplectic foliations for each k satisfying 0 < k ≤ n. In fact, these foliations are defined
by submersions CPn \ CPk → R

2(k+1). Hence, S2n+1 \ S
2k+1 admits contact foliations

of codimension at most 2(k + 1).
There are more direct constructions of contact foliations on S

2n+1 \ S
2k+1. In the case

of the standard 5-dimensional contact sphere (S5, ξ0) we have the following two cases:

(a) (S5 \ OpS3, ξ0) and
(b) (S5 \ OpS1, ξ0).

The former is contactomorphic to (S1 ×D
4, dθ + λ0) and the latter is contactomorphic to

(S3 × D
2, α0 + λ0), where α0 is the standard contact form on odd spheres and λ0 is the

Liouville form on even dimensional Euclidean spaces.
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