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Abstract. It is known that no two roots of the polynomial equation

n∏

j=1

(x − r j ) +
n∏

j=1

(x + r j ) = 0, (1)

where 0 < r1 ≤ r2 ≤ · · · ≤ rn , can be equal and the gaps between the roots of (1) in
the upper half-plane strictly increase as one proceeds upward, and for 0 < h < rk , the
roots of

(x − rk − h)

n∏

j=1
j �=k

(x − r j ) + (x + rk + h)

n∏

j=1
j �=k

(x + r j ) = 0 (2)

and the roots of (1) in the upper half-plane lie alternatively on the imaginary axis. In this
paper, we study how the roots and the critical points of (1) and (2) are located.
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1. Introduction

There is an extensive literature concerning roots of sums of polynomials. Many authors
[5–7] have written about these polynomials. Perhaps the most immediate question of sums
of polynomials, A+B = C is: ‘given bounds for the roots of A and B, what bounds can be
given for the roots of C?’ By Fell [3], if all roots of A and B lie in [−1, 1] with A, B monic
and deg A = deg B = n, then no root of C can have modulus exceeding cot (π/2n), the
largest root of (x + 1)n + (x − 1)n . This suggests to study polynomials having a form
something like A(x) + B(x), where all roots of A(x) are negative and all roots of B(x)
are positive.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12044-018-0402-7&domain=pdf
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All (conjugate) roots of the polynomial equation (1) lie on the imaginary axis. Kim [4]
showed as follows.

Theorem 1 [4]. No two roots of (1) can be equal and the gaps between the roots of (1) in
the upper half-plane strictly increase as one proceeds upward.

Given a polynomial f (x), all of whose roots are real, if we move some of the roots,
the critical points also change. A fundamental result in this area is the polynomial root
dragging theorem [1] that explains the change qualitatively.

Theorem 2 (Polynomial root dragging theorem). Let f (x) be a degree n polynomial
with n real roots. When we drag some or all of the roots a distance at most ε to the right,
the critical points will all follow to the right, and each of them will move less than ε units.

Possibly the first question about the polynomial equation (1) in the vein of “root drag-
ging” is how the roots and the critical points of (1) and (2) are arranged, and we will obtain
some answers to this question in this paper in section 2. As reference, the polynomial
equation (2) is still in the form of (1) so that its roots lie on the imaginary axis and the gaps
between the roots in the upper half-plane strictly increase as one proceeds upward. From
this motivation, throughout the paper, we let

p(x) : =
n∏

j=1

(x − r j ) +
n∏

j=1

(x + r j ) = xc
�n/2�∏

j=1

(x2 + s2
j ),

ph(x) : = (x − rk − h)

n∏

j=1
j �=k

(x − r j ) + (x + rk + h)

n∏

l= j
j �=k

(x + r j )

= xc
�n/2�∏

j=1

(x2 + t2
j ),

p′(x) = 2nx1−c
�(n−1)/2�∏

j=1

(x2 + s′2
j ),

p′
h(x) = 2nx1−c

�(n−1)/2�∏

j=1

(x2 + t ′2j ),

where

0 < r1 ≤ r2 ≤ · · · ≤ rn,

0 < s1 < s2 < · · · < s�n/2�,
0 < t1 < t2 < · · · < t�n/2�,
0 < s′

1 < s′
2 < · · · < s′

�(n−1)/2�,
0 < t ′1 < t ′2 < · · · < t ′�(n−1)/2�
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and

c =
{

0 if n is even,
1 if n is odd.

About the roots of p(x) and ph(x), Chong and Kim [2] recently proved that if 0 < h < rk ,
their roots in the upper half-plane lie alternatively on the imaginary axis.

Theorem 3 [2]. If 0 < h < rk, then

s1 < t1 < s2 < t2 < · · · < s�n/2�] < t�n/2�. (3)

When we consider h < 0 instead of 0 < h < rk in Theorem 3, (3) is replaced by

t1 < s1 < t2 < s2 < · · · < t�n/2�] < s′�n/2�.

In section 2, we will state new results in the form of (3) about the roots and the critical
points of p(x) and ph(x), and section 3 will be devoted to the proofs of all these results.

2. Results and examples

In this section, we state new results, and at the end of the section, we will provide some
numerical evidences so that we compare them with our results. First, like (3), the critical
points of p(x) and ph(x) in the upper half-plane also lie alternatively on the imaginary
axis.

Theorem 4. If 0 < h < rk, then

s′
1 < t ′1 < s′

2 < t ′2 < · · · .

