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Abstract. Here, we shall use the first periodic Bernoulli polynomial B̄1(x) =
x−[x]− 1

2 to resurrect the instinctive direction of B Riemann in his posthumous fragment
II on the limit values of elliptic modular functions à la C G J Jacobi, Fundamenta Nova
§40 (1829). In the spirit of Riemann who considered the odd part, we use a general
Dirichlet–Abel theorem to condense Arias–de-Reyna’s theorems 8–15 into ‘a bigger
theorem’ in Sect. 2 by choosing a suitable R-function in taking the radial limits. We
supplement Wang (Ramanujan J. 24 (2011) 129–145). Furthermore, the same method
is applied to obtain in Sect. 3 a correct representation for the ‘trigonometric series’, i.e.,
we prove that for every rational number x the trigonometric series (3.5) is represented by
∑∞

n=1(−1)n
B̄1(nx)

n as Dedekind suggested but not by
∑∞

n=1
B̄1(nx)

n as Riemann stated.
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1. Introduction

Riemann’s posthumous fragment [8] consists of two parts: Fragment I and Fragment II.
Dedekind succeeded in elucidating the genesis of all the formulas in Fragment II by
introducing the most celebrated Dedekind eta-function [1]. All the results in Fragment II
deal with the asymptotic behavior of those modular functions from Jacobi’s Fundamenta
Nova, §40 [4] for which the variable tends to rational points on the unit circle. After
Dedekind, several authors including Smith [11], Hardy [3], Rademacher [6,7] made some
more incorporations of Fragment II. In 2004, Arias–de-Reyna [2] analysed all the formulas
in Fragment II again. As Wang [12] pointed out, a serious defect is that Arias–de-Reyna
overlooked the more informative paper of Wintner [13] published in 1941, which already
gave a close analysis of Fragment I and some far-reaching comments on Fragment II. What
Riemann did was to eliminate the singular part which is the Clausen function, by taking the
odd part. Accordingly, Wang [12, Theorem 3] (see Lemma 2 below) chose a suitable R-
function by taking the radial limits and applied the new Dirichlet–Abel theorem, whereby
he almost immediately got the expression in terms of the (differences of) polylogarithm
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function of order 1, without singularity and claimed that this is what Riemann intended to
do but could not do because of lack of time.

In order to remove singularities, Riemann used a well-known device of taking the odd
part (3.2) or an alternate sum (3.3) to be stated in §3.

In §2, we shall reveal that the limit values of elliptic modular functions in Riemann’s
fragment II by evaluating the differences of polylogarithm function l1(x) of order 1 (cf.
Lemma 2 below), which can be made more concise, by applying the identities

l1(x) = A1(x) − π i B̄1(x), 0 < x < 1, A1(x) = − log 2| sin 2πx |, (1.1)

the odd part (3.2) being

l1(x) − l1(−x) = −2π i B̄1(x), 0 < x < 1, (1.2)

where B̄1(x) = x − [x] − 1
2 is the first periodic Bernoulli polynomial having the Fourier

expansion denoted by ψ(x) in [13]. Then incorporating the Bernoulli formula

B̄1(2x) − B̄1(x) = B̄1

(

x + 1

2

)

(1.3)

whose right-hand side is the Fourier series

− 1

π

∞∑

n=1

1

n
sin 2πn

(

x + 1

2

)

,

which is B̄1
(
x + 1

2

)
for x /∈ Z and is 0 for x ∈ Z + 1

2 and is denoted by ϕ(x) in [2].
We shall rewrite the ‘bigger theorem’ of Wang ([12, Theorem 3]) in the form presented
there. In §3, we shall consider the trigonometric series (3.5) (cf. [10]) at every rational

point x , which, Riemann asserts, is the function f (x) = ∑∞
n=1

B̄1(nx)
n , but Dedekind [9,

pp. 270–271] adds a note where he criticizes this statement of Riemann. Arias–de-Reyna
[2, pp. 115–120] gave a proof of this statement of Riemann, which should be replaced by
our theorem in §3, Theorem 2.

2. Riemann’s posthumous fragment II revisited

All the subsequent theorems that Riemann considers in the second fragment are rephrases
of the results of Jacobi and we state them as follows:

DEFINITION 1

The elliptic modular functions k = k(z), K = K (z), k′ = k′(z) are defined respectively
by

log k − log 4
√
z =

∞∑

n=1

(−1)n

n

4zn

1 + zn
, (2.1)

log
2K

π
=

∞∑

p=1

4z p

p(1 + z p)
(2.2)
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and

− log k′ =
∞∑

p=1

8z p

p(1 − z2p)
, (2.3)

where in the last two sums, we follow Riemann and let p run through odd integers, i.e.
these sums are odd parts.

