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Abstract. Let F be a field, V a vector space of dimension n over F. Then the set of
bilinear forms on V forms a vector space of dimension n2 over F. For char F �= 2, if
T is an invertible linear map from V onto V then the set of T -invariant bilinear forms,
forms a subspace of this space of forms. In this paper, we compute the dimension of
T -invariant bilinear forms over F. Also we investigate similar type of questions for
the infinitesimally T -invariant bilinear forms (T -skew symmetric forms). Moreover, we
discuss the existence of nondegenerate invariant (resp. infinitesimally invariant) bilinear
forms.
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1. Introduction

Let F be a field of characteristic �= 2, n ≥ 1 an integer. Let V be a vector space of dimension
n over F. Then the set of bilinear forms on V forms a vector space of dimension n2 over
F. If T is an invertible linear map from V onto V then the set B of T -invariant bilinear
forms, forms a subspace of this space of forms. In this paper, we investigate the following
question.

Question. What is the dimension of B? Does there exist any non-degenerate form in B?

Let V be a vector space over F, then a bilinear form B on V is said to be invariant
(resp. infinitesimally invariant) under a linear map T : V → V , if for all u, v ∈ V ,
B(Tu, T v) = B(u, v) (resp. B(Tu, v) + B(u, T v) = 0). A bilinear form B on V is said
to be symmetric, if for all u, v ∈ V , B(u, v) = B(v, u). If char F �= 2, then a bilinear form
B on V is said to be skew-symmetric, if for all u, v ∈ V , B(u, v) = −B(v, u).

The starting point in this study is the existence of such T -invariant forms. This problem
has been answered in many ways in the literature. Sergeichuk [6] studied systems of forms
and linear mappings by associating with them self-adjoint representations of a category
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with involution. Gongopadhyay and Kulkarni [2] investigated the question of existence of
T -invariant non-degenerate symmetric (resp. skew-symmetric) bilinear forms. They also
answered the infinitesimal version of this question. In the literature, the problem to find nec-
essary and sufficient conditions for an endomorphism to be self-adjoint, skew-selfadjoint
or orthogonal for at least one non-degenerate quadratic form (or for a symplectic form)
has also acquired an important place. Frobenius [1] proved that every endomorphism of a
finite dimensional vector space V is self-adjoint for at least one non-degenerate symmetric
bilinear form on V . Later, Stenzel [7] determined when an endomorphism could be skew-
selfadjoint for a non-degenerate quadratic form, or self-adjoint or skew-selfadjoint for a
symplectic form on complex vector spaces. However his results were later generalized to
an arbitrary field [3]. Pazzis [5] tackled the case of the automorphisms of a finite dimen-
sional vector space that are orthogonal (resp. symplectic) for at least one non-degenerate
quadratic form (resp. symplectic form) over an arbitrary field of characteristics 2.

In this paper, we investigate the question of computing the dimension of the space
of bilinear forms invariant (resp. infinitesimal invariant) under a given invertible linear
transformation (resp. linear transformation) on a finite dimensional vector space over a
field of characteristic �= 2. We have answered this question for several possible types of
linear transformations and also discussed about the existence of non-degenerate forms in
every case.

2. Preliminaries

Let f (x) ∈ F[x], f (x) monic, deg f = n and 0,±1 are not the roots. Then f ∗(x) =
xn f (x−1) is called as the reciprocal of f (see also [2]). A monic polynomial f (x) ∈ F[x],
f (0) �= 0 �= f (±1) is said to be self-reciprocal if f (x) = f ∗(x).

Lemma 2.1. Let f (x) ∈ F[x] be monic, f (0) �= 0 �= f (±1). If α ∈ F̄ is a root of f (x) of
multiplicity m, then α−1 is a root of f ∗(x) of the same multiplicity, i.e., m.

Proof. Easy to see. �

Lemma 2.2. Let f (x) ∈ F[x] be self-reciprocal, deg f = n, then n is even.

Proof. Clear. �

If p(x) = ∑2n
i=0 ci x

i ∈ F[x] is a self-reciprocal polynomial, then c0 = c2n = 1 and for
1 ≤ i ≤ n, ci = c2n−i .

DEFINITION 2.3

A linear operator T : V → V is said to be self-reciprocal if its characteristic polynomial
χT (x) is self-reciprocal.

It is important to observe that self-reciprocal operators exist only on even dimensional
vector spaces.

Now for T ∈ End(V ), let us study bilinear form B on V satisfying

B(T v,w) + B(v, Tw) = 0 for all v,w ∈ V (i.e. T -skew symmetric forms).
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Let f (x) ∈ F[x], f (x) monic, deg f = n and 0 is not a root of f , then f −(x) =
(−1)n f (−x) is called as the additive-dual of f . Let f (x) = xε f0(x), ε ≥ 0 such that
f0(0) �= 0 and f0 monic. We call f0 the reduced part of f . A monic polynomial f (x) ∈
F[x], f (0) �= 0 is said to be additive self-dual (α-self dual for short) if f (x) = f −(x).

DEFINITION 2.4

A linear operator T : V → V is said to be α-self dual if its characteristic polynomial is
so.

Note that all the results in the invariant case have their infinitesimal counterparts. In the
last section of this paper we only state the main results in the infinitesimal set up.

2.1 Dimension invariance over field extensions

Let V be a vector space over F of dimension n, T ∈ End(V ). The characteristic polynomial
χT (x) ∈ F[x] of T can be expressed uniquely (up to permutations of the factors) as
χT (x) = �r

i=1 fi (x), fi (x) | fi−1(x) and T |V fi (x)={v∈V | fi (T )v=0} is cyclic for 2 ≤ i ≤ r .
The polynomials fi (x) are the invariant factors of T and this factorization remains invariant
under field extensions. There is an ordered basis (e1, . . . , en) of V over F with respect to
which the matrix representation of T is given as

R =

⎛

⎜
⎜
⎜
⎜
⎝

C( f1(x))
. . .

. . .

C( fr (x))

⎞

⎟
⎟
⎟
⎟
⎠

,

where for 1 ≤ i ≤ r , C( fi (x)) is a companion matrix of fi (x) and R is the rational
canonical form of T . Under field extensions this form remains the same. In the next
proposition, we show that the dimension of T -invariant (resp. infinitesimally invariant)
bilinear forms remains invariant under field extensions of F.

