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Abstract. In this paper, an efficient and accurate computational method based on
the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for
solving a class of nonlinear multi-order fractional differential equations (NMFDEs).
To do this, a new operational matrix of fractional order integration in the Riemann–
Liouville sense for the CWs is derived. Hat functions (HFs) and the collocation method
are employed to derive a general procedure for forming this matrix. By using the CWs
and their operational matrix of fractional order integration and Galerkin method, the
problems under consideration are transformed into corresponding nonlinear systems
of algebraic equations, which can be simply solved. Moreover, a new technique for
computing nonlinear terms in such problems is presented. Convergence of the CWs
expansion in one dimension is investigated. Furthermore, the efficiency and accuracy
of the proposed method are shown on some concrete examples. The obtained results
reveal that the proposed method is very accurate and efficient. As a useful application,
the proposed method is applied to obtain an approximate solution for the fractional order
Van der Pol oscillator (VPO) equation.

Keywords. Chebyshev wavelets (CWs); nonlinear multi-order fractional differential
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1. Introduction

In recent years, fractional calculus and differential equations have found enormous
applications in mathematics, physics, chemistry and engineering because of the fact that,
a realistic modeling of a physical phenomenon having dependence not only at the time
instant, but also on the previous time history can be successfully achieved by using frac-
tional calculus. The applications of the fractional calculus have been demonstrated by
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many authors. For example, it has been applied to model the nonlinear oscillation of
earthquakes [21], fluid-dynamic traffic [22], frequency dependent damping behavior of
many viscoelastic materials [4], continuum and statistical mechanics [38], colored noise
[39], solid mechanics [48], economics [5], signal processing [44], and control theory [7].
However, during the last decade fractional calculus has attracted much more attention
of physicists and mathematicians. Due to the increasing applications, some schemes have
been proposed to solve fractional differential equations. The most frequently used methods
are Adomian decomposition method (ADM) [16,41,42], homotopy perturbation method
[50], homotopy analysis method [20], variational iteration method (VIM) [14,51], frac-
tional differential transform method (FDTM) [1,2,13,17,18], fractional difference method
(FDM) [40], power series method [43], generalized block pulse operational matrix method
[35] and Laplace transform method [45]. Also, recently the operational matrices of frac-
tional order integration for the Haar wavelets [36], Legendre wavelets [23–25,29,30,47]
and the Chebyshev wavelets of the first kind [26–28,37] and the second kind [53] have
been developed to solve the fractional differential equations.

An usual way to solve functional equations is to express the solution as a linear combina-
tion of the so-called basis functions. These basis functions can, for instance, be orthogonal
or not orthogonal. Approximation by orthogonal families of basis functions has found wide
application in science and engineering [30]. The main idea of using an orthogonal basis is
that the problem under consideration reduced to a system of linear or nonlinear algebraic
equations [30–32]. This can be done by truncated series of orthogonal basis functions for
the solution of the problem and using the operational matrices [30].

Depending on their structure, the orthogonal functions may be widely classified into
four families [49]. The first includes sets of piecewise constant orthogonal functions such
as the Walsh functions, block pulse functions, etc. The second consists of sets of orthogonal
polynomials such as Laguerre, Legendre, Chebyshev, etc. The third is the widely used sets
of sine–cosine functions in Fourier series. The fourth includes orthogonal wavelets such as
Haar, Legendre, Chebyshev and CAS wavelets. It is well known that we can approximate
any smooth function by the eigenfunctions of certain singular Sturm–Liouville problems
such as Legendre or Chebyshev orthogonal polynomials. In this manner, the truncation
error approaches zero faster than any negative power of the number of the basis functions
used in the approximation [8]. This phenomenon is usually referred to as ‘the spectral
accuracy’ [8]. It is worth noting that approximating a continuous function with piecewise
constant basis functions results in an approximation that is piecewise constant. On the
other hand, if a discontinuous function is approximated with continuous basis functions,
the resulting approximation is continuous and can not properly model the discontinuities.
In remote sensing, images often have properties that vary continuously in some regions
and discontinuously in others. Thus, in order to properly approximate these spatially vary-
ing properties it is absolutely necessary to use approximating functions that can accurately
model both continuous and discontinuous phenomena. Therefore, neither continuous basis
functions nor piecewise constant basis functions taken alone can efficiently or accurately
model these spatially varying properties. For these situations, wavelet functions will be
more effective. It should be noted that wavelets theory is a relatively new and an emerging
area in mathematical research . It has been applied in a wide range of engineering disci-
plines. Wavelets are localized functions, which are the basis for energy-bounded functions
and, in particular, for L2(R), so that localized pulse problems can be easily approached and
analyzed [10–12]. They are used in system analysis, optimal control, numerical analysis,
signal analysis for wave form representation and segmentations, time-frequency analy-
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sis and fast algorithms for easy implementation. However, wavelets are another basis
functions which offer considerable advantages over alternative basis ones and allow us to
attack problems that are not accessible with conventional numerical methods. Some other
advantages of these basis functions are that the basis set can be improved in a systematic
way, different resolutions can be used in different regions of space, the coupling between
different resolution levels is easy, there are few topological constraints for increased reso-
lution regions, the Laplace operator is diagonally dominant in an appropriate wavelet basis,
the matrix elements of the Laplace operator are very easy to calculate and the numerical
effort scales linearly with respect to the system size [30]. It is worth mentioning that the
CWs as a specific kind of wavelets have mutually spectral accuracy, orthogonality and
other mentioned useful properties about wavelets. Therefore, in recent years, these orthog-
onal basis functions have been widely applied for solving different types of differential
equations e.g. [26–28,33,37,49]. It is also worth noting that a suitable family of orthogonal
basis functions which can be used to obtain approximate solutions for fractional functional
equations is a family of the Chebyshev polynomials, because the integrals (3) and (5) can
be easily computed and the useful property (6) can also be applied. Therefore, due to the
fact that the CWs have mutual properties of the Chebyshev polynomials and mentioned
properties of wavelets, we believe that these basis functions are suitable for obtaining
approximate solutions for fractional functional equations.

