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Generators for finite depth subfactor planar algebras
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Abstract. We show that a subfactor planar algebra of finite depth k is generated by a
single s-box, for s ≤ min{k + 4, 2k}.
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The main result of Kodiyalam and Tupurani [3] shows that a subfactor planar algebra of
finite depth is singly generated with a finite presentation. If P is a subfactor planar algebra
of depth k, it is shown there that a single 2k-box generates P . It is natural to ask what the
smallest s is such that a single s-box generates P . While we do not resolve this question
completely, we show in this note that s ≤ min{k + 4, 2k} and that k does not suffice in
general. All terminology and unexplained notation will be as in [3].

For the rest of the paper fix a subfactor planar algebra P of finite depth k. Let 2t be such
that it is the even number of k + 3 and k + 4. We will show that some s-box generates P

as a planar algebra, where s = min{2k, 2t}. The main observation is the following result
about involutive algebra anti-automorphisms of finite-dimensional complex semisimple
algebras. We mention as a matter of terminology that we always deal with C-algebra anti-
automorphisms and automorphisms (as opposed to those that might induce a non-identity
involution on the base field C). Also, as is common in Hopf algebra literature, we will use
Sa instead of S(a) to demote the image of a under a map S of algebras.

Theorem 1. Let A be a finite-dimensional complex semisimple algebra and let S : A →
A be an involutive algebra anti-automorphism. Suppose that A has no 2 × 2 matrix
summand. Then, there exists a ∈ A such that a and Sa generate A as an algebra.

Before beginning the proof of this theorem, we observe that the somewhat peculiar
restriction on A not having an M2(C) summand is really necessary.

Remark 2. The map S : M2(C) → M2(C) defined by Sa = adj (a) is easily verified to be
an involutive algebra anti-automorphism, while there exists no a ∈ M2(C) that together
with Sa generates M2(C) since these generate only a commutative subalgebra.

We pave the way for a proof of Theorem 1 by studying the two special cases when
A = Mn(C) and A = Mn(C)⊕Mn(C). In these, n is a fixed positive integer. We will need
the following lemmas that specify a ‘standard form’ for each of these two special cases.
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Lemma 3. Let S be an involutive algebra anti-automorphism of Mn(C). There is an alge-
bra automorphism of Mn(C) under which S is identified with either (i) the transpose map
or (ii) the transpose map followed by conjugation by the matrix

J =
[

0 Ik

−Ik 0

]
(= −JT = −J−1).

The second case may arise only when n = 2k is even (and Ik denotes, of course, the
identity matrix of size k).

Proof. Let T denote the transpose map on Mn(C). The composite map T S is then an alge-
bra automorphism of Mn(C) and is consequently given by conjugation with an invertible
matrix, say u. Thus Sx = (uxu−1)T . Involutivity of S implies that u is either symmet-
ric or skew-symmetric. By Takagi’s factorization (see p. 204 and p. 217 of [1]), u is of
the form vT v if it is symmetric and of the form vT Jv if it is skew-symmetric, for some
invertible v. For the algebra automorphism of Mn(C) given by conjugation with v, S gets
identified in the symmetric case with the transpose map and in the skew-symmetric case
with the transpose map followed by conjugation by J . �

Lemma 4. Let S be an involutive algebra anti-automorphism of Mn(C) ⊕ Mn(C) that
interchanges the two minimal central projections. There is an algebra automorphism of
Mn(C) ⊕ Mn(C) fixing the minimal central projections under which S is identified with
the map x ⊕ y �→ yT ⊕ xT .

Proof. The map x ⊕ y �→ S(yT ⊕ xT ) is an algebra automorphism of Mn(C) ⊕ Mn(C)

fixing the minimal central projections and is therefore given by x ⊕ y �→ uxu−1 ⊕ vyv−1

for invertible u, v. Hence S(x ⊕ y) = uyT u−1 ⊕ vxT v−1.
Thus, S2(x ⊕ y) = u(v−1)T xvT u−1 ⊕ v(u−1)T yuT v−1. Involutivity of S now implies

that vT u−1 and uT v−1 are both scalar matrices, or equivalently, vT = λu and uT = μv

for non-zero scalars λ,μ. Taking transposes shows that λμ = 1 and finally, by replacing
u by λu, we may assume that v = uT .