PROPOSITION 2.5

Let V be a n dimensional vector space over F, T ∈ End(V ). Then dimension of the space
of T -invariant (resp. infinitesimally invariant) bilinear forms remains invariant under field
extensions of F.

Proof. Without loss of generality, take V = F
n . Then for K ⊇ F a field extension,

V ′ = K
n is its extension as a K vector space. Let (e1, . . . , en) be the ordered basis

of V over F with respect to which T has the rational canonical form R as expressed
above. This will still be an ordered basis of V ′ over K. Let T ′ ∈ End(V ′) be determined
by R. Let B = {B | B(T ′u′, T ′v′) = B(u′, v′) (resp. B(T ′u′, v′) + B(u′, T ′v′) = 0)

∀ u′, v′ ∈ V ′} be the space of T ′-invariant (resp. infinitesimally T ′-invariant) forms over K.
ThenB = {X = (B(ei , e j ) = xi j ) ∈ Mn(K) | Rt X R = X (resp. Rt X+XR = 0)}, which
is the solution space of a system of n2 linear homogeneous equations having coefficients
in F (as R ∈ Mn(F)), so is a vector space over F with dim B|K = dim B|F. �
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3. Invariance under indecomposable operators

Now let us discuss bilinear forms invariant under some indecomposable transformations.
We consider two cases: (1) T or −T unipotent and (2) T and −T nonunipotent.

Case 1. T or −T unipotent. Since invariant forms of T or −T are the same, we may
assume T as unipotent. Let V = F

n , e1, . . . , en ∈ V be the standard bases elements. Let
T : V → V be a linear transformation with the Jordan block as

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
...

. . .
. . .

0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Then we have T en = en and ∀ i, 1 ≤ i ≤ n−1, T ei = ei +ei+1 . Now let B : V ×V → k
be any bilinear form invariant under T . Again, we have the equation

(
B(ei , e j )

) = X = Ct XC = (
B(Cei ,Ce j )

) = (
B(T ei , T e j )

)
.

Here C = I + N , thus the above equation becomes (I + Nt )X (I + N ) = X which
implies and is implied by Nt X + XN + Nt XN = 0. Similarly for C = −I + N , we have
−Nt X − XNt + Nt XN = 0.

Theorem 3.1. Let V be a vector space of dimension n over F. If T is an indecomposable
invertible transformation from V onto V such that T or −T is unipotent, then the space
of T -invariant bilinear forms is of dimension n. If n is even (resp. odd) then there exists a
nondegenerate T -invariant skew symmetric (resp. symmetric) but not a symmetric (resp.
skew-symmetric) bilinear form.

Proof. Let us consider C as above with the standard basis {e1, . . . , en} of V over F and B
be a T -invariant bilinear form with (B(ei , e j )) = X .

Case i. i = n: xn, j = B(en, e j ) = B(Cen,Ce j ) for 1 ≤ j ≤ n. Thus we have xn, j =
xn, j + xn, j+1 for 1 ≤ j ≤ n − 1, i.e., xn, j+1 = 0 for 1 ≤ j ≤ n − 1.

Case ii. j = n: xi,n = B(ei , en) = B(Cei ,Cen) for 1 ≤ i ≤ n. Thus we have xi,n =
xi,n + xi+1,n for 1 ≤ i ≤ n − 1, i.e., xi+1,n = 0 for 1 ≤ i ≤ n − 1.

Case iii. 1 ≤ i, j ≤ n − 1: xi, j = B(ei , e j ) = B(Cei ,Ce j ) = B(ei + ei+1, e j + e j+1)

i.e., xi, j = xi, j + xi, j+1 + xi+1, j + xi+1, j+1, which says that xi, j+1 = −xi+1, j − xi+1, j+1
for 1 ≤ i, j ≤ n − 1.

Thus recursively we have xn−i, j+1 = 0 for i + 1 ≤ j ≤ n − 1 and xn−(s−1),s =
(−1)s−1xn,1 for 1 ≤ s ≤ n − 1. So,

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 x1,3 · · · x1,n−1 (−1)n−1xn,1

x2,1 x2,2 x2,3 · · · (−1)n−2xn,1 0
...

...
...

...
...

...

xn−1,1 (−1)xn,1 0 · · · 0 0
xn,1 0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Note that det X = xnn,1, B is non degenerate when xn,1 is nonzero.
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Further, we have xn−2,2 = (−1)xn−1,1 + (−1)2xn,1, xn−3,3 = (−1)2xn−1,1 +
2(−1)3xn,1 and thus recursively we get for 1 ≤ t ≤ n− 1, xn−t,t = (−1)t−1xn−1,1 + (t −
1)(−1)t xn,1, so

x1,n−1 = (−1)n−2xn−1,1 + (n − 2)(−1)n−1xn,1. (3.1)

Similarly xn−3,2 = −xn−2,1 − xn−2,2 = (−1)xn−2,1 + (−1)2xn−1,1 + (−1)3xn,1,
xn−4,3 = −xn−3,2 − xn−3,3 = (−1)2xn−2,1 + 2(−1)3xn−1,1 + 3(−1)4xn,1 and thus
recursively for 2 ≤ t ≤ n−1, we get xn−t,t−1 = (−1)t−2xn−2,1 +(t−2)(−1)t−1xn−1,1 +
(t − 1)(−1)t xn,1, so

x1,n−2 = (−1)n−3xn−2,1 + (n − 3)(−1)n−2xn−1,1 + (n − 2)(−1)n−1xn,1.

(3.2)

Repeating this process recursively, we get for every 1 ≤ s ≤ n − 2 and s ≤ t ≤ n − 1,

xn−t,t−s+1 = (−1)t−s xn−s,1 +
s−1∑

i=0

(t − s + i)(−1)t−s+i+1xn−s+i+1,1, (3.3)

i.e., for 1 ≤ s ≤ n − 2, we have

x1,n−s = (−1)n−s−1xn−s,1 +
s−1∑

i=0

(n − s − 1 + i)(−1)n−s+i xn−s+1+i,1. (3.4)

Thus basis of the space of invariant forms over F is

{

en,1 +
n−2∑

s=1

n−1∑

t=s

(t − 1)(−1)t en−t,t−s+1, en−1,1 +
n−1∑

t=2

(−1)t−1en−t,t

+
n−2∑

s=2

n−1∑

t=s

(t − 2)(−1)t−1en−t,t−s+1, . . . , en−l,1 +
n−1∑

t=l+1

(−1)t−l en−t,t−l+1

+
n−2∑

s=l+1

n−1∑

t=s

(t − l − 1)(−1)t−l en−t,t−s+1, . . . , e2,1 − e1,2, e1,1

}

and X has a unique expression as a linear combination of these vectors with xn,1, xn,2, . . . ,

x2,1, x1,1 respectively as free coefficients.
Note that if n is even then B symmetric (i.e., Xt = X ) implies xn,1 = 0, i.e., B cannot

be nondegenerate symmetric form. However we have plenty of nondegenerate T -invariant
skew symmetric forms obtainable by taking xn,1 �= 0, xi, j = −x j,i and substituting in X .