The proof of Theorem 4 will be based on Theorem 2. Another proof for s′
i < t ′i in the

elementary way without using Theorem 2 will also be provided. Next, we compare each
root of p(x) with its corresponding root of ph(x). From Theorem 3, when 0 < h < rk ,
si < ti for each i . However we have the following opposite inequality.

Theorem 5. For each i,

ti <

√
rk + h

rk
si ,

where h > 0.

The next two theorems are about gaps of the roots of p(x) and ph(x).

Theorem 6. For any i and j with i > j,

t2
i − t2

j > s2
i − s2

j .
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Theorem 7. For each i,

ti+1 − ti >

√
rk

rk + h
(si+1 − si ).

Theorem 7 can be easily obtained from Theorems 5 and 6. But we will give another proof
of Theorem 7 based on a result in [4] in section 3. This result in [4] will also play a central
role in the proofs of Theorem 10 and Theorem 11 below.

The following theorem explains that the gaps between the critical points of p(x) in the
upper half-plane strictly increase as one proceeds upward.

Theorem 8. We have

s′
2 − s′

1 < s′
3 − s′

2 < s′
4 − s′

3 < · · · . (4)

Let f be a polynomial of degree n > 2 with only real, simple roots. Then Riesz’s
result (see [8]) states that the distance between consecutive roots of f is less than the
corresponding quantity associated with f ′. In our case, the corresponding inequality is
s′

2 − s′
1 > s2 − s1 by Theorems 1 and 8. We do not have a proof for this inequality, but

we can prove at least (s′
2)

2 − (s′
1)

2 > s2
2 − s2

1 . In fact, we prove the general case of this as
follows.

Theorem 9. For each i, s′2
i+1 − s′2

i > s2
i+1 − s2

i .

After the proof of the above theorem in Section 3, we will present another elementary
proof of (s′

2)
2 − (s′

1)
2 > s2

2 − s2
1 .

It is not known that s′
i+1 − s′

i > si+1 − si for each i , but we may prove the following.

Theorem 10. For each i,

s′
i+1 − s′

i >

⎛

⎜⎜⎜⎝

n−1∏
j=1

r j

n−1∏
j=1

r ′
j

⎞

⎟⎟⎟⎠ (si+1 − si ).

Let us denote that all roots on the upper-half plane of the j-th derivative of p(x) =
n∏

i=1
(x − ri ) +

n∏
i=1

(x + ri ) are

is(1, j), is(2, j), is(3, j), . . . ,

where s(1, j) < s(2, j) < s(3, j) < · · · . Then we finally present Theorem 11.

Theorem 11. For each i, j,

s(i, j) < s(i, j+2) < s(i+1, j).

The example below is given to check Theorems 4–10 above with numerical evidences.
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Example 12. Consider

p(x) =
10∏

j=1

(x − j) +
10∏

j=1

(x + j) and

p0.5(x) = (x − 5.5)

10∏

j=1
j �=5

(x − j) + (x + 5.5)

10∏

j=1
j �=5

(x + j).

Then

{si }5
i=1 = {0.5566 . . . , 2.0773 . . . , 4.6931 . . . , 10.1758 . . . , 34.4935 . . .},

{ti }5
i=1 = {0.5605 . . . , 2.0976 . . . , 4.7465 . . . , 10.2833 . . . , 34.8139 . . .},

{s′
i }4
i=1 = {1.4800 . . . , 3.9000 . . . , 8.9360 . . . , 30.9636 . . .},

{t ′i }4
i=1 = {1.4943 . . . , 3.9438 . . . , 9.0305 . . . , 31.2516 . . .}

and

{√
5.5

5
si

}5

i=1

= {0.5838 . . . , 2.1787 . . . , 4.9222 . . . , 10.6725 . . . , 36.1771 . . .} ,

{si+1 − si }4
i=1 = {1.5206 . . . , 2.6158 . . . , 5.4826 . . . , 24.3177 . . .} ,

{ti+1 − ti }4
i=1 = {1.5409 . . . , 2.6692 . . . , 5.5900 . . . , 24.6381 . . .} ,

{√
5

5.5
(si+1 − si )

}4

i=1

={1.4498 . . . , 2.4941 . . . , 5.2275 . . . , 23.186 . . .} ,

{
s2
i+1 − s2

i

}4
i=1 = {4.0053 . . . , 17.7105 . . . , 81.5216 . . . , 1086.25 . . .} ,

{
t2
i+1 − t2

i

}4
i=1 = {4.086 . . . , 18.1295 . . . , 83.2157 . . . , 1106.27 . . .} ,

{
s′
i+1 − s′

i

}3
i=1 = {2.4200 . . . , 5.0359 . . . , 22.0276 . . .} ,

⎧
⎨

⎩

⎛

⎝
n−1∏

j=1

r j/
n−1∏

j=1

r ′
j

⎞

⎠ (si+1−si )

⎫
⎬

⎭

3

i=1

={0.5191 . . . , 0.8930 . . . , 1.8718 . . .} .