The commutativity of the following diagram:

now implies that under the algebra automorphism of Mn(C) ⊕ Mn(C) given by x ⊕ y �→
u−1xu ⊕ y, S is identified with x ⊕ y �→ yT ⊕ xT . �

The proof of Theorem 1 in the case A = Mn(C) (for n �= 2) needs some preparation.
For a subset S ⊆ Mn(C) we use the notation S′, as usual, to denote its commutant in
Mn(C).

Lemma 5. If U ⊆ C
2N is non-empty and Zariski open, then

U ∩ {(z1, . . . , zN , z1, . . . , zN) : zi ∈ C} �= ∅.
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Proof. It suffices to show that S = {(z1, . . . , zN , z1, . . . , zN) : zi ∈ C} is Zariski
dense in C

2N . If a polynomial f in 2N variables vanishes on S, then the polynomial
p(u1, . . . , uN , v1, . . . vN) = f (u1+iv1, . . . , uN +ivN , u1−iv1, . . . , uN −ivN) vanishes
on R

2N . It is then easily seen by induction on the number of variables that p identically
vanishes and then, so does f . �

PROPOSITION 6

For n > 1, the set

U =
{

(P,Q) ∈ Mn(C) × Mn(C) : P,Q invertible and

{[
0 P

Q 0

]
,

[
0 P T

QT 0

]}′
= CI2n

}
.

is a non-empty Zariski open subset of Mn(C) × Mn(C).

Proof. For an arbitrary matrix

[
X Y

Z W

]
∈ M2n(C), the condition that it commute with

both

[
0 P

Q 0

]
and

[
0 P T

QT 0

]
is given by a set of 8n2 homogeneous linear equations

in the 4n2 entries of X, Y,Z,W with coefficient (linear) polynomials in the entries of P

and Q.
The solution space for this system is at least one dimensional (since it certainly contains

the identity matrix) and thus the coefficient matrix has rank at most 4n2−1. The condition
that the solution space is exactly one dimensional is hence equivalent to the condition that
the coefficient matrix has rank at least 4n2 − 1, which is clearly Zariski open condition in
the entries of P and Q. It follows that U is Zariski open.

To show non-emptiness of U , choose an invertible Q ∈ Mn(C) such that Q and QT

generate Mn(C) as an algebra. For instance, Q could be In + Nn, where Nn is the n × n

nilpotent matrix with super-diagonal entries, all 1 and 0 entries elsewhere. The condition

that

[
X Y

Z W

]
∈ M2n(C) commutes with both

[
0 I

Q 0

]
and

[
0 I

QT 0

]
is equivalent to

the set of equations:

YQ = QY = Z = YQT = QT Y,

WQ = QX, X = W, WQT = QT X.

Since Y commutes with Q and QT (which generate Mn(C)), Y = λIn for a scalar λ ∈ C.
Thus Z = λQ = λQT . Now (and this is the crucial point where n > 1 is needed), since
Q and QT generate Mn(C) which is not commutative, they cannot be equal and so λ = 0.
Since X = W and hence commutes with both Q and QT , X = W = μI for some scalar
μ ∈ C. Thus (I,Q) ∈ U . �

PROPOSITION 7

Let S be an involutive algebra anti-automorphism of Mm(C) with m �= 2. There exists
invertible x ∈ Mm(C) which, together with Sx, generates Mm(C) as an algebra.



238 Vijay Kodiyalam and Srikanth Tupurani

Proof. First, we may assume by Lemma 3 that S is either (i) the transpose map or (ii) the
transpose map followed by conjugation by J . In Case (i), as in the proof of Proposition 6,
x = Im + Nm is invertible and such that x and Sx generate Mm(C) as an algebra.

In Case (ii), m = 2n is necessarily even. It then follows from Proposition 6 and Lemma
5 that there is an invertible P ∈ Mn(C) such that

{[
0 P

P̄ 0

]
,

[
0 P T

P̄ T 0

]}′
= CI2n

The commutant of these two matrices is the same as that of the algebra they generate
which is a ∗-subalgebra of Mm(C) since they are adjoints of each other. By the double
commutant theorem, it follows that the algebra generated by these is the whole of Mm(C).

Now take x =
[

0 P

P̄ 0

]
. �

In proving Theorem 1 for A = Mn(C) ⊕ Mn(C), we will need the following lemma.