Similarly if n is odd, then B skew symmetric (i.e. Xt = −X ) implies xn,1 = 0, so B can-
not be a nondegenerate skew symmetric form. However we have plenty of nondegenerate
T -invariant symmetric forms obtainable by taking xn,1 �= 0, xi, j = x j,i and substituting
in X . �
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COROLLARY 3.2

With the hypothesis as in the theorem, if n is odd, then the subspace of T -invariant
symmetric forms is of dimension n+1

2 and the subspace of T -invariant skew symmetric
forms is of dimension n−1

2 .

Proof. Let X = (xi, j ) be a T -invariant bilinear form. If X is symmetric, then as n is odd
from equation (3.4), we get

xn−s,1 = x1,n−s = (−1)s xn−s,1 + (n − s − 1)(−1)s−1xn−s+1,1

+ · · · + (n − 2)xn,1.

If s is odd, i.e., n − s is even, then

xn−s,1 = 1

2
[(n − s − 1)(−1)s−1xn−s+1,1 + · · · + (n − 2)xn,1],

however there is no condition on xn−s,1 for n − s odd. Thus with similar steps as in the
theorem one may calculate the basis with {x1,1, x3,1, . . . , xn,1} respectively as the free
coefficients for the T -invariant symmetric forms. So subspace of T -invariant symmetric
bilinear forms is of dimension n+1

2 .
Similarly {x2,1, x4,1, . . . , xn−1,1} is the largest set of free coefficients for the T -invariant

skew symmetric forms. So the subspace of T -invariant skew symmetric forms is of dimen-
sion n−1

2 . �

COROLLARY 3.3

With the hypothesis as in the theorem, if n is even, then the subspace of T -invariant
symmetric forms is of dimension n

2 and the subspace of T -invariant skew symmetric forms
is of dimension n

2 .

Proof. Similar. �

Case 2. T and −T nonunipotent. In light of Proposition 2.5, for F algebraically closed (and
hence a perfect field) we know (Theorem 15.3, J E Humphreys, Linear Alg. Groups, p.
99) that for T ∈ O(V, B) (the orthogonal group O(V, B), [2] being an algebraic group),
if T = TsU is the Jordan decomposition of T with Ts,U semisimple and unipotent
respectively, then Ts,U ∈ O(V, B). In the next lemma, we use this fact to find the bilinear
forms invariant under nonunipotent linear operators.

Lemma 3.4. Let V be a vector space of dimension n over F. If T is an indecomposable,
non-unipotent invertible transformation from V onto V such that the characteristic poly-
nomial χT (x) = (x − α)n , ±1 �= α ∈ F, then the space of T -invariant bilinear forms
B = 0.

Proof. Clear (see [2]). �
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4. Invariance under decomposable operators

Let us denote minimal polynomial of a linear operator T by mT (x).

Lemma 4.1. Let V be a finite dimensional vector space over F, T : V → V an invertible
linear operator, α, β ∈ F, αβ �= 1. If (x − α)r and (x − β)s occur as elementary divisors
of χT (x), then for B a T -invariant bilinear form on V for all u ∈ V(x−α)r , v ∈ V(x−β)s ,
we have B(u, v) = 0.

Proof. Since T ∈ O(V, B) implies Ts ∈ O(V, B), so for all u ∈ V(x−α)r , v ∈ V(x−β)s ,
we have B(Tsu, Tsv) = B(u, v) or (αβ − 1)B(u, v) = 0, i.e., B(u, v) = 0. �

Lemma 4.2. Let V be a finite dimensional vector space over F, T : V → V an invertible
linear operator and ±1 �= α, β ∈ F, αβ = 1. If (x − α)r and (x − β)s occur as
elementary divisors of χT (x) = (x − α)r (x − β)s = mT (x), then dimension of the space
of T -invariant bilinear forms is 2 · min{r, s}.
Proof. Without loss of generality, we can assume that V = V(x−α)r (x−β)s . Then dim V =
r + s = n, V = V(x−α)r ⊕ V(x−β)s and the Jordan form of T is

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α

1
. . .

. . .
. . .

1 α

β

1
. . .

. . .
. . .

1 β

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let {e1, . . . , er , er+1, . . . , en=r+s} be the standard basis with {e1, . . . , er } as a basis for
V(x−α)r and {er+1, . . . , er+s} as a basis forV(x−β)s . Then we have for 1 ≤ i ≤ r−1, T ei =
αei + ei+1, T er = αer and for 1 ≤ j ≤ s − 1, T er+ j = βer+ j + er+ j+1, T en = βen .

In light of Proposition 2.5, without loss of generality, we may assume that F is alge-
braically closed and hence a perfect field. Let T = TsU be the Jordan decomposition
of T and B for any T -invariant bilinear form given by X = (xi j ) = (B(ei , e j )). Then
Ts ∈ O(V, B), so for v,w ∈ V(x−α)r , B(v,w) = B(Tsv, Tsw) = α2B(v,w), but as
α �= ±1, B(v,w) = 0. Thus B|V(x−α)r = 0 and similarly one says that B|V(x−β)s = 0.

Now again, without loss of generality, one assumes that r ≤ s. Let us find the r × s
block of X .

Case i. For j = n and 1 ≤ i ≤ r − 1, B(T ei , T en) = B(ei , en) = xin implies xi+1n = 0.

Case ii. For i = r and 1 ≤ j ≤ s − 1, B(T er , T er+ j ) = B(er , er+ j ) = xrr+ j implies
xrr+ j+1 = 0.

Case iii. For 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ s − 1, B(T ei , T er+ j ) = B(ei , er+ j ) = xir+ j

implies αxir+ j+1 + βxi+1r+ j + xi+1r+ j+1 = 0, i.e.,

xir+ j+1 = −β

α
xi+1r+ j − 1

α
xi+1r+ j+1.
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So {eir+1 + ∑i−1
j=1,k>r+1 u jk(α, β)e jk : 1 ≤ i ≤ r} forms a basis for this r × s block,

where ei j is an elementary matrix of order n with 1 at i j-th entry and 0 elsewhere and
ui j (α, β) are some particular values in Q(α, β).