In this paper, we first derive a new operational matrix of fractional integration in the
Riemann–Liouville sense for the CWs and also present a general procedure based on
collocation method and the HFs for constructing this matrix. Then, we prove an useful
theorem about the CWs which will be used further in this paper. Next a new computational
method based on these bases functions together with their operational matrix of fractional
integration is proposed for solving the following NMFDE:

Dα∗ u(x) +
s∑

i=1

γi D
αi∗ u(x) + G (u(x)) = f (x), x ∈ [0, 1], (1)

with the initial conditions:

u(i)(0) = di , i = 0, 1, . . . , q − 1, (2)

where γi (i = 1, . . . , s) are real constant coefficients and also q − 1 < α ≤ q, 0 < α1 <

α2 < . . . < αs < α are given real constants. Moreover Dα∗ u(x) ≡ u(α)(x) denotes the
Caputo fractional derivative of order α of u(x) which will be described in the next section,
the values of di (i = 0, . . . , q − 1) describe the initial state of u(x), G is a known analytic
function and f (x) is a given source function. The basic idea of the proposed method is as
follows: (i) The NMFDE (1) is converted to a fully integrated form via fractional integration
in the Riemann–Liouville sense. (ii) Subsequently, the integrated form of the equation is
approximated using a linear combination of the CWs. (iii) Finally, the integrated form of
the equation is converted to a nonlinear algebraic equation, by introducing the operational
matrix of fractional integration of the CWs.

This paper is organized as follows: In section 2, some necessary definitions and math-
ematical preliminaries of the fractional calculus are reviewed. In section 3, the CWs and
some of their properties are investigated. In section 4, the proposed method is described
for solving NMFDE (1). In section 5, the proposed method is applied for some numerical
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examples. In section 6, the proposed method is applied to obtain approximate solution of
the fractional order VPO equation. Finally, a conclusion is drawn in section 7.

2. Preliminaries and notations

In this section, we give some necessary definitions and mathematical preliminaries of the
fractional calculus theory which are required for establishing our results.

DEFINITION 2.1

A real function u(x), x > 0, is said to be in the space Cμ, μ ∈ R if there exists a real
number p (> μ) such that u(x) = x pu1(x), where u1(x) ∈ C[0,∞] and it is said to be
in the space Cn

μ if u(n) ∈ Cμ, n ∈ N.

DEFINITION 2.2

The Riemann–Liouville fractional integration operator of order α ≥ 0 of a function
u ∈ Cμ, μ ≥ −1, is defined as [46]

(
I αu

)
(x) =

⎧
⎨

⎩

1

�(α)

∫ x

0
(x − t)α−1u(t)dt, α > 0,

u(x), α = 0.

(3)

It has the following properties:

(
Iα I βu

)
(x) = (

I α+βu
)
(x), I αxϑ = �(ϑ + 1)

�(α + ϑ + 1)
xα+ϑ , (4)

where α, β ≥ 0 and ϑ > −1.

DEFINITION 2.3

The fractional derivative operator of order α > 0 in the Caputo sense is defined as [46]

(
Dα∗ u

)
(x) =

⎧
⎪⎨

⎪⎩

dnu(x)

dxn
, α = n ∈ N,

1

�(n − α)

∫ x

0
(x − t)n−α−1u(n)(t)dt, n − 1 < α < n,

(5)

where n is an integer x > 0 and u ∈ Cn
1 . The useful relation between the Riemann–Liouvill

operator and Caputo operator is given by the following expression:

(
I αDα∗ u

)
(x) = u(x) −

n−1∑

k=0

u(k)(0+)
xk

k! , x > 0, n − 1 < α ≤ n, (6)

where n is an integer, and u ∈ Cn
1 . For more details about fractional calculus, see [46].
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3. The CWs and their properties

In this section, we briefly review the CWs and their properties which are used further in
this paper.

3.1 Wavelets and the CWs

Wavelets constitute a family of functions constructed from dilation and translation of a
single function ψ(x) called the mother wavelet. When the dilation parameter a and the
translation parameter b vary continuously, we have the following family of continuous
wavelets [26]:

ψab(x) = |a|− 1
2 ψ

(
x − b

a

)
, a, b ∈ R, a �= 0. (7)

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a

−k
0 , where

a0 > 1, b0 > 0, we have the following family of discrete wavelets:

ψkn(x) = |a0| k2 ψ(ak0x − nb0), k, n ∈ Z, (8)

where the functions ψkn(x) form a wavelet basis for L2(R). In practice, when a0 = 2 and
b0 = 1, the functions ψkn(x) form an orthonormal basis.

The CWs ψnm(x) = ψ(k, n,m, x) have four arguments, n = 1, 2, . . . , 2k , k is any
arbitrary positive integer, m is the degree of the Chebyshev polynomials and independent
variable x is defined on [0, 1]. They are defined on the interval [0, 1] by

ψnm(x) =
⎧
⎨

⎩

βm2
k
2√

π
Tm(2k+1x − 2n + 1), x ∈

[
n−1
2k

, n
2k

]
,

0, o.w.,

(9)

where

βm =
{√

2, m = 0,

2, m > 0.

Here, Tm(x) are the well-known Chebyshev polynomials of degreem, which are orthogonal
with respect to the weight function w(x) = 1√

1−x2 , on the interval [−1, 1] and satisfy the
following recursive relation [8]:

T0(x) = 1, T1(x) = x, Tm+1(x) = 2xTm(x) − Tm−1(x), m = 1, 2, . . . .