To condense the ‘bigger theorem’ of [12] (Lemma 2 below) or Arias–de-Reyna’s theorem
8–15 of [2], we use the coincident notations as [12] and prove some elementary lemmas.

Lemma 1. Letα = eπ i/Q be the first 2Q-th primitive root of unity, and let M, Q be integers
with M even and Q > 1. We have

Q−1∑

r=1

(−1)r
(

l1

(
Mr

Q

)

− l1

(
Mr

2Q

))

= −π i(−1)Q−1
[
Q

2

]
M

2Q
+ π i

Q−1∑

r=1

(−1)r
[
Mr + Q

2Q

]

, (Q odd)

(2.4)
Q−1∑

r=1

(−1)r
r

Q

(

2l1

(
Mr

2Q

)

− l1

(
Mr

Q

)

− 2l1

(−Mr

2Q

)

+ l1

(−Mr

Q

))

= π i
Q−1∑

r=1

(−1)r
r

Q
(−1)

[
Mr
2Q

]

, (2.5)

[
Q
2

]
−1

∑

r=0

2r + 1

Q

(

2l1

(
M(2r + 1)

2Q

)

− 2l1

(−M(2r + 1)

2Q

)

− l1

(
M(2r + 1)

Q

)

+ l1

(−M(2r + 1)

Q

))

= 2π i

[
Q
2

]
−1

∑

r=0

2r + 1

2Q
(−1)

[
M(2r+1)

2Q

]

, (2.6)

Q
2 −1∑

r=1

(−1)r
2r

Q

(

l1

(
Mr

2Q

)

− l1

(−Mr

2Q

))

= −2π i

Q
2 −1∑

r=1

(−1)r
2r

Q

(
Mr

2Q
−

[
Mr

2Q

]

− 1

2

)

(2.7)
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Proof. Applying (1.1) and (1.3), we have

l1

(
Mr

Q

)

− l1

(
Mr

2Q

)

=− log 2

∣
∣
∣
∣cos

Mr

2Q
π

∣
∣
∣
∣−π i

(

B̄1

(
Mr

Q

)

− B̄1

(
Mr

2Q

))

= − log 2

∣
∣
∣
∣cos

Mr

2Q
π

∣
∣
∣
∣ − π i B̄1

(
Mr + Q

2Q

)

,

and sum these over r = 1, . . . , Q − 1 to deduce that

Q−1∑

r=1

(−1)r
(

− log 2

∣
∣
∣
∣cos

Mr

2Q
π

∣
∣
∣
∣

)

= 0

by symmetry. Note that B̄1(x) = x − [x] − 1
2 . We have

Q−1∑

r=1

(−1)r
(

l1

(
Mr

Q

)

− l1

(
Mr

2Q

))

= −π i
Q−1∑

r=1

(−1)r
(
Mr

2Q
−

([
Mr

Q

]

−
[
Mr

2Q

]))

.

Replacing
[
Mr
Q

]
−

[
Mr
2Q

]
by

[
Mr+Q

2Q

]
and

∑Q−1
r=1 (−1)r r by (−1)Q−1

[
Q
2

]
, we conclude

(2.4).
Similarly, applying (1.2), the LHS of (2.5), respectively (2.6) reads as

LHS = −2π i
Q−1∑

r=1

(−1)r
r

Q

(

2B̄1

(
Mr

2Q

)

− B̄1

(
Mr

Q

))

,

respectively.

LHS = −2π i

[
Q
2

]
−1

∑

r=0

2r + 1

Q

(

2B̄1

(
M(2r + 1)

2Q

)

− B̄1

(
M(2r + 1)

Q

))

,

and by the identity

B̄1

(
Mr

Q

)

− 2B̄1

(
Mr

2Q

)

= 2

[
Mr

2Q

]

−
[
Mr

Q

]

+ 1

2
= (−1)

[
Mr
2Q

]
1

2

we have (2.5) respectively (2.6). Hence (2.7) is trivial, thus completing the proof. �



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:28 Page 5 of 13 28

Lemma 2 [7, Theorem 3]. Let ξ = M
Q be a rational number with M even and Q > 1, and

let z = yeπ iξ , y ∈ [0, 1). Then we have

log k = 1

2
log y + Mπ

2Q
i + ω(y) − 2

Q−1∑

r=1

(−1)r
(

l1

(
Mr

Q

)