Now let us find the s × r block of X = (B(ei , e j )).

Case i. For i = n, 1 ≤ j ≤ r − 1, B(T en, T e j ) = B(en, e j ) = xnj implies xnj+1 = 0.

Case ii. For j = r, 1 ≤ i ≤ s − 1, B(T er+i , T er ) = B(er+i , er ) = xr+i r implies
xr+i r + αxr+i+1 r = xr+i r , i.e., xr+i+1 r = 0.

Case iii. For 1 ≤ i ≤ s − 1 and 1 ≤ j ≤ r − 1, B(T er+i , T e j ) = B(er+i , e j ) = xr+i j

implies βxr+i j+1 + αxr+i+1 j + xr+i+1 j+1 = 0, i.e.,

xr+i+1 j = −β

α
xr+i j+1 − 1

α
xr+i+1 j+1.

So {er+1i + ∑i−1
k>r+1, j=1 ukj (α, β)ek j : 1 ≤ i ≤ r} forms a basis for this s × r block,

where ui j (α, β) = u ji (α, β).
Thus dimension of space of T -invariant bilinear forms is 2r = 2 · min{r, s}. �

Note that the T -invariant bilinear forms obtained in the above lemma is always degen-
erate for s �= r as against, we have lots of nondegenerate forms for s = r obtained in the
paper.

COROLLARY 4.3

Under the hypothesis of the lemma, if (x −α)r and (x −β)s occur as elementary divisors
of χT (x) = (x−α)r (x−β)s, then the dimension of the subspace of T -invariant symmetric
(resp. skew symmetric) bilinear forms is min{r, s}.
Proof. Again, without loss of generality, we can assume that V = V(x−α)r (x−β)s and
denote the space of T -invariant bilinear forms by B = {X = (xi j )}. Then by the lemma,

{eir+1 + er+1i + ∑ j=i−1
j=1,k>r+1 u jk(α, β)(e jk + ek j ) : 1 ≤ i ≤ r} forms a basis for B if B

is symmetric and {eir+1 − er+1i + ∑ j=i−1
j=1,k>r+1 u jk(α, β)(e jk − ek j ) : 1 ≤ i ≤ r} forms

a basis if B is skew symmetric. So subspace of symmetric (resp. skew symmetric) forms
is of dimension r = min{r, s}. �

Lemma 4.4. Let V be a finite dimensional vector space over F, T : V → V an invertible
linear operator. For r + s = n, α = ±1, if (x − α)r and (x − α)s , occur as elementary
divisors ofχT (x) = (x−α)r (x−α)s = mT (x), then dimension of the space of T -invariant
bilinear forms is n + 2 · min{r, s}.

Proof. Without loss of generality, we can assume that V = V(x−α)r ⊕ V(x−α)s . Then
dim V = r + s = n.

�

COROLLARY 4.5

With the hypothesis as in the lemma, if n is odd, then the subspace of T -invariant symmetric
forms is of dimension n+1

2 + min{r, s} and the subspace of T -invariant skew symmetric
forms is of dimension n−1

2 + min{r, s}.
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Proof. As n is odd we have two cases:

Case 1. r odd and s even. By Corollaries 3.2 and 3.3, we have dim Bsym|V(x−1)r = r+1
2 ,

dim Bskew|V(x−1)r = r−1
2 , dim Bsym|V(x−1)s = s

2 and dim Bskew|V(x−1)s = s
2 . So

dim Bsym = dim Bsym|V(x−1)r + dim Bsym|V(x−1)s + r

= r + 1

2
+ s

2
+ r = n + 1

2
+ min{r, s}

and

dim Bskew = dim Bskew|V(x−1)r + dim Bskew|V(x−1)s + r

= r − 1

2
+ s

2
+ r = n − 1

2
+ min{r, s}.

Case 2. r even and s odd. Again by Corollaries 3.2 and 3.3, we have dim Bsym|V(x−1)r = r
2 ,

dim Bskew|V(x−1)r = r
2 , dim Bsym|V(x−1)s = s+1

2 and dim Bskew|V(x−1)s = s−1
2 . So

dim Bsym = dim Bsym|V(x−1)r + dim Bsym|V(x−1)s + r

= r

2
+ s + 1

2
+ r = n + 1

2
+ min{r, s}

and

dim Bskew = dim Bskew|V(x−1)r + dim Bskew|V(x−1)s + r

= r

2
+ s − 1

2
+ r = n − 1

2
+ min{r, s}.

Thus in both the cases, dim Bsym = n+1
2 + min{r, s} and dim Bskew = n−1

2 + min{r, s}. �

COROLLARY 4.6

With the hypothesis as in the lemma, let n be even. Then if r is odd, the subspaces of
T -invariant symmetric forms and T -invariant skew symmetric forms are of dimensions
n
2 + 1 + min{r, s} and n

2 − 1 + min{r, s} respectively. If r is even, they are of dimensions
n
2 + min{r, s} and n

2 + min{r, s} respectively.

Proof. Similar. �

Lemma 4.7. Let V be a finite dimensional vector space over F, T : V → V a linear
operator. If for ±1 �= α, β ∈ F, αβ = 1 the minimal and characteristic polynomials of T
are mT (x) = (x −α)(x −β) and χT (x) = (x −α)r (x −β)s respectively, then dimension
of the space B of T -invariant bilinear forms is 2rs.

Proof. Without loss of generality, assume that r ≤ s, r + s = n,

V = ⊕r
i=1(V(x−α) ⊕ V(x−β)) ⊕ (⊕s−r

j=1V(x−β))
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and

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α

β

α

β

. . .

α

β

β

. . .

β

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the first diagonal block is of order 2r and last is of order s − r .
Let {e1, . . . , en} be the standard basis for V . Let B ∈ B be a T -invariant bilinear form

on V given by X = (xi, j ) = (B(ei , e j )).
Let us first determine B|⊕r

i=1(V(x−α)⊕V(x−β)). For 1 ≤ i, j ≤ 2r ,

xi j = B(ei , e j ) = B(T ei , T e j )

=
⎧
⎨

⎩

α2B(ei , e j ) if i and j are odd,

αβB(ei , e j ) if i and j are of distinct parity,

β2B(ei , e j ) if i and j are even,

but as α2 �= 1 and β2 �= 1, we have for 1 ≤ i, j ≤ 2r , xi j = 0 if i and j are of the same
parity, whereas no condition if i and j are of different parities. So S1 = {ei j , 1 ≤ i, j ≤
2r : 2 � i + j} forms a basis for B|⊕r

i=1(V(x−α)⊕V(x−β)), with dim B|⊕r
i=1(V(x−α)⊕V(x−β)) =

(
r

1

)(
r

1

)

+
(
r

1

)(
r

1

)

= 2r2.

