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Abstract. A graph is called integral, if all of its eigenvalues are integers. In this paper,
we give some results about integral pentavalent Cayley graphs on abelian or dihedral
groups.
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1. Introduction

We say that a graph is integral if all the eigenvalues of its adjacency matrix are inte-
gers. The notion of integral graphs was first introduced by Harary and Schwenk [8].
Bussemaker and Cvetković [5] proved that there are exactly 13 connected cubic integral
graphs. The same result was indepedently proved by Schwenk [12] who unlike the effort
in Bussemaker and Cvetković [5] avoids the use of computer search to examine all the
possibilities. In [3] it is shown that the total number of matrices of integral graphs with n

vertices is less than or equal to 2
n(n−1)

2 − n
400 for a sufficiently large n.

Stevanović [14] determined all connected 4-regular integral graphs avoiding ±3 in the
spectrum. Sander [11] proved that Sudoku graphs are integral. It is known that the size

of a connected k-regular graph with diameter d is bounded above by k(k−1)d−2
k−2 (see, for

example, [7]). In [6], it is noted that if the graph is integral then d ≤ 2k because there
are at most 2k + 1 distinct eigenvalues. Consequently, the upper bound of the size of a
connected k-regular integral graph is

n ≤ k(k − 1)2k − 2

k − 2
.

Let G be a non-trivial group, S ⊆ G − {1} and S = S−1 = {s−1 | s ∈ S}. The Cayley
graph of G denoted by Cay(G, S) is a graph with vertex set G and two vertices a and b

are adjacent if ab−1 ∈ S. If S generates G then Cay(G, S) is connected. A Cayley graph
is simple and vertex transitive. Let G be a group. An element g ∈ G is said to be an
involution, if its order is 2. The main question that we are concerned here is the following:
Which Cayley graphs are integral?
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It is clear that if S = G − {1}, then Cay(G, S) is the complete graph with |G| ver-
tices and so it is integral. Klotz and Sander [10] showed that all nonzero eigenvalues of
Cay(Zn, Un) are integers dividing the value ϕ(n) of the Euler totient function, where Zn

is the cyclic group of order n and Un is the subset of all elements of Zn of order n. So [13]
characterized integral graphs among circulant graphs. Abdollahi and Vatandoost [1, 2],
determined integral cubic and tetravalent Cayley graphs on abelian groups. By using a
result of Babai [4] which presented the spectrum of a Cayley graph in terms of irreducible
characters of the underlying group, we give some results on integral pentavalent Cayley
graphs on abelian or dihedral groups.

2. Preliminaries

In this section we give some results which will be used in the next section.

PROPOSITION 2.1

Let Aut(G) denote the automorphism group of G. Also let α ∈ Aut(G). Then Cay(G, S)

is isomorphic to Cay(G, Sα).

Proof. It is easy to see that the map ψ : g �→ gα is an isomorphism between two Cayley
graphs. �

PROPOSITION 2.2 [4]

Let G be a finite group of order n whose irreducible characters (over C) are χ1, . . . , χh

with respective degrees n1, . . . nh. Then the spectrum of the Cayley graph Cay(G, S) can
be arranged as � = {λijk | i = 1, . . . , h; j ; k = 1, . . . , ni} such that λij1 = · · · = λijni

(this common value will be denoted by λij ), and

λt
i1 + · · · + λt

ini
=

∑

s1,...,st∈S

χi

(
t∏

l=1

sl

)
(1)

for any natural number t .

PROPOSITION 2.3 [9]

Let Cn be the cyclic group generated by a of order n. Then the irreducible characters of
Cn are ρj (a

k) = ωjk, where j, k = 0, 1, . . . , n − 1.

PROPOSITION 2.4 [9]

Let G = Cn1 × · · · × Cnr and Cni
= 〈ai〉, so that for any i, j ∈ {1, . . . , r}, (ni, nj ) 
= 1.

If ωt = e
2πi
nt , then n1 . . . nr irreducible characters of G are

ρl1...lr (a
k1
1 , . . . , akr

r ) = ω
l1k1
1 ω

l2k2
2 . . . ωlr kr

r

where li = 0, 1, . . . , ni − 1 and i = 1, 2, . . . , r .
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PROPOSITION 2.5 [1]

Let G = 〈S〉 be a group, |G| = n, |S| = 2, 1 /∈ S = S−1. Then Cay(G, S) is an integral
graph if and only if n ∈ {3, 4, 6}.
PROPOSITION 2.6 [1]

Let G be the cyclic group 〈a〉, |G| = n > 3 and let S be a generating set of G such that
|S| = 3, S = S−1 and 1 /∈ S. Then Cay(G, S) is an integral graph if and only if n ∈ {4, 6}.