− l1

(
Mr

2Q

))

,

log
2K

π
= − log(1 − y) + ω(y) + log

π

Q

+
Q−1∑

r=1

(−1)r
(

l1

(
Mr

Q

)

− 2l1

(
Mr

2Q

))

,

− log k′ = π2

2Q2(1 − y)
− π2

4Q2 − log 4 + ω(y) + 2

Q−1
2 −1∑

r=0

2r + 1

Q

×
(

2l1

(
M(2r + 1)

2Q

)

− l1

(
M(2r + 1)

Q

)

− 2l1

(−M(2r + 1)

2Q

)

+ l1

(−M(2r + 1)

Q

))

,

for Q odd;

log k = 1

2
log y + Mπ

2Q
i + 2π2

Q2

1

(1 − y)
+ ω(y) − π2

Q2 − log 4

− 2

Q
2 −1∑

r=1

(−1)r
2r

Q

(

l1

(
Mr

2Q

)

− l1

(−Mr

2Q

))

,

log
2K

π
= − 2π2

Q2(1 − y)
− log(1 − y) + π2

Q2 + log
8π

Q
+ ω(y)

−
Q
2 −1∑

r=1

(−1)r
2r

Q

(

2l1

(
Mr

2Q

)

− 2l1

(−Mr

2Q

)

− l1

(
Mr

Q

)

+ l1

(−Mr

Q

))

,

− log k′ = − 2π2

Q2(1 − y)
+ π2

Q2 + log 4 + ω(y) − 2

Q
2 −1∑

r=0

2r + 1

Q

×
(

2l1

(
M(2r + 1)

2Q

)

− 2l1

(−M(2r + 1)

2Q

)

− l1

(
M(2r + 1)

Q

)

+ l1

(−M(2r + 1)

Q

))

,
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for Q even and Q
2 odd;

log k = 1

2
log y − 2π2

Q2

1

(1 − y)
+ ω(y) + π2

Q2 + log 4 + Mπ

2Q
i

− 2

Q
2 −1∑

r=1

(−1)r
2r

Q

(

l1

(
Mr

2Q

)

− l1

(−Mr

2Q

))

log
2K

π
= − log(1 − y) + log

2π

Q
+ ω(y) + 2

Q
2 −1∑

r=1

(−1)r
2r

Q

×
(

2l1

(
Mr

2Q

)

− 2l1

(−Mr

2Q

)

− l1

(
Mr

Q

)

+ l1

(−Mr

Q

))

,

− log k′ = ω(y) − 2

Q
2 −1∑

r=0

2r + 1

Q

×
(

2l1

(
M(2r + 1)

2Q

)

− 2l1

(−M(2r + 1)

2Q

)

−l1

(
M(2r + 1)

Q

)

+ l1

(−M(2r + 1)

Q

))

,

for Q
2 even; where 2π i MQ is one of the values of log e2π i MQ , and ω(y) is a continuation

function on I = [0, 1] with ω(1) = 0 which maybe different in different place.

We are in a position to state our theorem.

Theorem 1. Let ξ = M
Q be a rational number with M even and Q > 1, and let z =

yeπ iξ , y ∈ [0, 1). Then we have

log k = 1

2
log y+ Mπ

2Q
i+ω(y)+2π i

[
Q

2

]
M

2Q
− 2π i

Q−1∑

r=1

(−1)r
[
Mr+Q

2Q

]

and

log
2K

π
= − log(1 − y) + ω(y) + log

π

Q
− π i

Q−1∑

r=1

r

Q
(−1)

r+
[
Mr
2Q

]

,

and

− log k′ = π2

2Q2(1 − y)
− π2

4Q2 − log 4 + ω(y)

+ 2π i

Q−1
2 −1∑

r=0

2r + 1

Q
(−1)

[
M(2r+1)

2Q

]

,
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for Q odd;

log k = 1

2
log y + Mπ

2Q
i + 2π2

Q2

1

(1 − y)
+ ω(y) − π2

Q2 − log 4

+ 4π i

Q
2 −1∑

r=1

(−1)r
2r

Q

(
Mr

2Q
−

[
Mr

2Q

]

− 1

2

)

and

log
2K

π
= − 2π2

Q2(1 − y)
− log(1 − y) + π2

Q2 + log
8π

Q
+ ω(y)