(10)

The set of the CWs is an orthogonal set with respect to the weight function wn(x) =
w(2k+1x − 2n + 1).
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3.2 Function approximation

A function u(x) defined over [0, 1] may be expanded by the CWs as

u(x) =
∞∑

n=1

∞∑

m=0

cnmψnm(x), (11)

where

cnm = (u(x), ψnm(x))wn
=
∫ 1

0
u(x)ψnm(x)wn(x)dx, (12)

in which (., .) denotes the inner product in L2
wn

[0, 1]. If the infinite series in (11) is trun-
cated, then it can be written as

u(x) 

2k∑

n=1

M−1∑

m=0

cnmψnm(x) = CT	(x), (13)

where T indicates transposition, C and 	(x) are m̂ = 2kM column vectors given by

C �
[
c10, . . . , c1M−1|c20, . . . , c2M−1|, . . . , |c2k0, . . . , c2k M−1

]T

and

	(x) �
[
ψ10(x), . . . , ψ1M−1(x)|ψ20(x), . . . , ψ2M−1(x)|,

. . . , |ψ2k0(x), . . . , ψ2k M−1(x)
]T

. (14)

By taking the collocation points

xi = i

m̂ − 1
, i = 0, 1, . . . , m̂ − 1, (15)

we define the wavelet matrix 
m̂×m̂ as


m̂×m̂ �
[
	(0),	

(
1

m̂ − 1

)
, . . . , 	(1)

]
. (16)

For example, for k = 1, M = 3, we have


6×6 = 1√
π

⎛

⎜⎜⎜⎜⎜⎜⎝

2 2 2 0 0 0
−2

√
2 − 2

5

√
2 6

5

√
2 0 0 0

2
√

2 − 46
25

√
2 − 14

25

√
2 0 0 0

0 0 0 2 2 2
0 0 0 − 6

5

√
2 2

5

√
2 2

√
2

0 0 0 − 14
25

√
2 − 46

25

√
2 2

√
2

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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3.3 Convergence of the CWs expansion

The convergence of the CWs expansion in one dimension is investigated in the following
theorems:

Theorem 3.1. A function u(x) defined on [0, 1] with bounded first and second derivatives
|u′(x)| ≤ M1 and |u′′(x)| ≤ M2, can be expanded as an infinite sum of CWs, and the
series converges uniformly to u(x), that is,

u(x) =
∞∑

n=1

∞∑

m=0

cnmψnm(x),

where cnm’s are defined in (12).

Proof. We consider the following cases:
For m=0 and n = 1, 2, . . . , 2k , the CWs form an orthonormal system on [0, 1] as

ψn0(x) =
⎧
⎨

⎩

√
2

π
2

k
2 , x ∈

[
n−1
2k

, n
2k

]
,

0, o.w.

(17)

By expanding the function u(x) in terms of these basis functions on [0, 1], we have

u(x) =
∞∑

n=1

cn0ψn0(x), (18)

where

cn0 =
√

2

π
2

k
2

∫ n
2k

n−1
2k

u(x)wn(x)dx . (19)

By truncating the series in (18), it can be written as

ũ(x) 

2k∑

n=1

cn0ψn0(x). (20)

Theorem 3.2. Suppose ũ(x) be the truncated expansion of the function u(x) in the above
basis functions and ẽ(x) = ũ(x) − u(x) be the corresponding error. Then the expansion
will converge in the sense that ẽ(x) approaches zero with the same rate as 2k , i.e.,

‖ẽ(x)‖ = O

(
1

2k

)
. (21)
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Proof. By defining the error between u(x) and its expansion over every subinterval as
follows:

en(x) = cn0ψn0(x) − u(x), x ∈
[
n − 1

2k
,
n

2k

]
, n = 1, 2, . . . , 2k, (22)

we have

‖en(x)‖2 =
∫ n

2k

n−1
2k

en(x)
2wn(x)dx =

∫ n
2k

n−1
2k

(cn0ψn0(x) − u(x))2 wn(x)dx

=
(
cn0

√
2

π
2

k
2 − u(ηn)

)2
π

2k+1 , ηn ∈
[
n − 1

2k
,
n

2k

]
, (23)

where we have used the weighted mean value theorem for integrals. From (19) and the
weighted mean value theorem, we also have

cn0 =
√

2

π
2

k
2

∫ n
2k

n−1
2k

u(x)wn(x)dx =
√

2

π
2

k
2

π

2k+1 u(ζn), ζn ∈
[
n − 1

2k
,
n

2k

]
.

(24)

By substituting (24) into (23), we obtain

‖en(x)‖2 = (u(ζn) − u(ηn))
2 π

2k+1 . (25)

Now, since |u′(x)| ≤ M1, then it satisfies the Lipschitz condition on each subinterval, i.e.,

|u(ζn) − u(ηn)| ≤ M1|ζn − ηn|, ∀ζn, ηn ∈
[
n − 1

2k
,
n

2k

]
. (26)

Then from (25) and (26), we have

‖en(x)‖2 ≤ πM2
1

23k+1 , (27)

which leads to

‖ẽ(x)‖2 =
∫ 1

0
ẽ(x)2wn(x)dx =

∫ 1

0

⎛

⎝
2k∑

n=1

en(x)

⎞

⎠
2

wn(x)dx

=
∫ 1

0

⎛

⎝
2k∑

n=1

en(x)
2

⎞

⎠wn(x)dx + 2
∑

n≤n′

∫ 1

0
en(x)en′(x)wn(x)dx . (28)
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Now, due to disjointness property of these basis functions, we have

‖ẽ(x)‖2 =
∫ 1

0

⎛

⎝
2k∑

n=1

en(x)
2

⎞

⎠wn(x)dx =
2k∑

n=1

‖en(x)‖2. (29)