3. Results

Lemma 3.1. Let G1 and G2 be two non-trivial abelian groups and G = G1 × G2 such
that X = Cay(G, S) is integral and G = 〈S〉, where |S| = 5, S = S−1 and 1 /∈ S. Let
S1 = {s1 | (s1, g2) ∈ S, g2 ∈ G2}− {1}. Then Cay(G1, S1) is a connected integral graph.

Proof. Let χ0 and ρ0 be the trivial irreducible characters of G1 and G2, respectively. Let
λi0 and λi be the eigenvalues of Cay(G, S) and Cay(G1, S1) corresponding to irreducible
characters of χi × ρ0 and χi , respectively. We have |S1| ∈ {1, 2, 3, 4, 5}. If |S1| = 1, then
|G1| = 2 and so Cay(G1, S1) is the complete graph K2 with two vertices which is an
integral graph. By Proposition 2.2,

λio =
∑

(g1,g2)∈S

(χi × ρ0)(g1, g2).

We have the following cases:

Case 1. If |S1| = 5, then λi0 = λi . It follows that Cay(G1, S1) is integral.

Case 2. Let |S1| = 4 and suppose that either S = {(a, x), (a−1, x−1), (b, y), (b−1, y−1),

(1, z)}, where o(z) = 2 or S = {(a, x), (b, y), (c, z), (d,w), (1, f )}, where o(a) =
o(b) = o(c) = o(d) = o(x) = o(y) = o(z) = o(w) = o(f ) = 2 or S = {(a, x), (b, y),

(c, z), (c−1, z−1), (1, f )}, where o(a) = o(b) = o(x) = o(y) = o(f ) = 2 or
S = {(a, x), (b, y), (c, z), (c, z−1), (d,w)}, where o(a) = o(b) = o(c) = o(d) =
o(x) = o(y) = o(w) = 2 or S = {(a, x), (a−1, x−1), (b, y), (b, y−1), (c, z)}, where
o(b) = o(c) = o(z) = 2. Thus either λi0 = λi + χi(1) or λi0 = λi + χi(b), or
λi0 = λi +χi(c), respectively. Since 2|χi(b)−χi(1) and 2|χi(c)−χi(1), χi(b) and χi(c)

are integers and so Cay(G1, S1).

Case 3. Now assume that |S1| = 3. Then either S = {(a, x), (a, x−1), (b, y), (b, y−1),

(c, z)}, where o(a) = o(b) = o(c) = o(z) = 2 or S = {(a, x), (a−1, x−1), (b, y), (b, y−1),

(1, z)}, where o(b) = o(z) = 2 or S = {(a, x), (b, y), (c, z), (c, z−1), (1, w)}, where
o(a) = o(b) = o(c) = o(x) = o(y) = o(w) = 2 or S = {(a, x), (b, y), (c, z),

(1, e), (1, f )}, where o(a) = o(b) = o(c) = o(x) = o(y) = o(z) = o(e) = o(f ) = 2 or
S = {(a, x), (a−1, x−1), (b, y), (1, e), (1, f )}, where o(b) = o(y) = o(e) = o(f ) = 2.
Therefore either λi0 = λi + χi(b) + χi(a) or λi0 = λi + χi(b) + χi(1) or λi0 =
λi +χi(c)+χi(1) or λi0 = λi +χi(1)+χi(1). So Cay(G1, S1) is integral again. We must
note that S = S−1 and if the elements e and f are not involutions then again we have the
same results.
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Case 4. Finally assume that |S1| = 2. Then either S = {(a, x), (a−1, x−1), (1, y), (1, z),

(1, w)}, where o(y) = o(z) = o(w) = 2 or S = {(a, x), (b, y), (1, z), (1, w), (1, r)},
where o(a) = o(b) = o(x) = o(y) = o(z) = o(w) = o(r) = 2 or S =
{(a, x), (b, y), (b, y−1), (1, w), (1, z)}, where o(a) = o(b) = o(x) = o(z) = o(w) = 2
or S = {(a, x), (a, x−1), (b, y), (b, y−1), (1, z)}, where o(a) = o(b) = o(z) = 2. There-
fore either λi0 = λi + χi(1) + χi(1) + χi(1) or λi0 = λi + χi(b) + χi(1) + χi(1) or
λi0 = λi + χi(a) + χi(b) + χi(1). So Cay(G1, S1) is integral again. We must note that
S = S−1 and if the elements of the form (1, t), where t ∈ {y, z,w, r} are not involutions
then again we have the same results.