− π i

Q
2 −1∑

r=1

2r

Q
(−1)

r+
[
Mr
2Q

]

,

− log k′ = − 2π2

Q2(1 − y)
+ π2

Q2 + log 4

+ ω(y) − 2π i

Q
2 −1∑

r=0

2r + 1

Q
(−1)

[
M(2r+1)

2Q

]

,

for Q even and Q
2 odd;

log k = 1

2
log y − 2π2

Q2

1

(1 − y)
+ ω(y) + π2

Q2 + log 4 + Mπ

2Q
i

+ 4π i

Q
2 −1∑

r=1

(−1)r
2r

Q

(
Mr

2Q
−

[
Mr

2Q

]

− 1

2

)

and

log
2K

π
= − log(1 − y) + log

2π

Q
+ ω(y) + 2π i

Q
2 −1∑

r=1

2r

Q
(−1)

r+
[
Mr
2Q

]

,

and

− log k′ = ω(y) − 4π i

Q
2 −1∑

r=0

2r + 1

2Q
(−1)

[
M(2r+1)

2Q

]

,

for Q
2 even; where 2π i MQ is one of the values of log e2π i MQ, and ω(y) is a continuation

function on I = [0, 1] with ω(1) = 0 which maybe different in different place.

Proof. The proofs are trivial, i.e., distinguishing the parities of the integers M and Q, then
replacing the last summation terms of each equations in Lemma 2 by the same expression



28 Page 8 of 13 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:28

summations of the differences of polylogarithm function l1(x) in Lemma 1, and, after
some calculus, we obtain Theorem 1. �

3. A ‘non integrable function’ represented by a trigonometric series

In [10], Riemann asserts that the function f (x) = ∑∞
n=1

B̄1(nx)
n is represented by the

trigonometric series

∞∑

n=1

⎛

⎝
∑

d|n
−(−1)d

⎞

⎠ sin 2πnx

nπ
,

at each rational point x . Dedekind [9, pp. 270–271] added the following: Man findet
diese Entwicklung (wenn auch auf einem nicht ganz einwurfsfreien Wege), wenn man die
Function ϕ(x) durch die bekannte Formel

−
∞∑

m=1

(−1)m
sin 2mπx

mπ

ausdrückt, dies in die Summe
∑ (nx)

n einsetzt und die Ordnung der Summationen ver-
tauscht [1], where he criticizes the statement of Riemann. He assumed that Riemann
follows here a false argument. But Riemann does not say anything about how he proves
his assertion. At the end of the posthumous fragment I, Riemann proved the theorem of
Abel about the radial limit of a power series and then ends this fragment with the words:

From this theorem, – that when the above had already been written (September 14th
1852), Prof. Dirichlet tells that it is due to Prof. Abel – easily follows. . .

Smith [11] asserts that it is not easy to see how he proposed to complete the demon-
stration. By Arias–de-Reyna [2, pp. 115–120] and Wintner [13], we prove the following
theorem.

Theorem 2. Let M, Q be co-prime integers and x = M
Q with Q > 1. Then

f (x) =
∞∑

n=1

(−1)n
B̄1(nx)

n
=

∞∑

n=1

⎛

⎝
∑

d|n
−(−1)d

⎞

⎠ sin 2nπx

nπ
. (3.1)

Remark 1. The odd part and the alternating sum referred to in §1 are described respectively
by

∑

2�n

an =
∑

n

an −
∑

2|n
an (3.2)

and

∑

n

(−1)nan =
∑

2|n
an −

∑

2�n

an = 2
∑

2|n
an −

∑

n

an, (3.3)

by (3.2), where n runs over a finite range or the series are absolutely convergent. For some
more details, readers may refer to [8–13].
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By the identities

−
∞∑

m=1

(−1)m
sin 2mπx

mπ
= −

∞∑

m=1

sin 2mπ
(
x + 1

2

)

mπ
= B̄1

(

x + 1

2

)

and

∞∑

n=1

(−1)n
B̄1(nx)

n
=

∞∑

n=1

B̄1(2nx) − B̄1(nx)

n
=

∞∑

n=1

B̄1
(
nx + 1

2

)

n
, (3.4)

we see that Theorem 2 is exactly as in Dedekind’s notes where he criticizes the statement
of Riemann. Note that (3.4) follows from (3.3) and (1.3).