By substituting (27) into (29), we obtain

‖ẽ(x)‖2 ≤ πM2
1

22k+1 , (30)

or, in other words, ‖ẽ(t)‖ = O

(
1

2k

)
, which completes the proof. �

COROLLARY 3.3

Let ũ(x) be the expansion of u(x) by the above basis functions, and ẽ(x) be the corre-
sponding error. Then we have

‖ẽ(x)‖ ≤
√

π

2

M1

2k
. (31)

Proof. This is an immediate consequence of Theorem 3.2. �

Remark 1. Notice that according to the above information, we have

∞∑

n=2k+1

c2
n0 = ‖ũ(x) −

∞∑

n=1

cn0ψn0(x)‖2 = ‖ẽ(x)‖2 ≤ πM2
1

22k+1 . (32)

In the case m ≥ 1, it has been proved in [49] that

⎧
⎪⎨

⎪⎩

|cnm | ≤
√

πM1

4n
3
2

, m = 1,

|cnm | ≤
√

πM2

16(n)
5
2 (m−1)2

, m > 1.
(33)

Therefore, the above cases conclude that the series
∑∞

n=1
∑∞

m=0 cnm is absolutely con-
vergent, and it follows that

∑∞
n=1

∑∞
m=0 cnmψnm(x) converges to the function u(x) uni-

formly. �

Theorem 3.4. Suppose u(x) be a function defined on [0, 1],with bounded first and second
derivatives M1 and M2 respectively, andCT	(x) be its approximation with the CWs. Then
for the error bound, we have
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σm̂ <

⎛

⎝ πM2
1

22k+1 + πM2
2

196

∞∑

n=1

∞∑

m=M

anm + πM2
2

196

∞∑

n=2k+1

M−1∑

m=2

anm

+πM2
1

16

∞∑

n=2k+1

bn

⎞

⎠

1
2

, (34)

where

σm̂ =
(∫ 1

0
(u(x) − CT	(x))2wn(x)dx

) 1
2

, anm = 1

n5(m − 1)4
,

bn = 1

n3 .

Proof. By considering definition of σm̂ , we have

σ 2
m̂ =

∫ 1

0
(u(x) − CT	(x))2wn(x)dx

=
∫ 1

0

⎛

⎝
∞∑

n=1

∞∑

m=0

cnmψnm(x) −
2k∑

n=1

M−1∑

m=0

cnmψnm(x)

⎞

⎠
2

wn(x)dx

=
∫ 1

0

⎛

⎝
∞∑

n=1

∞∑

m=M

c2
nmψ2

nm(x) +
∞∑

n=2k+1

M−1∑

m=0

c2
nmψ2

nm(x)

⎞

⎠wn(x)dx

=
∞∑

n=1

∞∑

m=M

c2
nm +

∞∑

n=2k+1

M−1∑

m=0

c2
nm =

∞∑

n=1

∞∑

m=M

c2
nm +

∞∑

n=2k+1

M−1∑

m=2

c2
nm

+
∞∑

n=2k+1

(c2
n0 + c2

n1). (35)

Now by considering (33), (35) and Remark 1, we achieve the desired result. �

3.4 Operational matrix of fractional order integration

The fractional integration of order α of the vector 	(x) defined in (14) can be expressed
as

(I α	)(x) 
 Pα	(x), (36)

where Pα is the m̂ × m̂ operational matrix of fractional integration of order α. In [37],
Li has derived an explicit form of this matrix by employing block pulse functions. In the
sequel, we derive a more accurate explicit form of the matrix Pα . To this end, we need
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to introduce another family of basis functions, namely hat functions (HFs). An m̂-set of
these basis functions is defined on the interval [0, 1] as [52]

φ0(x) =
{ h − x

h
, 0 ≤ x < h,

0, o.w.,
, (37)

φi (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − (i − 1)h

h
, (i − 1)h ≤ x < ih,

(i + 1)h − x

h
, ih ≤ x < (i + 1)h,

0, o.w.,

i = 1, 2, . . . , m̂ − 2,

(38)

φm̂−1(x) =
{ x − (1 − h)

h
, 1 − h ≤ x ≤ 1,

0, o.w.,
(39)

where h = 1
m̂−1 . From the definition of the HFs, we have

φi ( jh) =
{

1, i = j,
0, i �= j.

(40)

An arbitrary function u(x) defined on the interval [0, 1] can be expanded by the HFs as

u(x) 

m̂−1∑

i=0

uiφi (x) = UT
(x) = 
(x)TU, (41)

where

U � [u0, u1, . . . , um̂−1]T (42)

and


(x) � [φ0(x), φ1(x), . . . , φm̂−1(x)]T . (43)

The important aspect of using the HFs in approximating a function u(x) lies in the fact
that the coefficients ui in (41) are given by

ui = u(ih), i = 0, 1, . . . , m̂ − 1. (44)

By considering (41) and (44), it can be simply seen that the CWs can be expanded in
terms of an m̂-set of HFs as

	(x) 
 
m̂×m̂
(x). (45)

In [52], the authors have given the HFs operational matrix of fractional integration Fα as

(I α
)(x) 
 Fα
(x), (46)
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where

Fα = hα

�(α + 2)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 ζ1 ζ2 . . . ζm̂−2 ζm̂−1
0 1 ξ1 . . . ξm̂−3 ξm̂−2
0 0 1 . . . ξm̂−4 ξm̂−3
...

...
...

. . .
...

...