Now let us determine B|⊕s−r
i=1V(x−β)

. For u, v ∈ ⊕s−r
i=1V(x−β), B(u, v) = B(Tu, T v) =

β2B(u, v), again as β2 �= 1, B(u, v) = 0. Thus B|⊕s−r
i=1V(x−β)

= 0.

The 2r × (s − r) block is determined as follows: For 1 ≤ i ≤ 2r and 1 ≤ j ≤ s − r ,

xi,2r+ j = B(ei , e2r+ j ) = B(T ei , T e2r+ j ) =
{

αβB(ei , e2r+ j ) if i is odd,

β2B(ei , e2r+ j ) if i is even,

i.e., 1 ≤ j ≤ s − r , xi,2r+ j = 0 if i is even. So S2 = {ei,2r+ j , 1 ≤ i ≤ 2r, 1 ≤
j ≤ s − r : i is odd} forms a basis for this 2r × (s − r) block and its dimension is(
r

1

)(
s − r

1

)

= r(s − r).

Finally the (s−r)×2r block is determined as follows: For 1 ≤ j ≤ 2r and 1 ≤ i ≤ s−r ,

x2r+i, j = B(e2r+i , e j ) = B(T e2r+i , T e j ) =
{

αβB(e2r+i , e j ) if j is odd,

β2B(e2r+i , e j ) if j is even,

i.e., 1 ≤ i ≤ s−r , x2r+i, j = 0 if j is even. So S3 = {e2r+i, j , 1 ≤ i ≤ s−r, 1 ≤ j ≤ 2r :
j is odd} forms a basis for this (s − r) × 2r block and its dimension is

(
r

1

)(
s − r

1

)

=
r(s − r).
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Thus dim B = 2r2 +0+ r(s− r)+ r(s− r) = 2rs, with the disjoint union S1 ∪ S2 ∪ S3
as a basis. �

COROLLARY 4.8

Under the hypothesis of the lemma, dimension of the subspace Bsym of T -invariant sym-
metric bilinear forms is rs = 1

2 dim B.

Proof. Follows from the lemma. �

COROLLARY 4.9

Under the hypothesis of the lemma, dimension of the subspace Bskew of T -invariant skew
symmetric bilinear forms is rs = 1

2 dim B.

Proof. Similar. �

Remark 4.10. If r = s, then there are nondegenerate T -invariant bilinear forms (symmet-
ric as well as skew symmetric) for T as described in the lemma.

If r = s and

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

α

β

. . .

α

β

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

let σ ∈ S2r be a permutation given by

σ =
{

�r
i=1, i even(i, r + i − 1) if r is even,

�r
i=1, i even(i, r + i) if r is odd.

Let P be the matrix representation of the permutation σ with respect to the standard basis
(P(ei ) = eσ(i)). Then P gives an isomorphism of V onto V and for B ∈ B as obtained in

the lemma, we have Pt BP =
(
O C
D O

)

, where O, C, D ∈ Mr (F), O is a zero matrix.

Thus for C, D ∈ Glr (F), B is nondegenerate. As an example C = D = Ir gives rise to
a nondegenerate T -invariant bilinear form. Also we can take D = Ct ∈ Glr (F). Then B
thus obtained will be a nondegenerate T -invariant symmetric form, similarly we can take
C ∈ Glr (F) and D = −Ct , then B thus obtained will be a nondegenerate T -invariant
skew symmetric bilinear form.

Further, note that if r �= s, we can assume r < s and P as above. Then for B a T -invariant
bilinear form, we have

H = Pt BP =
⎛

⎝
O C
D O

E
O1

F O2 O3

⎞

⎠ ∈ Mr+s(F),
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where O,C, D ∈ Mr (F), E, O1 ∈ Mr×s−r (F), F, O2 ∈ Ms−r×r (F), O3 ∈ Ms−r (F),
O, O1, O2, O3 are zero matrices. The first row consisting of the blocks O,C, E is of rank

atmost r , the last two rows are of rank same as the column rank of the matrix

(
D
F

)

which

can be atmost r . Thus in all the matrix H is of rank atmost 2r < r + s, so B cannot be
nondegenerate.

5. Main results

5.1 Invariance under self-reciprocal operators

Recall that for V a n dimensional vector space over F, T ∈ End(V ) is cyclic if there exists
v ∈ V such that the set {v, T v, . . . , T n−1v} forms a basis for V .

Theorem 5.1. Let V be a vector space of dimension 2n over F, T : V → V an invertible,
cyclic, self-reciprocal transformation. Then the space of T -invariant bilinear forms is of
dimension 2n over F.

Proof. Let mT (x) be the minimal polynomial of T . Since T is cyclic χT (x) = mT (x). Let
χT (x) = p(x) = ∑2n

i=0 ci x
i ∈ F[x]. As T is self-reciprocal, we have c0 = 1, ci = c2n−i

for all i, 0 ≤ i ≤ n.
As T is cyclic, there exists a vector v ∈ V such that orbit of v with respect to T

spans V , i.e., (e1 = v, e2 = T v, . . . , e2n = T 2n−1v) forms a frame for V and T 2nv =
−∑2n−1

i=0 ci T iv. Fix the frame e = (e1, . . . , en). Let the matrix of T with respect to e
be [T ]e and the matrix of B be X = [B]e = (B(ei , e j )). Then T -invariance amounts to
[T ]te[B]e[T ]e = [B]e. So we have

C = [T ]e =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 −c0
1 0 0 · · · 0 −c1
0 1 0 · · · 0 −c2
...

...
...

. . .
...

...

0 0 0 · · · 1 −c2n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Let Ct = (cti j ) be the transpose of the matrix C , cti j = c ji .

(Ct XC)i j =
2n∑

k,l=1

ctik xklcl j =
2n∑

k,l=1

cki B(ek, el)cl j = B

(
2n∑

k=1

cki ek,
2n∑

l=1

cl j el

)

= B(T ei , T e j ).