3. Proofs

We first prove Theorem 4.

Proof of Theorem 4. Let

p(x) =
n∏

j=1

(x − r j ) +
n∏

j=1

(x + r j ) =: p1(x) + p2(x)
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and

ph(x) = (x − rk − h)

n∏

j=1
j �=k

(x − r j ) + (x + rk + h)

n∏

j=1
j �=k

(x + r j ) =: p1,h(x) + p2,h(x), say.

Then

p′(x) = p′
1(x) + p′

2(x) and p′
h(x) = p′

1,h(x) + p′
2,h(x).

By Theorem 2, the roots

r ′
1,h, r

′
2,h, . . . r ′

n−1,h,

of p′
1,h(x) all follow to the right, and each of them moves less than h units and so for each

i ,

r ′
i < r ′

i,h,

where the r ′
i s are the roots of p′

1(x). On the one hand, from symmetry, each root of p′
2,h(x)

follows to the left with the same distance as that of the corresponding root movement of
p′

1,h(x). Then Theorem 3 completes the proof. �

Remark 13. We may prove an inequality s′
i < t ′i for each i in an elementary way without

using Theorem 2 as follows. Assume that n is even. Then

p′(x) = d

dx2

n/2∏

j=1

(x2 + s2
j )
dx2

dx
= 2x

n/2∏

j=1

(x2 + s2
j )

n/2∑

j=1

1

x2 + s2
j

.

Since p′(is′
i ) = 0 for 1 ≤ i ≤ n/2 − 1, we choose any i with

2is′
i

n/2∏

j=1

(−(s′
i )

2 + s2
j )

n/2∑

j=1

1

−(s′
i )

2 + s2
j

= 0

and then fix it. By Theorem 1, all roots of p(x) are simple, and

n/2∏

j=1

(−(s′
i )

2 + s2
j ) �= 0,

which implies that

n/2∑

j=1

1

−(s′
i )

2 + s2
j

= 0.
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In the same way, we have

n/2∑

j=1

1

−(t ′i )2 + t2
j

= 0.

But by Theorem 3,

s2
j < t2

j

for all j . If s′
i ≥ t ′i , then

−(s′
i )

2 + s2
j < −(t ′i )2 + t2

j

which is a contradiction to

n/2∑

j=1

1

−(s′
i )

2 + s2
j

=
n/2∑

j=1

1

−(t ′i )2 + t2
j

,

and so s′
i < t ′i . The case n odd can be proved by the same method.

Next we prove Theorems 5, 6, 7. To prove these, we need a lemma.

Lemma 14. For each i,

∂si
∂rk

= si
s2
i + r2

k

1
n∑
j=1

2ri
r2
j + s2

i

.

Proof. Taking a partial derivative with respect to the k-th derivative rk of each side of

(p(si i) =)

n∏

j=1

(si i − r j ) +
n∏

j=1

(si i + r j ) = 0

yields

i
∂si
∂rk

⎡

⎣

⎛

⎝
n∑

j=1

1

si i − r j

⎞

⎠
n∏

j=1

(si i − r j ) +
⎛

⎝
n∑

j=1

1

si i + r j

⎞

⎠
n∏

j=1

(si i + r j )

⎤

⎦

=
n∏

j=1
j �=k

(si i − r j ) −
n∏

j=1
j �=k

(si i + r j ).
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Since
∏n

j=1(si i − r j ) + ∏n
j=1(si i + r j ) = 0,

n∏

j=1
j �=k

(si i − r j ) −
n∏

j=1
j �=k

(si i + r j ) =
(

− si i + rk
si i − rk

− 1

) n∏

j=1
j �=k

(si i + r j )

= −2si i

si i − rk

n∏

j=1
j �=k

(si i + r j ).