0 0 0 0 1 ξ1
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

m̂×m̂

(47)

and

{
ζi = iα (α − i + 1) + (i − 1)α+1, i = 1, 2, . . . , m̂ − 1,

ξi = (i + 1)α+1 − 2iα+1 + (i − 1)α+1, i = 1, 2, . . . , m̂ − 2.
(48)

Now by considering (36), and using (45) and (46) we obtain

(
I α	

)
(x) 
 (

I α
m̂×m̂

)
(x) = 
m̂×m̂

(
I α


)
(x) 
 
m̂×m̂ F

α
(x). (49)

Moreover, from (36) and (49), we have

Pα	(t) 
 
m̂×m̂ F
α
(t). (50)

Thus, by considering (45) and (50), we obtain the CWs operational matrix of fractional
integration as

Pα 
 
m̂×m̂ F
α
−1

m̂×m̂ . (51)

Therefore, we have found the operational matrix of fractional integration for the CWs. To
illustrate the calculation procedure, we choose α = 1

2 , k = 1, M = 3. Thus we have

P

(
1
2

)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

0.469128 0.250070 −0.0816500 0.454110 −0.108884 0.0224214
−0.0152413 0.191786 0.202564 0.0460971 −0.0403113 0.0119599
−0.226168 −0.148001 0.0119244 −0.197621 0.0511399 −0.0105525

0.0 0.0 0.0 0.516567 0.224842 −0.0268650
0.0 0.0 0.0 −0.0592536 0.215309 0.109890
0.0 0.0 0.0 −0.146220 −0.144772 0.277383

⎞

⎟⎟⎟⎟⎟⎟⎠
.

3.5 Some useful results for the CWs

In this section, by employing some properties of the HFs, we derive an useful theo-
rem for the CWs, which will be used in this paper. From now on, for any two constant
vectors CT = [c1, c2, . . . , cm̂] and DT = [d1, d2, . . . , dm̂], we define CT � DT =
[c1d1, c2d2, . . . , cm̂dm̂] and G

(
CT
) = [G(c1),G(c2), . . . ,G(cm̂)] for any analytic func-

tion G.
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Lemma 3.5. Suppose C̃T
(x) and D̃T
(x) be the expansions of u(x) and v(x) by the
HFs, respectively. Then we have

u(x)v(x) 
 (C̃T � D̃T )
(x). (52)

Proof. By considering (41) and (44), we have

u(x) 

m̂−1∑

i=0

u(ih)φi (x) = C̃T
(x),

v(x) 

m̂−1∑

i=0

v(ih)φi (x) = D̃T
(x)

and

u(x)v(x) 

m̂−1∑

i=0

u(ih)v(ih)φi (x) = (C̃T � D̃T )
(x),

which completes the proof. �

COROLLARY 3.6

Suppose C̃T
(x) be the expansion of u(x) by the HFs. Then for any integer q ≥ 2, we
have

[u(x)]q 
 [c̃q0 , c̃q1 , . . . , c̃qm̂−1]
(x). (53)

Proof. From Lemma 3.5, we have

[u(x)]2 
 [c̃2
0, c̃

2
1, . . . , c̃

2
m̂−1]
(x),

and by induction, we obtain

[u(x)]q 
 [c̃q0 , c̃q1 , . . . , c̃qm̂−1]
(x), q > 2.

This completes the proof. �

Theorem 3.7. Suppose G be an analytic function and C̃T
(x) be the expansion of u(x)
by the HFs. Then we have

G (u(x)) 
 G(C̃T )
(x). (54)
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Proof. Since G is an analytic function, by considering Maclaurin expansion of G, i.e.

G(x) =
∑∞

q=0

G(q)(0)

q! xq , we have

G (u(x)) =
∞∑

q=0

G(q)(0)

q! [u(x)]q . (55)

Now, from Corollary 3.6 and relation (55), we have

G (u(x)) 

∞∑

q=0

G(q)(0)

q! [uq0 , uq1 , . . . , uqm̂−1]
(x)

=
⎡

⎣
∞∑

q=0

G(q)(0)

q! uq0 ,

∞∑

q=0

G(q)(0)

q! uq1 , . . . ,

∞∑

q=0

G(q)(0)

q! uqm̂−1

⎤

⎦
(x).

Due to the fact that the series in the left-hand side is absolutely and uniformly convergent
to G(u), each series in the right-hand side is also absolutely and uniformly convergent to
G (ui ), i.e.,

G (u(x)) 

⎡

⎣
∞∑

q=0

G(q)(0)

q! uq0 ,

∞∑

q=0

G(q)(0)

q! uq1 , . . . ,

∞∑

q=0

G(q)(0)

q! uqm̂−1

⎤

⎦
(x)

= [G(u0),G(u1), . . . ,G(um̂−1)]
(x).

Thus we have

G (u(x)) 
 [
G(u0),G(u1), . . . ,G(um̂−1)

]

(x) = G(C̃T )
(x),

which completes the proof. �

Theorem 3.8. Suppose G be an analytic function and CT	(x) be the expansion of u(x)
by the CWs. Then we have

G (u(x)) 
 G(C̃T )
−1
m̂×m̂	(x), (56)

where

C̃T = CT
m̂×m̂ .

Proof. By considering equation (45) and Theorem 3.7, we have

G (u(x)) 
 G(CT	(x))


 G(CT
m̂×m̂
(x)) = G(C̃T
(x)) 
 G(C̃T )
(x). (57)

So from (45) and (57), we have
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G (u(x)) 
 G(C̃T )
(x) 
 G(C̃T )
−1
m̂×m̂	(x), (58)

which completes the proof. �

COROLLARY 3.9

Suppose CT	(x) and DT	(x) be expansions of u(x) and v(x) by the CWs, respectively
and also G and H be two analytic functions. Then we have

G (u(x)) H (v(x)) 
 (G(C̃T ) � H(D̃T ))
−1
m̂×m̂	(x), (59)

where

C̃T = CT
m̂×m̂, D̃T = DT
m̂×m̂ .