So we have

(B(ei , e j )) = X = Ct XC = (B(T ei , T e j )).

Thus we get xi j = xi+1 j+1 for all i, j, 1 ≤ i, j ≤ 2n − 1. Let B(e1, ei ) = αi , 1 ≤ i ≤ 2n
and B(e j , e1) = β j , 1 ≤ j ≤ 2n. Clearly α1 = β1. So
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X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1 α2 α3 · · · α2n
β2 α1 α2 · · · α2n−1
...

. . .
. . .

. . .
...

...
. . .

. . .
...

β2n β2n−1 β2n−2 · · · α1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now for 1 ≤ i ≤ n, we have

α2n−i+1 = B(e1, e2n−i+1) = B(e2, e2n−i+2) = · · · = B(ei , e2n)

= B(T ei , T e2n) = B(ei+1, T
2nv)

= B(ei+1,−
2n−1∑

j=0

c j e j+1) = −
2n−1∑

j=0

c j B(ei+1, e j+1)

= −
2n−1∑

j=i

c j B(ei+1, e j+1) −
i−1∑

j=0

c j B(ei+1, e j+1)

= −
2n−1∑

j=i

c j B(e1, e j−i+1) −
i−1∑

j=0

c j B(ei+1, e j+1)

= −
2n−1∑

j=i

c jα j−i+1 −
i−1∑

j=0

c j B(ei+1, e j+1). (5.1)

Similarly for 1 ≤ k ≤ n, we have

β2n−k+1 = −
2n−1∑

j=k

c jβ j−k+1 −
k−1∑

j=0

c j B(e j+1, ek+1). (5.2)

Now for a general bilinear form B, equations (5.1) and (5.2) can be expressed as

α2n−i+1 = −
2n−1∑

j=i

c jα j−i+1 −
i−1∑

j=0

c jβi− j+1, (5.3)

β2n−i+1 = −
2n−1∑

j=i

c jβ j−i+1 −
i−1∑

j=0

c jαi− j+1 (5.4)

respectively for 1 ≤ i ≤ n. Thus for i = t ≤ n and i = s ≤ n, from equations (5.3) and
(5.4), we get

α2n−t+1 = −βt+1 −
t−1∑

j=1

c j (βt− j+1 + α2n− j−t+1)

−
n−1∑

j=t

c j (α j−t+1 + α2n− j−t+1) − cnαn−t+1 (5.5)
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and

β2n−s+1 = −αs+1 −
s−1∑

j=1

c j (αs− j+1 + β2n− j−s+1)

−
n−1∑

j=s

c j (β j−s+1 + β2n− j−s+1) − cnβn−s+1 (5.6)

respectively. Thus αn+1, . . . , α2n, βn+2, . . . , β2n are expressible in terms of α1, . . . , αn,

β2, . . . , βn+1.
It follows that the dimension is 2n. �

Remark 5.2. Remark that ‘space ofT -invariant forms = subspace of symmetricT -invariant
forms ⊕ subspace of skew symmetric T -invariant forms’.

COROLLARY 5.3

Under the hypothesis of the theorem, the space of T -invariant symmetric bilinear forms
is of dimension n.

Proof. If B is a symmetric bilinear form, then for 1 ≤ j ≤ 2n, α j = β j and for 1 ≤ i ≤ n
from equation (5.3), we have

α2n−i+1 = −
2n−1∑

j=i

c jα j−i+1 −
i−1∑

j=0

c j B(e j+1, ei+1)

= −
2n−1∑

j=i

c jα j−i+1 −
i−1∑

j=0

c j B(e1, ei− j+1)

= −
2n−1∑

j=i

c jα j−i+1 −
i−1∑

j=0

c jαi− j+1.

Thus for i = t ≤ n, we have

α2n−t+1 = −αt+1 −
t−1∑

j=1

c j (αt− j+1 + α2n− j−t+1)

−
n−1∑

j=t

c j (α j−t+1 + α2n− j−t+1) − cnαn−t+1.

These are the only non identically zero equations in this case. So out of {α1 · · · αn+1}
(as appearing in the theorem), α1 · · ·αn are the free scalars. Thus the set of T -invariant
symmetric bilinear forms turns out to be a vector space over F of dimension n. �
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COROLLARY 5.4

Under the hypothesis of the theorem, the space of T -invariant skew symmetric bilinear
forms is of dimension n.

Proof. Follows from the theorem, remark and the previous corollary. �

Note that there are always nondegenerate T -invariant bilinear forms for T as in the theorem.
As an example, if we take for 1 ≤ i ≤ 2n, αi = −βi , α j = 0 for all 1 ≤ j ≤ n and
αn+1 �= 0 (the choice of this non-zero value is assured from equations (5.5) and (5.6)),
then X is

X =
(
O A
−At O

)

,

where O is the zero square matrix of order n, A is the upper triangular square matrix of
order n with αn+1 as entries on the main diagonal. Clearly X is skew symmetric and as
det X = det2 A = α2n

n+1 �= 0, it is nondegenerate. Now let Y = (C − C−1)t X , then we
have

CtYC = Ct (C − C−1)t XC = Ct (C − C−1)t (C−1)tCt XC

= (C−1(C − C−1)C)t X = (C − C−1)t X = Y,

i.e., Y gives a T -invariant bilinear form. Now we will see that Y is symmetric. As Y =
(C − C−1)t X = Ct X − (C−1)t X = Ct X − (C−1)tCt XC = Ct X − XC , we have
Y t = XtC − Ct Xt = −XC + Ct X = Ct X − XC = Y . Now since by hypothesis none
of ±1 is an eigenvalue of C , C − C−1 is invertible and as X is invertible, we get Y as a
nondegenerate T -invariant symmetric bilinear form.

Remark 5.5. There exist symmetric nondegenerate and skew symmetric nondegenerate
forms invariant under the linear operator as in the theorem.

5.2 Invariance under indecomposable operators

Theorem 5.6. Let V be a vector space of dimension n over F. If T is an indecomposable,
self-reciprocal transformation on V , then the space of T -invariant bilinear forms is of
dimension n over F.

Proof. As T is self-reciprocal, n is even. T is invertible and as T is indecomposable it is
cyclic also. So by Theorem 5.1, this theorem follows. �

COROLLARY 5.7

Under the hypothesis of the theorem the subspace of T -invariant symmetric (resp. skew-
symmetric) forms is of dimension n

2 and this subspace contains a nondegenerate form.