So

i
∂si
∂rk

p′(si i) = 2si i
∏n

j=1(si i + r j )

s2
i + r2

k

and
∣∣p′(si i)

∣∣ = 2si
∏n

j=1 |si i + r j |
s2
i + r2

k

1∣∣∣∣
∂si
∂rk

∣∣∣∣
. (5)

But

p′(si i) =
⎛

⎝
n∑

j=1

1

si i + r j

⎞

⎠
n∏

j=1

(si i + r j ) +
⎛

⎝
n∑

j=1

1

si i − r j

⎞

⎠
n∏

j=1

(si i − r j )

=
⎛

⎝
n∑

j=1

1

si i + r j

⎞

⎠
n∏

j=1

(si i + r j ) −
⎛

⎝
n∑

j=1

1

si i − r j

⎞

⎠
n∏

j=1

(si i + r j )

=
n∑

j=1

2r j
s2
i + r2

j

n∏

j=1

(si i + r j )

and

∣∣p′(si i)
∣∣ = 2

n∑

j=1

2r j
s2
i + r2

j

n∏

j=1

|si i + r j |. (6)

By Theorem 3, ∂si/∂rk > 0, and comparing (5) and (6) gives

∂si
∂rk

n∑

j=1

2r j
s2
i + r2

j

= si
s2
i + r2

k

and finally

∂si
∂rk

= si
s2
i + r2

k

1
n∑
j=1

2r j
s2
i + r2

j

.

�
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Using the above, we prove Theorem 5 and Theorem 6.

Proof of Theorem 5. Consider a function f (r1, r2, . . . , rk, · · · , rn) = si√
rk

. Then it is

enough to show that f is a decreasing function with respect of rk . To prove this, we
partially differentiate f by rk and ensure that for all possible rk , the value of f is less than
0. In this case,

∂ f (rk)

∂rk
=

∂si
∂rk

√
rk − si

1

2
√
rk

rk
= 1√

rk

(
∂si
∂rk

− si
2rk

)

holds, and by Lemma 14,

∂si
∂rk

= si
s2
i + r2

k

1
n∑
j=1

2r j
s2
i + r2

j

<
si

s2
i + r2

k

1
2rk

s2
i + r2

k

= si
2rk

.

So for rk > 0,

∂ f (rk)

∂rk
< 0,

which concludes the proof. �

Proof of Theorem 6. By Lemma 14,

∂s2
i

∂rk
= 2si

∂si
∂rk

= 2s2
i

s2
i + r2

k

1
∑n

j=1
2r j

s2
i + r2

j

,

and this increases as i increases, which follows t2
i − s2

i > t2
j − s2

j for i > j . �

Proof of Theorem 7. By Theorems 5 and 6,

t2
i+1 − t2

i > s2
i+1 − s2

i and

√
rk + h

rk
(si+1 + si) > ti+1 + ti .

Combining these two inequalities completes the proof. �

We give another proof of Theorem 7. This proof is basically based on the following propo-
sition from [4]. This proposition will also play a central role in the proofs of Theorem 10
and Theorem 11.
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PROPOSITION 15

If α j (sk) denotes the angle formed at the real number r j by the triangle joining r j , isk
and the origin, then the sums

θk =
n∑

j=1

α j (sk)

for k = �n/2�, . . . , 2, 1 are, respectively, the numbers

π(n − 1)

2
,

π(n − 3)

2
,

π(n − 5)

2
, · · · ,

πc

2
,

where c = 0 if n is odd and c = 1 if n is even. In particular, these are independent of the
r j ’s. Moreover, for each k,

θk+1 − θk = π (7)

We give Lemmas 16–20 for another proof of Theorem 7.

Lemma 16. Let r be a fixed positive number, and ia, ib the purely imaginary numbers
above the real axis, where b − a = m is a fixed positive number. Let O, R, A and B be
the points in the complex plane that represent the origin, r, ia and ib, respectively. Then
� ARB is increasing as a is decreasing.

Proof. Since

tan( � ARB) = tan( � ORB − � ORA) = tan( � ORB) − tan( � ORA)

1 + tan( � ORB) tan( � ORA)

=
m + a

r
− a

r

1 +
(
m + a

r

)
a

r

= mr

r2 + (m + a)a
,

tan(� ARB) is a decreasing function of a, and � ARB is increasing as a is
decreasing. �

Recall, from p(x), if we shift rl to the right by a distance h and −rl to the left by h
where 0 < h < rl , then a zero isi of p(x) is shifted to i ti and so is isi+1 to i ti+1. Let Rl ,
Rl,h , Si , Si+1, Ti and Ti+1 be the points that represent rl , rl + h, isi , isi+1, i ti and i ti+1,
respectively. We also denote by S∗

i and S∗
i+1 the points so that Si Rl and Si+1Rl are parallel

to S∗
i Rl,h and S∗

i+1Rl,h , respectively. The points S∗
i and S∗

i+1 will correspond to the purely
imaginary numbers is∗

i and is∗
i+1, respectively.
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Then it is obvious that

si < s∗
i and si+1 < s∗

i+1

and by Theorem 3,

si < ti < si+1 < ti+1.