Proof. By considering Theorem 3.8 and equation (45) and Lemma 3.5, the proof will be
straightforward. �

4. Description of the proposed method

In this section, we apply the operational matrix of fractional integration for the CWs
together with the series expansion and useful properties of these basis functions for solving
NMFDE (1). The main idea of the proposed method is as follows:

(1) The NMFDE (1) is converted to a fully integrated form via fractional integration in the
Riemann–Liouville sense.

(2) The integrated form of the equation is approximated using a linear combination of the
CWs.

(3) Finally, the integrated form of the equation is converted to a nonlinear algebraic equa-
tion, by introducing the operational matrix of fractional integration for the CWs and
employing some useful properties of these basis functions, which were mentioned in
the subsection 3.5.

In the following we show the importance of the proposed method. Applying the
Riemann–Liouville fractional integration of order α on both sides of (1), yields

u(x) −
q−1∑

j=0

u( j) (0+) x j

j ! +
s∑

i=1

γi I
α−αi

⎡

⎣u(x) −
qi−1∑

j=0

u( j) (0+) x j

j !

⎤

⎦

+ I αG(u(x)) = I α f (x), (60)

where qi − 1 < αi ≤ qi , qi ∈ N. By considering (2) and (60), we obtain the following
fractional integral equation:

u(x) +
s∑

i=1

γi I
α−αi u(x) + I αG(u(x)) = g(x), (61)
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where

g(x) = I α f (x) +
q−1∑

j=0

d j
x j

j ! +
s∑

i=1

γi I
α−αi

⎛

⎝
qi−1∑

j=0

d j
x j

j !

⎞

⎠ .

In order to use the Galerkin method with the CWs for solving the integrated problem (61),
we approximate u(x) and g(x) by the CWs as follows:

u(x) 
 CT	(x) (62)

and

g(x) 
 G̃T	(x), (63)

where the vector G̃ = [g1, g2, . . . , gm̂] is given, but C = [c1, c2, . . . , cm̂] is an unknown
vector. Also, from Theorem 3.8, we have

G (u(x)) 
 G(C̃T )
−1
m̂×m̂	(x), (64)

where C̃T = CT
m̂×m̂ . Now, the Riemann–Liouville fractional integration of orders
(α − αi ) and α of the approximate solution (62) and (64) can be written as

I α−αi u(x) 
 CT P(α−αi )	(x), i = 1, 2, . . . , s (65)

and

I αG (u(x)) 
 G(C̃T )
−1
m̂×m̂ Pα	(x), (66)

respectively, where Pα is the m̂×m̂ operational matrix of fractional integration of order α.
By employing equations (62)–(66), we can write the residual function R(x) for equation
(61) as follows:

R(x) =
(
CT + CT

s∑

i=1

γi P
(α−αi ) + G(C̃T )
−1

m̂×m̂ Pα − G̃T

)
	(x). (67)

As in a typical Galerkin method [8], we generate m̂ nonlinear algebraic equations by
applying

(
R(x), ψ j (x)

)
wn

=
∫ 1

0
R(x)ψ j (x)wn(x)dx = 0, j = 1, 2, . . . , m̂, (68)

where ψ j (x) = ψnm(x) and the index j is determined by the relation j = M(n−1)+m+1.
These system of nonlinear equations can be solved for the unknown coefficients of the
vector C . Consequently, u(x) given in (62) can be calculated.
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Figure 1. Numerical solutions of Example 1 for m̂ = 96 and some values of 1 < α

≤ 2.

5. Numerical examples

In this section, we demonstrate the efficiency and accuracy of the proposed method for
some numerical examples in the form (1). To show the accuracy of the proposed method,
we use the absolute error in some different points in cases that we have the exact solutions
as

|e(xi )| = |u(xi ) − ũ(xi )|,

where u(x) is the exact solution and ũ(x) is the approximate solution which is obtained
by relation (62).

Example 1. First, let us consider the NMFDE:

Dα∗ u(x) + Dα−1∗ u(x) + sinh(u(x)) = f (x), 1 < α ≤ 2, x ∈ [0, 3],

where

f (x) = − 3

2(1 + x2)
+ 4x2

(
1 + x2

)2 − 2x

1 + x2 − 1

2
− 1

2
x2,

subject to the initial conditions u(0) = u′(0) = 0. Figure 1 shows the behavior of the
numerical solution for m̂ = 96 (k = 4, M = 6). The exact solution of this problem when
α = 2 is u(x) = − ln

(
1 + x2

)
. From this figure, it can be seen that the numerical solution

is in a very good agreement with the exact solution in the case α = 2. Therefore, we hold
that the solutions for α = 1.25, 1.50 and α = 1.75 are also credible.

Example 2. Consider the NMFDE:

Dα∗ u(x) + Dβ∗ u(x) + [u(x)]2 = f (x), 1 < α ≤ 2, 0 < β ≤ 1,
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Figure 2. Comparison between the approximate and exact solutions of Example 2 for
some different values of M .

where

f (x) = (x2 − x)2 + 2x2−α

� (3 − α)
+ 2x2−β

� (3 − β)
− x1−β

� (2 − β)
,

subject to the initial conditions u(0) = 0, u′(0) = −1. The exact solution for this problem
is u(x) = x2 − x . The behavior of the numerical solutions for k = 2 and some different
values of M with α = 1.75 and β = 0.5 are shown in figure 2. This figure shows that by
increasing M as the degree of the Chebyshev polynomials, the approximate solutions tend
to the exact solution faster. Also, in order to show the accuracy of the proposed method
(using the new operational matrix of fractional order integration), a comparison between
the absolute errors arising by our method via CWs method in [37] for α = 2, β = 0.5
with M = 4 and some different values of k in various values of xi is performed in Table 1.
From this table, it can be seen that the absolute errors obtained by our method are less than
the error obtained by CWs method in [37]. It illustrates that our method is more accurate.
From table 1, we also observe that the proposed method can provide numerical results with
high accuracy for this problem. Furthermore, it can be seen that as more basis functions
are used, we obtain a good approximate solution with higher accuracy. This table also
shows that ‘The spectral accuracy’ holds for the proposed method. So, we conclude that
our method is suitable for this problem and also by increasing the number of the CWs, the
accuracy of the obtained result is improved.