Proof. Clear from the corollaries of Theorem 5.1. �

Theorem 5.8. Let V be a vector space of dimension n over F. If T is an indecomposable,
invertible, non-unipotent, non self-reciprocal transformation on V, then the space of T -
invariant bilinear forms is 0.
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Proof. Since T is indecomposable, invertible, the characteristic polynomial of T is
χT (x) = p(x)d , p(x) ∈ F[x] irred., d ∈ Z

+. So V = ker(p(x)d). Now due to Proposition
2.5, we can pass our investigation to F̄. Then we have

V = ⊕α∈F̄a root of p(x)Vα, where Vα = ker (x − α)dk,

with

k =
{

1, if char F = 0,

( char F)s, s ∈ Z
+, otherwise.

Let B be a T -invariant bilinear form on V . If u ∈ Vα and v ∈ Vβ , then B(Tu, T v) =
B(u, v) amounts to B(Tsu, Tsv) = B(u, v), i.e., (αβ − 1)B(u, v) = 0. As p(x) is
nonunipotent α �= ±1 �= β also as p(x) is non self-reciprocal β �= α−1. Thus we have
B(u, v) = 0. Also by the previous lemma, BVα = 0. Therefore the space of T -invariant
forms is 0. �

5.3 Invariant under decomposable operators

Theorem 5.9. Let V be a finite dimensional vector space overF, T : V → V an invertible
linear operator. If for p(x) ∈ F[x] irreducible with p(±1) �= 0, p(x)r and p∗(x)s occur
as elementary divisors of χT (x) = p(x)r p∗(x)s . Then the dimension of the space of
T -invariant bilinear forms is 2 · deg p(x) · min{r, s}.

Proof. Since p(x) ∈ F[x] is irreducible, all its roots are of same multiplicity, say k.
So by Lemma 2.1, all roots of p∗(x) are also of the same multiplicity, i.e., of k. So
dim V = kr + ks. Let R = kr and S = ks. As invariances of χT does not change over the
extensions of the field, over F̄, it will remain the same and over F̄, we have

V = Vp(x)r p∗(x)s = ⊕αβ=1, p(α)=0(V(x−α)R ⊕ V(x−β)S ).

Since α, β �= ±1, by Lemma 4.2, we have

dim B|V
(x−α)R⊕V

(x−β)S
= 2 · min{R, S}.

So

dim B =
∑

αβ=1, p(α)=0

dim B|V
(x−α)R⊕V

(x−β)S

=
∑

distinct roots of p(x)

2 · min{R, S}

= # distinct roots ofp(x) × 2 · min{R, S}
= deg p(x)

k
· 2 · min{R, S} = 2 deg p(x) · min{r, s}.

�
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COROLLARY 5.10

Under the hypothesis of the theorem, the dimension of the subspace of T -invariant sym-
metric (resp. skew symmetric) bilinear forms is deg p(x) min{r, s}.

Proof. Again, without loss of generality, assume that V = Vp(x)r p∗(x)s and T =
T |Vp(x)r p∗(x)s . Then as in the proof of the theorem, we obtain

V = Vp(x)r p∗(x)s = ⊕αβ=1, p(α)=0(V(x−α)R ⊕ V(x−β)S ).

Since α, β �= ±1, by Corollary 4.3, we have

dim Bsym|V
(x−α)R⊕V

(x−β)S
= min{R, S} = 1

2
dim B|V

(x−α)R⊕V
(x−β)S

,

and

dim Bskew|V
(x−α)R⊕V

(x−β)S
= min{R, S} = 1

2
dim B|V

(x−α)R⊕V
(x−β)S

.

So

dim Bsym = 1

2
dim B = dim Bskew,

hence by the theorem

dim Bsym = dim Bskew = deg p(x) · min{r, s}.

�

Theorem 5.11. Let V be a finite dimensional vector space over F, T : V → V a linear
operator. Let the minimal and characteristic polynomials of T are mT (x) = f (x) f ∗(x)
and χT (x) = f (x)r f ∗(x)s, f (x) ∈ F[x] is separable with f (±1) �= 0 and for u ∈ F̄ a
root of f (x), f (u−1) �= 0. Then dimension of the space of T -invariant bilinear forms is
2 · deg f (x)rs.

Proof. As f (x) is separable, by Lemma 2.1, f ∗(x) is also separable and so according to
the hypothesis, mT (x) has distinct roots. Hence over F̄, we have

V = ⊕αβ=1,α a root of f (x)(V(x−α)r ⊕ V(x−β)s )
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and for every root α of f (x), we have

T |V(x−α)r ⊕V(x−β)s =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α

β

α

β

. . .

α

β

β

. . .

β

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let B ∈ B be a T -invariant bilinear form. For α, α′ two distinct roots of f (x), if u ∈
V(x−α)r ⊕V(x−β)s and v ∈ V(x−α′)r ⊕V(x−β ′)s , then u = u1+u2 and v = v1+v2 with u1 ∈
V(x−α)r , u2 ∈ V(x−β)s , v1 ∈ V(x−α′)r , v2 ∈ V(x−β ′)s uniquely. B(u1, v1) = B(Tu1, T v1)

implies (αα′ − 1)B(u1, v1) = 0, as αα′ �= 1, B(u1, v1) = 0. By similar arguments, we
see that B(ui , v j ) = 0 = B(v j , ui ) for 1 ≤ i, j ≤ 2, so B(u, v) = 0 = B(v, u).

Thus dim B = ∑
αβ=1,α a root of f (x) dim B|V(x−α)r ⊕V(x−β)s . But by Lemma 4.8,

dim B|V(x−α)r ⊕V(x−β)s = 2rs and we get

dim B =
∑

α a root of f (x)

2rs = 2rs deg f (x).

�

COROLLARY 5.12

Under the hypothesis of the theorem, dimension of the subspace of T -invariant symmetric
bilinear forms is deg f (x)rs.

Proof. Clear. �

COROLLARY 5.13

Under the hypothesis of the theorem, dimension of the subspace of T -invariant skew
symmetric bilinear forms is deg f (x)rs.

Proof. Similar. �

Remark 5.14. If r = s and T as described in the theorem, then there are nondegenerate
T -invariant bilinear forms (symmetric as well as skew symmetric).