Lemma 17. For each i,

ti
rl + h

<
si
rl

.

Proof. We consider two sums of angles

n∑

j=1

� Si R j O

and

n∑

j=1
j �=l

� Ti R j O + � Ti Rl,hO,

which is obtained after dragging rl by a distance h (0 < h < rl ) to the right. Then by
Proposition 15, we see that

n∑

j=1

� Si R j O =
n∑

j=1
j �=l

� Ti R j O + � Ti Rl,hO.
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Since OTi > OSi , we have � Ti R j O > � Si R j O for every j �= l, and so

� Si Rl O − � Ti Rl,hO =
n∑

j=1
j �=l

( � Ti R j O − � Si R j O) > 0,

i.e., � Ti Rl,hO < � Si Rl O . This implies that

ti
rl + h

= tan( � Ti Rl,hO) < tan( � Si Rl O) = si
rl

.

�

Remark 18. Since the triangles 
Si Rl O and 
S∗
i Rl,hO are similar,

rl + h

rl
= s∗

i

si
.

By the above lemma, ti < si
rl+h
rl

, which implies that

ti < s∗
i .

Lemma 19. If si+1 − si > ti+1 − ti , then

� Ti Rl,h S
∗
i > � Ti+1Rl,h S

∗
i+1.

Proof. Let R j denote the point for representing r j . By Proposition 15,

n∑

j=1

� Si R j Si+1 =

⎛

⎜⎜⎝
n∑

j=1
j �=l

� Ti R j Ti+1

⎞

⎟⎟⎠ + � Ti Rl,hTi+1 = π

and so

n∑

j=1
j �=l

(� Si R j Si+1 − � Ti R j Ti+1
) = � Ti Rl,hTi+1 − � Si Rl Si+1.

But it follows from by Lemma 16 and si+1 − si > ti+1 − ti that for any j with j �= l,

� Si R j Si+1 − � Ti R j Ti+1 > 0.

So

� Ti Rl,hTi+1 > � Si Rl Si+1 = � S∗
i Rl,h S

∗
i+1 (8)
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because Si Rl and Si+1Rl are parallel to S∗
i Rl,h and S∗

i+1Rl,h , respectively. Due to the
inequalities ti < s∗

i and ti+1 < s∗
i+1, there are two possible ways of ordering four points

Ti , S∗
i , Ti+1, S∗

i+1. These possible orders are, starting from the origin,

Ti , S∗
i , Ti+1, S∗

i+1

and

Ti , Ti+1, S∗
i , S∗

i+1.

When s∗
i < ti+1, subtracting the angle � Ti+1Rl,h S∗

i on each side of (8) induces

� Ti Rl,h S
∗
i > � Ti+1Rl,h S

∗
i+1.

When ti+1 < s∗
i , by adding the angle � Ti+1Rl,h S∗

i on each side of (8), we get the same
inequality. �

Lemma 20. If si+1 − si > ti+1 − ti , then

ti + ti+1 <

√
rl + h

rl
(si + si+1).

Proof. By Lemma 17,

ti < s∗
i and ti+1 < s∗

i+1.

So

� Ti Rl,h S
∗
i > � Ti+1Rl,h S

∗
i+1.

Let X be the point below S∗
i+1 that represents a pure imaginary number i x above the real

axis so that

� Ti Rl,h S
∗
i = � S∗

i+1Rl,h X.

Then

tan( � Ti Rl,h S
∗
i ) = tan( � S∗

i+1Rl,h X)

and

tan( � S∗
i Rl,hO − � Ti Rl,hO) = tan( � S∗

i+1Rl,hO − � XRl,hO).

Using tangent formula for tan(a − b), we may get

s∗
i

rl + h
− ti

rl + h

1 + s∗
i

rl + h

ti
rl + h

=
s∗
i+1

rl + h
− x

rl + h

1 + s∗
i+1

rl + h

x

rl + h

,
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and so

s∗
i − ti

(rl + h)2 + s∗
i ti

= s∗
i+1 − x

(rl + h)2 + s∗
i+1x

and

((rl + h)2 + s∗
i ti )(s

∗
i+1 − x) = ((rl + h)2 + s∗

i+1x)(s
∗
i − ti ).

Solving this in x easily gives

x = (rl + h)2s∗
i+1 + s∗

i s
∗
i+1ti + ti (rl + h)2 − (rl + h)2s∗

i

s∗
i s

∗
i+1 + (rl + h)2 + s∗

i ti − s∗
i+1ti

.