Example 3. Consider the NMFDE [15,37]:

aD2.0∗ u(x) + bDα2∗ u(x) + cDα1∗ u(x) + e[u(x)]3 = f (x),

0 < α1 ≤ 1, 1 < α2 ≤ 2,
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Table 1. The absolute errors of our method and CWs method [37] for some different
values of k for Example 2.

xi m̂ = 24 (k = 3, M = 3) m̂ = 48 (k = 4, M = 3) m̂ = 96 (k = 4, M = 6)

Ref. [37] Ours Ref. [37] Ours Ref. [37] Ours

0.1 1.4411E−4 9.2677E−7 5.8178E−4 2.9095E−7 8.8658E−6 1.7936E−8

0.2 1.4007E−4 3.6193E−6 5.7770E−4 7.5117E−7 8.5359E−6 3.6525E−8

0.3 1.3459E−4 6.3739E−6 5.5994E−4 1.2248E−7 8.1318E−6 5.4314E−8

0.4 1.2835E−4 9.1427E−6 5.3877E−4 4.8091E−7 7.6897E−6 7.1227E−8

0.5 1.2241E−4 1.2129E−5 5.1798E−4 1.6932E−7 7.1843E−6 8.5678E−8

0.6 1.1491E−4 1.4512E−5 4.8878E−4 2.1874E−6 6.7665E−6 1.0234E−7

0.7 1.0803E−4 1.7072E−5 4.6190E−4 2.5735E−6 6.3058E−6 1.1650E−7

0.8 1.0114E−4 1.9533E−5 4.3484E−4 2.9814E−6 5.8497E−6 1.2967E−7

0.9 9.4240E−5 2.1888E−5 4.0522E−4 3.7412E−6 5.4018E−6 1.4172E−7

where

f (x) = 2 ax + 2b

� (4 − α2)
x3−α2 + 2c

� (4 − α1)
x3−α1 + e

27
x9,

subject to the initial conditions u(0) = u′(0) = 0. The exact solution for this problem
is u(x) = 1

3 x
3. This problem is now solved by the proposed method for a = b = c =

e = 1, α1 = 0.333 and α2 = 1.234. The behavior of the numerical solutions for M = 2
and some different values of k are shown in figure 3. From this figure, one can see that
by increasing the number of the CWs basis functions, the approximate solutions converge
to the exact solution with a good speed. In order to show the accuracy of the proposed
method, a comparison between the absolute errors arising by our method via CWs method
in [37] for different values of k and M in various values of xi is performed in table 2. From
this table, it can seen that the absolute errors obtained by our method are less than the error
obtained by CWs method in [37]. It illustrates that our method is more accurate. Table 2
also shows that the proposed method can provide approximate solutions with high accuracy
for the problem under study. Furthermore, it can be seen that by increasing the number
of basis functions a good approximate solution with higher accuracy will be obtained for
this problem. This table also shows that ‘The spectral accuracy’ holds for the proposed
method. However, it can be concluded that the proposed method is a suitable tool for this
problem.

Example 4. Finally, consider the NMFDE [15,37]:

D2∗u(x) + 0.5D1.5∗ u(x) + 0.5[u(x)]3 = f (x), x > 0,

where

f (x) =
{

8, 0 ≤ x ≤ 1,

0, x > 1,
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Figure 3. Comparison between the approximate and exact solutions of Example 3 for
some different values of k.

Table 2. The absolute errors of our method and CWs method [37] for some different
values of k and M for Example 3.

xi m̂ = 24 (k = 3, M = 3) m̂ = 48 (k = 4, M = 3) m̂ = 96 (k = 4, M = 6)

Ref. [37] Ours Ref. [37] Ours Ref. [37] Ours

0.1 8.1951E−5 2.4746E−5 2.6375E−5 1.3544E−8 5.2537E−6 2.1636E−9

0.2 2.0518E−4 9.9110E−6 4.0567E−5 2.7056E−8 1.2653E−5 4.1452E−9

0.3 9.9509E−4 3.6971E−6 5.8391E−5 3.8378E−8 1.8580E−5 5.8460E−9

0.4 3.0545E−4 9.2029E−6 9.6431E−5 4.8091E−8 1.8924E−5 7.3050E−9

0.5 5.0800E−4 4.6215E−5 1.2692E−4 5.6457E−8 3.1716E−5 8.4347E−9

0.6 4.2963E−4 6.0359E−6 1.3924E−4 6.3394E−8 2.6946E−5 9.6036E−9

0.7 6.3846E−4 6.1646E−7 1.2276E−4 6.9254E−8 3.9702E−5 1.0483E−8

0.8 7.1176E−4 1.2870E−6 1.3644E−4 7.4057E−8 4.4596E−5 1.1204E−8

0.9 6.0270E−4 3.2082E−6 1.9673E−4 7.7877E−8 3.7484E−5 1.1777E−8

subject to the initial conditions u(0) = u′(0) = 0. This is a Bagley–Torvik equation where
the nonlinear term u3(x) is introduced. This problem has been solved in [15,37]. The
behavior of the approximate solution for this problem with m̂ = 96 is shown in figure 4
which is in a good agreement with the obtained numerical solutions in [15,37]. This
demonstrates the importance of our method in solving nonlinear multi-order differential
equations.
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Figure 4. The behavior of the approximate solution for Example 4.