Lemma 3.2. Let G be the cyclic group 〈a〉, |G| = n > 4 and let S be a generating set of
G such that |S| = 5, S = S−1 and 1 /∈ S. Then an/2 ∈ S. Also let ar ∈ S and at ∈ S,

where o(ar) = m > 2 and o(at ) = n > 2. Then we have one of the following cases:

(i) (r, n) = 1 or (r, n/2) = 1;
(ii) (t, n) = 1 or (t, n/2) = 1;

(iii) (t, n/2, r) = 1.

Proof. Since S = S−1, then S has at least one involution. Thus n is even and an/2 ∈ S.
Therefore we may assume that S = {ar , a−r , at , a−t , an/2}. Suppose on the contrary that
none of the above cases happen. So we may suppose that (n/2, r) = d and (n/2, t) = d ′.
Thus 〈ar , at , an/2〉 ⊆ 〈ad, ad ′ 〉. Since (t, n/2, r) 
= 1, it follows that (d, d ′) = d ′′ 
= 1.
Thus 〈ad, ad ′ 〉 ⊆ 〈ad ′′ 〉 
= G, a contradiction. �

Theorem 3.3. Let G be a finite abelian group such that it is not cyclic and let G = 〈S〉,
where |S| = 5, S = S−1 and 1 /∈ S. Also let Cay(G, S) is integral. Then |G| ∈
{8, 16, 18, 24, 32, 36, 40, 48, 50, 64, 72, 80, 96, 100, 120, 128, 144, 160, 192, 200, 240,

288}.

Proof. Let Cay(G, S) be integral. If all elements of S are involutions, then G ∼= Z
3
2 or Z4

2
or Z5

2. So |G| = 8, 16 or 32. Otherwise G = Zm ×Zn ×Z2 or G = Zm ×Z2 ×Z2 ×Z2.
First suppose that G = Zm×Zn×Z2. By Lemma 3.1, Cay(Zm, S1) and Cay(Zn×Z2, S2)

are integral graphs where S1 = {s1 ∈ Zm | ∃ x ∈ Zn × Z2, (s1, x) ∈ S} − {1} and
S2 = {s2 ∈ Zn×Z2 | ∃ x ∈ Zm, (x, s2) ∈ S}−{1}. Also since Cay(Zn×Z2, S2) is integral
it follows that Cay(Zn, S

′
2) is integer where S′

2 = {s′
2 ∈ Zn | ∃ x ∈ Z2, (s

′
2, x) ∈ S2}−{1}.

By Lemmas 2.7 and 2.9 of [1] and Lemma 2.14, Corollary 2.16 of [2], m, n ∈
{3, 4, 5, 6, 8, 10, 12}. Since (m, n) 
= 1, we have |G| ∈ {2×9, 2×16, 2×18, 2×24, 2×
25, 2 × 32, 2 × 36, 2 × 40, 2 × 48, 2 × 50, 2 × 60, 2 × 64, 2 × 72, 2 × 80, 2 × 96, 2 ×
100, 2 × 120, 2 × 144}. Now suppose that G = Zm × Z2 × Z2 × Z2. By Lemma 3.1,
Cay(Zm, S1) is integral where m ∈ {3, 4, 5, 6, 8, 10, 12}. So |G| ∈ {2 × 2 × 2 × 3, 2 ×
2 × 2 × 4, 2 × 2 × 2 × 5, 2 × 2 × 2 × 6, 2 × 2 × 2 × 8, 2 × 2 × 2 × 10, 2 × 2 × 2 × 12}.
Now the proof is complete. �

The following results are the generalization of results obtained recently by Abdollahi
and Vatandoost [1, 2].

Lemma 3.4. LetD2n = 〈a, b | an = b2 = 1, (ab)2 = 1〉, n = 2m+1 and Cay(D2n, S) be
connected integral graph, where S = S−1 and |S| = k. Then −k is the simple eigenvalue
of Cay(D2n, S) if and only if all of elements of S are of order two.
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Proof. Let −k be the simple eigenvalue of Cay(D2n, S). By Proposition 2.2 and using
character table of D2n, −k is the eigenvalue of Cay(D2n, S) corresponding to the irre-
ducible character χm+1. So all elements of S are in conjugacy class of b. Conversely, if
all the elements of S are of order two, then S ⊆ b (the bar indicates conjugacy class).
By Proposition 2.2 and using the character table of D2n, the eigenvalue of Cay(D2n, S)

corresponding to irreducible character χm+1 is −k. �

Lemma 3.5. Let D2n = 〈a, b | an = b2 = 1, (ab)2 = 1〉, n = 2m + 1 and Cay(D2n, S)

be integral, where G = 〈S〉, |S| = 4, S = S−1 and 1 /∈ S. If 3 � n, then Cay(D2n, S) is
bipartite.