By assumption,

x − ti < ti+1 − ti < si+1 − si ,

which implies that

x − t i

=
(rl + h)2s∗

i+1 + s∗
i s

∗
i+1 t i + t i(rl + h)2 − (rl + h)2s∗

i − s∗
i+1 s

∗
i t i − (rl + h)2t i − s∗

i t
2
i + s∗

i+1 t
2
i

s∗
i s

∗
i+1 + (rl + h)2 + s∗

i t i − s∗
i+1 t i

< s i+1 − si .

So

((rl + h)2 + t2
i )(s∗

i+1 − s∗
i ) < (si+1 − si )(s

∗
i s

∗
i+1 + (rl + h)2 + s∗

i ti − s∗
i+1ti ).

But due to the similarity of two triangles 
RlOSi+1, 
Rl,hOS∗
i+1 and 
RlOSi ,


Rl,hOS∗
i , respectively, we have

s∗
i+1 = rl + h

rl
si+1 and s∗

i = rl + h

rl
si ,

and so

rl + h

rl
((rl + h)2 + t2

i ) <

(
rl + h

rl

)2

si si+1 + (rl + h)2

+rl + h

rl
si ti − rl + h

rl
si+1ti

and

(rl + h)2 + t2
i <

rl + h

rl
si si+1 + rl(rl + h) + si ti − si+1ti .

Thus

t2
i + (si+1 − si )ti − rl + h

rl
si si+1 < rl(rl + h) − (rl + h)2 = −h(rl + h) < 0.
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Write
rl + h

rl
= p so that

t2
i + (si+1 − si )ti − psi si+1 < 0,

and solving this gives

ti <
(si − si+1) + √

(si+1 + si )2 + 4(p − 1)si si+1

2
. (9)

We now repeat the above process from setting the point Y below S∗
i for a purely imaginary

number iy above the real axis such that

� S∗
i Rl,hY = � S∗

i+1Rl,hTi+1.

Then using y > ti , it can be shown that

ti+1 <
(si+1 − si ) + √

(si+1 + si )2 + 4(p − 1)si si+1

2
. (10)

Adding each side of (9) and (10) gives

ti + ti+1 <

√
(si+1 + si )2 + 4(p − 1)si si+1

<

√
(si+1 + si )2 + (p − 1)(si + si+1)2

= √
p(si + si+1),

which completes the proof. �

We are now ready to give another proof of Theorem 7.

Another proof of Theorem 7. If si+1 − si ≤ ti+1 − ti , then (7) holds because rl+h
rl

> 1.
Suppose that si+1 − si > ti+1 − ti . Then by Theorem 6,

t2
i+1 − t2

i > (si+1 − si )(si+1 + si ).

But Lemma 20 gives
√
rl + h

rl
(si+1 + si ) > ti+1 + ti ,

and so we obtain the inequality

ti+1 − ti >

√
rl

rl + h
(si+1 − si ),

which concludes the proof. �

Proof of Theorem 8. Let

p(x) =
n∏

j=1

(x − r j ) +
n∏

j=1

(x + r j ) =: p1(x) + p2(x)
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and

ph(x) = (x − rk − h)

n∏

j=1
l �=k

(x − r j ) + (x + rk + h)

n∏

j=1
l �=k

(x + r j ) =: p1,h(x) + p2,h(x).

Then

p′(x) = p′
1(x) + p′

2(x) and p′
h(x) = p′

1,h(x) + p′
2,h(x).

The roots of p′
1(x) lies between the roots of p1(x) and

p′
1(x) = n

n−1∏

j=1

(x − r ′
j ).

By symmetry,

p′
2(x) = n

n−1∏

j=1

(x + r ′
j ).

Then Theorem 1 asserts the result. �

Proof of Theorem 9. Consider two polynomials

p(x) =
n∏

j=1

(x − r j ) +
n∏

j=1

(x + r j ) and

xp′(x) = 2nx

⎡

⎣
n−1∏

j=1

(x − r ′
j ) +

n−1∏

j=1

(x + r ′
j )

⎤

⎦ .

Then we may regard p(x) as a dragged polynomial from xp′(x)/(2n), dragging from 0 to
r1 and from r ′

j to r j+1 for 1 ≤ j ≤ n − 1, since each r ′
j lies between r j and r j+1. This

directly leads to the theorem because the square gap increases when dragged by Theorem 6.
�

Another proof of (s′
2)

2 − (s′
1)

2 > s2
2 − s2

1 . Assume n is even. By (4), it suffices to show
that for any i with 1 ≤ i ≤ n/2 − 1,

(s′
i+1)

2 − (s′
i )

2 > s2
2 − s2

1 .