Proof. We apply a generalization of Dirichlet’s test to prove that the series

∞∑

n=1

⎛

⎝
∑

d|n
−(−1)d

⎞

⎠ sin 2nπx

nπ
(3.5)

converges: the series
∑∞

n=1 an(x)bn(s) is uniformly convergent in σ > 0 if we check that
the partial sums of an(x) are bounded uniformly in x , limn→∞ bn(s) = 0 uniformly in
σ > 0 and |bn(s) − bn+1| ≤ cn and

∑∞
n=1 cn < ∞.

Since bn(1) = n−1, limn→∞ bn(1) = 0 and |bn(1) − bn+1(1)| =
∣
∣
∣
∫ n+1
n t−2dt

∣
∣
∣ =

O(n−2), we have
∑∞

n=1 cn = ζ(2) < ∞.

The boundedness of the partial sum of an(x) =
(∑

d|n −(−1)d
)

sin 2nπx
π

follows if

there exists a constant C such that for every N (cf. [2, pp. 116–118]),

|SN | =
∣
∣
∣
∣
∣
∣

1

π

N∑

t=1

⎛

⎝
∑

d|t
−(−1)d

⎞

⎠ sin 2π t x

∣
∣
∣
∣
∣
∣
≤ C

√
N

and

M∑

t=N

⎛

⎝
∑

d|t
−(−1)d

⎞

⎠ sin 2π t x

t
≤ C√

N
+ C

M−1∑

t=N

√
t

t (t + 1)
+ C√

M
.

This can be made arbitrarily small by taking M ≥ N ≥ N0 with N → ∞.
Let z = ye2π i x . By the new Dirichlet–Abel theorem [12, Theorem 1], the value of f (x)

is the radial limit

f (x)=
∞∑

n=1

⎛

⎝
∑

d|n
−(−1)d

⎞

⎠ sin 2nπx

nπ
= lim

y→1−

∞∑

n=1

⎛

⎝
∑

d|n
−(−1)d

⎞

⎠ sin 2nπx

nπ
yn

or

f (x) = lim
z→e2π i x

∞∑

n=1

Im

⎛

⎝
∑

d|n
−(−1)d

⎞

⎠ zn

nπ
,
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where z → e2π i x is the radial limit, and the series is absolutely convergent for |z| < 1.
Therefore by Euler identity eiθ = cos θ + i sin θ and the Fourier series of B̄1(x), we have

Im
∞∑

n=1

⎛

⎝
∑

d|n
−(−1)d

⎞

⎠ e2π inx

nπ
=

∞∑

n=1

(−1)n

n

∞∑

m=1

− sin 2πmnx

mπ

=
∞∑

n=1

(−1)n B̄1(nx)

n
,

thus completing the proof. �

The proof of the Theorem 2 is due to [2,13] by applying the new Drichlet–Abel theorem
[12, Theorem 1] and the Lambert series [13, pp. 633–634]. In what follows, we shall prove
a radial limit theorem (Theorem 3 below) due to Wintner [13] and show two examples.

Let {an} ⊂ C be such that

lim sup |an|1/n ≤ 1,

i.e. such that the power series
∑∞

n=1 anz
n is absolutely convergent in |z| < 1. Then the

Lambert series

g(z) =
∞∑

n=1

an
zn

1 − zn
(3.6)

is absolutely convergent in |z| < 1 and represents an analytic function and moreover the
power series of this function can be obtained by formal rearrangement of (3.6), i.e.,

f (z) =
∞∑

n=1

bnz
n (|z| < 1),

where

bn =
∑

d|n
ad .

Theorem 3 [13]. Suppose

an = O(nλ−δ) (3.7)

form some δ > 0 and a fixed 0 < λ ≤ 1
2 . Then the boundary function F(eiθ ) exists and is

measurable such that

F(reiθ ) → F(eiθ ) a.e. as r → 1 (3.8)

along the Stoltz path. If λ < 1
2 , then F(eiθ ) is of class L1/λ and if in (3.7), the exponent

can be taken arbitrarily small, then it is of class L∞.
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Proof. Since

d(n) =
∑

d|n
1 = O(nε)

for every ε > 0 (e.g. [3]), it follows that

cn = O(nλ−1−δ)

for some δ > 0. Hence if λ < 1
2 , then the L p-condition (3.7) is satisfied and if λ = 1

2 ,
then the series for F(reiθ ) is Cauchy in L2 and so there exists a function F(eiθ ) of class
L2 such that

F(eiθ ) ∼
∞∑

n=−∞
cneinθ .

This together with the condition (3.7) implies that

F(eiθ ) =
∞∑

n=−∞
cneinθ a.e..