Proof. Let ar ∈ S, where 1 ≤ r ≤ m. Then either S = {ar , a−r , as, a−s}, where
1 ≤ r, s < n or S = {ar , a−r , aib, aj b}, where 1 ≤ i, j ≤ n, 1 ≤ r < n and
i 
= j . Since X is connected the former case cannot happen. So we may suppose that
S = {ar , a−r , aib, aj b}. If (r, n) = 1, then since n 
= 3 it implies that 2 cos 2πr

n
is not

integer. Let λ11 and λ12 be eigenvalues of Cay(D2n, S) corresponding to irreducible char-
acter χ1. By Proposition 2.2 and using character table of D2n, λ11 + λ12 = 4 cos 2πr

n
.

This contradicts the fact that Cay(D2n, S) is integral. Now let (r, n) 
= 1. Also let λ11
and λ12 be eigenvalues of Cay(D2n, S) corresponding to the irreducible character χ1. By
Proposition 2.2, λ11 + λ12 = 4 cos 2πr

n
and λ2

11 + λ2
12 = 8 + 4 cos 4πr

n
+ 4 cos 2π(i−j)

n
.

Note that λ11 and λ12 are integers. If 4 cos 2πr
n

is not an integer we have a contradiction.
So suppose that 4 cos 2πr

n
is an integer. Thus we must have i = j , a contradiction. So

S ⊆ b and hence −4 is an eigenvalue of Cay(D2n, S). Therefore Cay(D2n, S) is bipartite.

Lemma 3.6. Let D2n = 〈a, b | an = b2 = 1, (ab)2 = 1〉, n = 2m + 1 and Cay(D2n, S)

be integral, where G = 〈S〉, |S| = 5, S = S−1 and 1 /∈ S. If 3 � n, then Cay(D2n, S) is
bipartite.

Proof. Let ar ∈ S, where 1 ≤ r ≤ n. Then either S = {ar , a−r , as, a−s , aib}, where
1 ≤ r, s < n and 1 ≤ i ≤ n or S = {ar , a−r , aib, aj b, akb}, where 1 ≤ r < n and 1 ≤
i, j, k ≤ n. First suppose that S = {ar , a−r , as, a−s , aib}. Since Aut(G) acts transitively
on involution, by Proposition 2.1, we may suppose that S = {ar , a−r , as, a−s , b}. Since X

is connected, without loss of generality, we may suppose that (r, n) = 1. Thus cos 2π
n

r is
not integral. Let λ11 and λ12 be eigenvalues of Cay(D2n, S) corresponding to irreducible
character χ1. By Proposition 2.2 and using character table of D2n, λ11+λ12 = 4 cos 2πr

n
+

4 cos 2πs
n

. First suppose that − cos 2πr
n

= cos 2πs
n

. Therefore cos(π + 2πr
n

) = cos 2πs
n

and

Character table of D2n, n = 2m + 1 odd.

1 ar b

χj 2 ωjr + ω−jr 0
χm+1 1 1 −1
χm+2 1 1 1

w = e
2πi
n , 1 ≤ j ≤ m and 1 ≤ r ≤ m.
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so 2πs = 2kπn ± (nπ + 2πr), a contradiction. Now suppose that − cos 2πr
n


= cos 2πs
n

.
Since cos 2π

n
r is not integral and λ11 + λ12 is integral, we have a contradiction. �

Now suppose that S = {ar , a−r , aib, aj b, akb}. If (r, n) = 1, then since n 
= 3 it
implies that 2 cos 2π

n
r is not an integer. Let λ11 and λ12 be eigenvalues of Cay(D2n, S)

corresponding to irreducible character χ1. By Proposition 2.2 and using character table
of D2n, λ11 + λ12 = 4 cos 2πr

n
. This contradicts the fact that Cay(D2n, S) is integral.

Now let (r, n) 
= 1. Also let λ11 and λ12 be eigenvalues of Cay(D2n, S) corresponding to
irreducible character χ1. Since 3 � n, with similar arguments we have a contradiction. So
S ⊆ b and hence −5 is an eigenvalue of Cay(D2n, S). Therefore Cay(D2n, S) is bipartite.
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