Observe that

p′

p
(x) = 2x

n/2∑

j=1

1

x2 + s2
j

.

Let is′
i and is′

i+1 be successive two zeros of p′(x) in the upper half plane. Suppose

(s′
i+1)

2 − (s′
i )

2 ≤ s2
l+1 − s2

l
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for all 1 ≤ l ≤ n/2 − 1. Then

1

−(s′
i+1)

2 + s2
l+1

≤ 1

−(s′
i )

2 + s2
l

(11)

since both −(s′
i+1)

2 + s2
l+1 and −(s′

i )
2 + s2

l are either positive or negative. But

n/2∑

j=1

1

−(s′
i+1)

2 + s2
l

=
n/2∑

j=1

1

−(s′
i )

2 + s2
l

= 0

and so

0 = 1

−(s′
i+1)

2 + s2
1

− 1

−(s′
i )

2 + s2
n/2

+
n/2−1∑

j=1

(
1

−(s′
i+1)

2 + s2
j+1

− 1

−(s′
i )

2 + s2
j

)
. (12)

Since
1

−(s′
i+1)

2 + s2
l

< 0 and − 1

−(s′
i )

2 + s2
n/2

< 0,

it follows from (11) that the right hand side of the equality (12) is negative, which is a
contradiction. This implies that

(s′
i+1)

2 − (s′
i )

2 > s2
l+1 − s2

l

for some l, 1 ≤ l ≤ n/2 − 1. By Theorem 1,

(s′
i+1)

2 − (s′
i )

2 > s2
2 − s2

1

The case n odd can be proved in the same way. �
Using Proposition 15, we will prove Theorem 10 and Theorem 11. The below lemma

will be useful for the proof of Theorem 10.

Lemma 21. On xy-plane, let X1, X2, . . . , Xn be distinct points on the x-axis, and
A, B, C, D distinct points on the positive y-axis such that for some positive numbers
φ, φ′ and c with φ ≤ φ′,

n∑

j=1

� AX j O = φ,

n∑

j=1

� CX j O = φ + c,
n−1∑

j=1

� BX j O = φ′,
n−1∑

j=1

� DX j O = φ′ + c.

Then AC < BD.

Proof. From the conditions, it is obvious that

n∑

j=1

� AX jC = c and
n−1∑

j=1

� BX j D = c.
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Since
∑n

j=1
� AX j O <

∑n
j=1

� BX j O , we have OA < OB and similarly, OC < OD.
Now, suppose AC > BD. Then, for all j , � AX jC > � BX j D by Lemma 16. Then,
c = ∑n

j=1
� AX jC >

∑n−1
j=1

� BX j D = c, which leads to a contradiction. �

Proof of Theorem 10. Assume that n is even. We recall that is1, is2, . . . , isn/2 are roots
on the upper half-plane of

p(x) =
n∏

j=1

(x − r j ) +
n∏

j=1

(x + r j ),

and S1, S2, . . . , Sn/2 represent the points is1, is2, . . . , isn/2, and R1, R2, . . . , Rn rep-
resent the points r1, r2, . . . , rn on the complex plane, respectively. We now consider the
polynomial

q(x) =
n−1∏

j=1

(x − r j ) +
n−1∏

j=1

(x + r j ),

and say their roots that are not on the lower half-plane are 0, iu1, iu2, . . . , iun/2−1 with the
corresponding points O, U1, U2, . . . , Un/2−1 on the complex plane. Then using Propo-
sition 15, we may compute that for each i ,

n∑

j=1

� Si R j O = π

2
+ (i − 1)π,

n∑

j=1

� Si+1R j O = π

2
+ iπ,

n−1∑

j=1

� Ui R j O = iπ,

n−1∑

j=1

� Ui+1R j O = (i + 1)π.

As Si , Si+1, Ui , Ui+1 satisfy the conditions of Lemma 21, we see that UiUi+1 > Si Si+1,
which means

ui+1 − ui > si+1 − si . (13)

We now consider relations between ui+1 − ui and s′
i+1 − s′

i . The polynomial

p′(x)
2n

=
n−1∏

j=1

(x − r ′
j ) +

n−1∏

j=1

(x + r ′
j )

with the roots 0, is′
1, is

′
2, . . . , is′

n/2−1 that are not on the lower-half plane is a dragged
polynomial from

q(x) =
n−1∏

j=1

(x − r j ) +
n−1∏

j=1

(x + r j ).
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So by Theorem 7, we get

s′
i+1 − s′

i >

⎛

⎜⎜⎜⎝

n−1∏
j=1

r j

n−1∏
j=1

r ′
j

⎞

⎟⎟⎟⎠ (ui+1 − ui ).