Hence (3.8) follows by Abel’s continuity theorem. �

Example 1.

(i) In the case a2n = 0, a2n+1 = 4(−1)n+1, we obtain the Lambert series

f (z) = 2K

π
= 4

∞∑

n=1

(−1)n+1z2n+1

1 − z2n+1 + 1,

which in the notation of (3) reads as

f (z) = 2K

π
= 4

∞∑

�,m,n=0

d4,1(n)z2�(4m−1)2n + 1,

with d4,1(n) denoting the number of divisors of n of the form 4k + 1. Hence

F(z) =
∞∑

n=0

d4,1(n)

n
zn, |z| < 1.

Hence by Theorem 3, the boundary function F(eiθ ) exists and

F(eiθ ) =
∞∑

n=0

d4,1(n)

n
einθ a.e.
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(ii) In the case an = 1, we obtain the Lambert series considered by Lambert [5]

f (z) = 4
∞∑

n=1

zn

1 − zn
=

∞∑

n=1

d(n)zn, |z| < 1.

Hence

F(z) =
∞∑

n=0

d(n)

n
zn, |z| < 1.

Hence by Theorem 3, the boundary function F(eiθ ) exists and

F(eiθ ) =
∞∑

n=0

d(n)

n
einθ a.e.

Acknowledgements

The author would like to express his hearty thanks to Prof. Shigeru Kanemitsu for providing
him with the direction of this research and for enlightening discussions. The author would
also like to thank Prof. Kalyan Chakraborty for enlightening discussion. This work was sup-
ported by Natural Science Basic Research Project of Shaanxi Province of China (Program
No. 2016JM1034) and by Shangluo Science Research Plan (Program No. SK2014-01-08)
and by Science Research Project of Shaanxi Provincial Department of Education (Program
Nos 16JM1265, 16JK1238).

References

[1] Dedekind R, Erläuterungen zu zwei Fragmenten von Riemann, Math. Werke Bd., 1 (1930)
159–173, Braunschweich (in: Bernhard Riemanns gesammelte mathematische Werke und wis-
senschaftlichen Nachlass, 2, Aufl., 466–478 (1892)

[2] de Reyna A, Riemann’s fragment on the limit values of elliptic modular functions, J. Ramanu-
jan, 8 (2004) 57–123

[3] Hardy G H, Note on the limiting values of the elliptic modular-functions, Quart. J. Math. (2)
34 (1903) 76–86; Collected Papers of G H Hardy IV, Oxford UP, pp. 351–261 (1966)

[4] Jacobi C G J, Fundamenta nova, §40 (1829) (Ges. Werke, I–VII, edited by C W Byrcharett, K
Weierstrass and G Reimer, 1881–1891 (Chelsea 1969) vol. 1, pp. 159–164)

[5] Lambert J H, Anlage zur Archtektonik oder Theorie des Einfachen und Ersten in der
philosophischen und mathematischen Erkenntnis, 2 Bände, Riga, vol. 2 (1771) §875, p. 507

[6] Rademacher H, Zur Theorie der Modulfunktionen, J. ReineAngew.Math., 167 (1931) 312–336;
Collected Papers of H Rademacher I, pp. 652–677

[7] Rademacher H, Collected Papers of Hans Rademacher I, II, MIT Press, Cambridge Mass.
(1974)

[8] Riemann B, Fragmente über Grenzfälle der ellipitischen Modulfunctionen, in Riemann’s Col-
lected Works (1852), pp. 455–465

[9] Riemann B, Collected Works of Bernhard Riemann, edited by H Weber, 2nd ed. (1953) (New
York: Dover)



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:28 Page 13 of 13 28

[10] Riemann B, Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe, in:
Riemann’s Collected Works (1854) pp. 227–265

[11] Smith H J S, On some discontinous series considerd by Riemann, Messager of Mathmatics,
Ser II, 9 (1881) 1–11; Smith’s Collected Works, vol II, pp. 312–320

[12] Wang N, On Riemann’s posthumous fragment II on the limit values of elliptic modular func-
tions, Ramanujan J., 24 (2011) 129–145

[13] Wintner A, On Riemann’s fragment concerning elliptic modular functions, Amer. J. Math., 63
(1941) 628–634

Communicating Editor: B Sury


	Arithmetical Fourier and limit values of elliptic modular functions
	1.  Introduction
	2.  Riemann's posthumous fragment II revisited
	3.  A `non integrable function' represented by a trigonometric series
	Acknowledgements
	References