6. Application for nonlinear fractional order VPO equation

The VPO represents a nonlinear system with an interesting behavior that arises naturally
in several applications. In the standard form, it is given by a nonlinear differential equation
[9,34]

u′′(t) + μ(u2(t) − 1)u′(t) + u(t) = 0, (69)

where μ > 0 is the control parameter. Equation (69) is commonly referred to as the
unforced VPO equation [19]. The VPO with a forcing term f (t) is given by [19]

u′′(t) + μ(u2(t) − 1)u′(t) + u(t) = f (t). (70)

In recent years, the VPO equation and its special properties have been investigated by many
authors (for instance, see [3,6]). A modified version of the classical VPO was proposed
by the fractional derivative of order α in the state space formulation of equation (70). It
has the following form [34]

{
Dα∗ u1(t) = u2(t), 0 < α < 1,
du2(t)

dt
= f (t) − u1(t) − μ(u2

1(t) − 1)u2(t),
(71)

with the initial conditions ui (0) = di (i = 1, 2). In order to use the proposed method in
section 4, we consider the integral form of (71) as

{
u1(t) = d1 + I αu2(t), 0 < α < 1,

u2(t) = d2 + I f (t) − I {u1(t) + μ(u2
1(t) − 1)u2(t)}. (72)

Now, we approximate u1(t) and u2(t) by the CWs as

{
u1(t) 
 UT

1 	(t),
u2(t) 
 UT

2 	(t).
(73)
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Also from Theorem 3.8 and Corollary 3.9, we have

u2
1(t)u2(t) 
 ((Ũ T

1 )2 � Ũ T
2 )
−1

m̂×m̂	(t), (74)

where

Ũ T
1 = UT

1 
m̂×m̂, Ũ T
2 = UT

2 
m̂×m̂ .

Moreover, we can approximate the function f (t) by the CWs as follows:

f (t) 
 F̂T	(t), (75)

where F̂ is a given known vector. Now by substituting (73)–(75) into (72), and using
operational matrix of fractional order integration, we obtain

⎧
⎨

⎩

UT
1 	(t) 
 d1e

T	(t) +UT
2 Pα	(t),

UT
2 	(t) 
 d2e

T	(t) + F̂T P	(t)
−((UT

1 + μ((Ũ T
1 )2 � Ũ T

2 )
−1
m̂×m̂ − μUT

2 )P)	(t),
(76)

where e is the coefficient vector of unit step function using CWs. Now, from (76), we can
write the residual function R1(t) and R2(t) for system (72) as follows:{

R1(t) = (UT
1 − d1eT −UT

2 Pα)	(t),

R2(t) = (UT
2 − d2eT − F̂T P + (UT

1 + μ((Ũ T
1 )2 � Ũ T

2 )
−1
m̂×m̂ − μUT

2 )P)	(t).

(77)

As in a typical Galerkin method [8], we generate 2m̂ nonlinear algebraic equations by
applying

⎧
⎪⎪⎨

⎪⎪⎩

(
R1(t), ψ j (t)

)
wn

=
∫ 1

0
R1(t)ψ j (t)wn(t)dt = 0, j = 1, 2, . . . , m̂,

(
R2(t), ψ j (t)

)
wn

=
∫ 1

0
R2(t)ψ j (t)wn(t)dt = 0, j = 1, 2, . . . , m̂,

(78)

where ψ j (t) = ψnm(t), and the index j is determined by the relation j = M(n−1)+m+1.
These systems of nonlinear algebraic equations can be solved for the unknown coefficients
of the vector U1 and U2. Consequently, u1(t) and u2(t) given in (73) can be calculated.

Example 5. Consider the following fractional Van der Pol equation [34]

{
Dα∗ u1(t) = u2(t),
du2(t)

dt
= −u1(t) − 0.5u2

1(t)u2(t) + 0.5u2(t),

with the initial conditions

u1(0) = 0, u2(0) = 1.

The behavior of the approximate solutions for this problem with m̂ = 48 and two different
values of α is shown in figure 5, which is in a good agreement with the numerical solutions
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Figure 5. The behavior of the approximate solutions for Example 5.
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Figure 6. The behavior of the approximate solutions for Example 6.

in [34]. This demonstrates the importance of our method in solving nonlinear fractional
order Van der Pol equation.

Example 6. Finally, consider the following fractional Van der Pol equation [34]

{
Dα∗ u1(t) = u2(t),
du2(t)

dt
= 2 cos(t) − cos3(t) − u1(t) − u2

1(t)u2(t) − u2(t),

with the initial conditions

u1(0) = 0, u2(0) = 1.

The exact solution for this problem in the case α = 1 is u(t) = sin(t). The behavior of
the approximate solutions for this problem with m̂ = 48 and two different values of α is
shown in figure 6, which is in a good agreement with the numerical solutions in [34]. This
demonstrates the importance of our method in solving nonlinear fractional order Van der
Pol equation.

7. Conclusion

In this work, a new operational matrix of fractional order integration for the CWs was
derived and applied to solve nonlinear multi-order fractional differential equations. Sev-
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eral examples were given to demonstrate the powerfulness of the proposed method. The
underlying problems have been reduced to systems of nonlinear algebraic equations. The
obtained results were compared with exact solutions and also with the solutions obtained
by the CWs method in [37]. It is worth mentioning that the results obtained by the pro-
posed method were in a good agreement with those obtained using the CWs method in
[37]. The numerical results illustrated the efficiency and accuracy of the presented scheme
for solving nonlinear multi-order fractional differential equations. Furthermore, as a use-
ful application, the proposed method was applied to obtain approximate solution of the
fractional order VPO equation.
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