Combining this with (13) gives

s′
i+1 − s′

i >

⎛

⎜⎜⎜⎝

n−1∏
j=1

r j

n−1∏
j=1

r ′
j

⎞

⎟⎟⎟⎠ (si+1 − si )

which is desired. The case n odd can be proved in the same way. �

The two lemmas below will be used to prove Theorem 11.

Lemma 22. For two points X1, X2 on the x-axis and a point Y on the y-axis that are not
the origin, if OX1 < OX2, � Y X1O > Y X2O.

Proof. Since tan(� Y X1O) = OY

OX1
and tan( � Y X2O) = OY

OX2
, we have

tan( � Y X1O) > tan( � Y X2O).

This completes the proof because both angles are less than π/2. �

Lemma 23. Let f (x) = ∏n
j=1(x − a j ), where a1 < a2 < · · · < an, and its inflection

points are a′′
1 , a′′

2 , . . . , a′′
n−2 in ascending order. Then for all i, we have

ai < a′′
i < ai+2.

Proof. By Rolle’s theorem, for each i ,

ai < a′
i < ai+1 < a′

i+1 < ai+2 and a′
i < a′′

i < a′
i+1,

which follows the result. �

Let us denote that all roots on the upper-half plane of the j-th derivative of p(x) =∏n
i=1(x − ri ) + ∏n

i=1(x + ri ) are

is(1, j), is(2, j), is(3, j), . . . ,

where s(1, j) < s(2, j) < s(3, j) < . . ..
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Proof of Theorem 11. We note that

p′(x) = k1

[
n−1∏

i=1

(x + r ′
i ) +

n−1∏

i=1

(x − r ′
i )

]
,

p′′(x) = k2

[
n−2∏

i=1

(x + r ′′
i ) +

n−2∏

i=1

(x − r ′′
i )

]

for some integers k1 and k2, where r ′
i s are the critical points of the polynomial

∏n
i=1(x−ri )

and r ′′
i s are the inflection points of

∏n
i=1(x−ri ) . Now, we denote the corresponding points

on the complex plane to s(i,1) and s(i,2) by S′
i and S′′

i , respectively. Let

φ =
n∑

j=1

� Si R j O (1 ≤ i ≤ �n/2� − 2).

Then by Proposition 15,

n∑

j=1

� Si+1R j O = φ + π (14)

and

n−2∑

j=1

� S′′
i R

′′
j O = φ

since n and n−2 have the same parity. Now, by Lemma 23, OR j+2 > OR′′
j , so Lemma 22

leads to

� Si+1R j+2O < � Si+1R
′′
j O

for all j with 1 ≤ j ≤ n − 2, and summing up similar angles we get

n∑

j=3

Si+1R j O <

n−2∑

j=1

Si+1R
′′
j O.

Since � Si+1R j O <
π

2
, we have

n∑

j=3

� Si+1R j O >

n∑

j=1

� Si+1R j O − π = φ

by (14), and

φ <

n−2∑

j=1

� Si+1R
′′
j O.
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But
∑n−2

j=1
� S′′

i R
′′
j O = φ and so

n−2∑

j=1

� S′′
i R

′′
j O <

n−2∑

j=1

� Si+1R
′′
j O.

This inequality directly leads to OS′′
i < OSi+1, and

s(i,2) < s(i+1,0). (15)

Similarly, by Lemma 23, OR′′
j > OR j and Lemma 22 leads to

� Si R j O > � Si R′′
j O

for all j . Summing up all the similar angles we get

n−2∑

j=1

Si R j O >

n−2∑

j=1

Si R
′′
j O.

Since � Si R j O > 0, we have

φ >

n−2∑

j=1

Si R j O >

n−2∑

j=1

Si R
′′
j O.

But
n−2∑
j=1

� S′′
i R

′′
j O = φ, so

n−2∑

j=1

� S′′
i R

′′
j O >

n−2∑

j=1

Si R
′′
j O.

This inequality directly leads to OS′′
i > OSi , and

s(i,0) < s(i,2). (16)

Thus by (15) and (16), we have

s(i,0) < s(i,2) < s(i+1,0)

and in fact we may generalize this to

s(i, j) < s(i, j+2) < s(i+1, j).

�
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