Let B ∈ B be a T -invariant bilinear form. Let deg f (x) = k and α1, . . . , αk be the
distinct roots of f (x). Then for every αi assuming Vi = V(x−αi )

r ⊕ V(x−βi )
r , we have

Bi = B|Vi is a Ti = T |Vi -invariant form. By Remark 4.10, for every i, 1 ≤ i ≤ k, we have



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:47 Page 19 of 22 47

an isomorphism Pi : Vi → Vi such that Pi t Bi Pi =
(
O Ci

Di O

)

, with O, Ci , Di ∈ Mr (F),

O is a zero matrix. Now let

P =
⎛

⎜
⎝

P1
. . .

Pk

⎞

⎟
⎠ , then Pt BP =

⎛

⎜
⎝

(P1
t B1P1)

. . .

(Pkt Bk Pk)

⎞

⎟
⎠ ,

i.e., Pt BP =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

O C1
D1 O

. . .

O Ck

Dk O

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thus for all i, 1 ≤ i ≤ k, we can choose Ci , Di ∈ Glr (F) and get B a nondegenerate
T -invariant bilinear form. Further, we can choose Ci ∈ Glr (F) and Di = Ci

t (resp. −Ci
t )

and get B a nondegenerate T -invariant symmetric (resp. skew symmetric) bilinear form.
As an explicit example, we can choose Ci = Ir and Di = Ir (resp. −Ir ) and obtain a
T -invariant nondegenerate symmetric (resp. skew symmetric) bilinear form.

Note that if r �= s, by Remark 4.10, Pt
i Bi Pi are degenerate for all i, 1 ≤ i ≤ k; hence

B is always degenerate.

5.4 Infinitesimal version

DEFINITION 5.15

A linear transformation is said to be α-self dual if its characteristic polynomial is so.

In the next theorem, we characterize the bilinear forms infinitesimally invariant under a
cyclic, α-self dual transformation T ∈ End(V ). Since T is cyclic χT (x) = mT (x).

Theorem 5.16. Let V be a vector space of dimension 2n over F, T ∈ End(V ) cyclic,
α-self dual, then the space of T -invariant infinitesimal bilinear forms is of dimension 2n.

COROLLARY 5.17

With the hypothesis of the theorem, the subspace of T -invariant infinitesimally symmetric
bilinear forms is of dimension n.

COROLLARY 5.18

With the hypothesis of the theorem, the subspace of T -invariant infinitesimally skew sym-
metric bilinear forms is of dimension n.

COROLLARY 5.19

Under the hypothesis of the theorem, there exists a nondegenerate T -invariant infinitesi-
mally symmetric (resp. skew symmetric) bilinear form.
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Now let us discuss bilinear forms infinitesimally invariant under indecomposables. We
consider two cases: (1) T nilpotent and (2) T nonnilpotent.

Case 1. T nilpotent.Let S : V → V be a linear nilpotent cyclic transformation. The Jordan
form may be chosen as

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
. . .

. . .
...

...

0 0 0 · · · 0 0
0 0 0 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then we have Sen = 0, Sei = ei+1 ∀ i, 1 ≤ i ≤ n − 1.

Theorem 5.20. Let V be a vector space of dimension n over F. If S ∈ End (V ) is an
indecomposable nilpotent transformation, then the space of infinitesimally T -invariant
bilinear forms is of dimension n. If n is even (resp. odd), this space has a nondegenerate
skew symmetric (resp. symmetric) form but any symmetric (resp. skew symmetric) form.

COROLLARY 5.21

With the hypothesis as in the theorem, if n is odd, then the subspace of infinitesimally
T -invariant symmetric forms is of dimension n+1

2 and the subspace of infinitesimal T -
invariant skew symmetric forms is of dimension n−1

2 .

COROLLARY 5.22

With the hypothesis as in the theorem, if n is even, then the subspace of infinitesimally T -
invariant symmetric forms is of dimension n

2 and the subspace of infinitesimally T -invariant
skew symmetric forms is of dimension n

2 .

Case 2. T nonnilpotent. Again, in the light of Proposition 2.5, without loss of general-
ity, we may assume that the base field is algebraically closed. By Theorem 15.3 (J E
Humphreys, Linear Algebraic Groups, p. 98) (see also, [4]) for T ∈ O(V, B), with Jordan
decomposition T = Ts + N , we have Ts ∈ O(V, B).

Theorem 5.23. Let V be a vector space of dimension n over F. If T is an indecomposable,
α-self dual transformation on V, then the space of T -infinitesimally invariant bilinear
forms is of dimension n over F.

COROLLARY 5.24

Under the hypothesis of the theorem the subspace of T -infinitesimally invariant symmetric
(resp. skew symmetric) forms is of dimension n

2 . Also it contains a nondegenerate form.

Theorem 5.25. Let V be a vector space of dimension n over F. If T is an indecomposable,
non-nilpotent, non α-self dual transformation on V, then the space of T -infinitesimally
invariant bilinear forms is 0.
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Theorem 5.26. Let V be a finite dimensional vector space over F, T ∈ End (V ). If for
p(x) ∈ F[x] irreducible with p(0) �= 0, p(x)r and p−(x)s occur as elementary divisors of
χT (x), then the dimension of the space of T |Vp(x)r p−(x)s

-invariant infinitesimally bilinear
forms is 2 · deg p(x) · min{r, s}.

COROLLARY 5.27

Under the hypothesis of the theorem, the dimension of the subspace of T |Vp(x)r p−(x)s
-

invariant symmetric (resp. skew symmetric) infinitesimally bilinear forms is deg p(x) ·
min{r, s}.

Theorem 5.28. Let V be a finite dimensional vector space over F, T ∈ End (V ). Let
the minimal and characteristic polynomials of T be mT (x) = f (x) f −(x) and χT (x) =
f (x)r f −(x)s, f (x) ∈ F[x] is separable with f (0) �= 0 and for u ∈ F̄ a root of f (x),
f (−u) �= 0. Then dimension of the space of T -invariant infinitesimally bilinear forms is
2 · deg f (x)rs.

COROLLARY 5.29

Under the hypothesis of the theorem dimension of the subspace of T -invariant symmetric
(resp. skew symmetric) infinitesimally bilinear forms is deg f (x)rs.

Remark 5.30. If r = s and T as described in the theorem, then there are nondegenerate
T -invariant infinitesimally bilinear forms (symmetric as well as skew symmetric) and if
r �= s, there are no nondegenerate T -invariant infinitesimally forms. Explanations are
similar to the invariance version.

Future scope. As a future work, the investigation of invariant forms under a group of linear
transformations over a field may be taken.
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