Lemma 8. Let A and B be finite dimensional complex unital algebras and let a ∈ A and
b ∈ B be invertible. Then, for all but finitely many λ ∈ C, the algebra generated by
a ⊕ λb ∈ A ⊕ B contains both a (= a ⊕ 0) and b (= 0 ⊕ b).

Proof. We may assume that λ �= 0 and then it suffices to see that a is expressible as a
polynomial in a ⊕λb. Note that since a ⊕λb is invertible and A⊕B is finite dimensional,
the algebra generated by a ⊕λb is actually unital. In particular, it makes sense to evaluate
any complex univariate polynomial on a ⊕ λb.

Let p(X) and q(X) be the minimal polynomials of a and b respectively. By invertibility
of a and b, neither p nor q has 0 as a root. The minimal polynomial of λb is q(X

λ
). Unless

λ is the quotient of a root of p by a root of q, p(X) and q(X
λ
) will have no common roots

and therefore be coprime. So there will exist a polynomial r(X) that is divisible by q(X
λ
)

but is X modulo p(X). Thus r(a ⊕ λb) = a, as desired. �

PROPOSITION 9

Let S be an involutive algebra anti-automorphism of Mn(C) ⊕ Mn(C) that interchanges
the two minimal central projections. There exists invertible x ⊕ y ∈ Mn(C) ⊕ Mn(C)

which together with S(x ⊕ y) generates Mn(C) ⊕ Mn(C) as an algebra.

Proof. First, by Lemma 4, we may assume that S is the map x ⊕ y �→ yT ⊕ xT . Now,
as in the proof of Proposition 7, there is an invertible x ∈ Mn(C) such that x and xT

generate Mn(C). By Lemma 8, for all but finitely many λ ∈ C, the algebra generated by
x ⊕λx contains x ⊕0 and 0⊕x and similarly the algebra generated by λxT ⊕xT contains
xT ⊕ 0 and 0 ⊕ xT . Thus the algebra generated by x ⊕ λx and λxT ⊕ xT is the whole of
Mn(C) ⊕ Mn(C). �

Proof of Theorem 1. Let Â denote the (finite) set of all inequivalent irreducible repre-
sentations of A and for π ∈ Â, let dπ denote its dimension. Since S is an involutive
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anti-automorphism, it acts as an involution on the set of minimal central projections of A.
It is then easy to see that there exist subsets Â1 and Â2 of Â and an identification

A →
⊕
π∈Â1

Mdπ (C) ⊕
⊕
π∈Â2

(Mdπ (C) ⊕ Mdπ (C))

such that each summand is S-stable.
Now, by Propositions 7 and 9, in each summand of the above decomposition, either

Mdπ (C) or Mdπ (C)⊕Mdπ (C), there is an invertible element which together with its image
under S generates that summand.

Finally, an inductive application of Lemma 8 shows that if a is a general linear
combination of these generators, then a and Sa generate A as an algebra. �

Before we prove our main result, we will need a result about connected pointed bipartite
graphs. Recall that a bipartite graph has its vertex set partitioned into ‘even’ and ‘odd’
vertices and all its edges connect an even and an odd vertex. It is pointed if a certain even
vertex, normally denoted by ∗, is distinguished. Its depth is the largest distance of a vertex
from ∗.

PROPOSITION 10

Let � be a connected pointed bipartite graph of depth k ≥ 3. For any vertex v of �, let t

be the one of k + 3, k + 4 with the same parity as v. The number of paths of length t from
∗ to v is at least 3.

Proof. We analyse three cases depending on the distance of v from ∗.

Case I: If v = ∗, note that t ≥ 6 is even. To show that there are at least 3 paths of length t

from ∗ to ∗, it suffices to show that there are at least 3 paths of length 6 from ∗ to ∗. Since
k ≥ 3, choose any vertex at distance 2 from ∗ and a path from ∗ to the chosen vertex. It
is easy to see that there are at least 3 paths of length 6 from ∗ to ∗ supported on the edges
of this path.

Case II: If v is at distance 1 from ∗, then t ≥ 7 is odd. As observed in Case I, there are at
least 3 paths of length 6 from ∗ to ∗ and consequently at least 3 paths of length 7 from ∗
to v.

Case III: Suppose v is at a distance n from ∗, where n > 1. Observe that if n and k

have the same parity, then n ≤ k while in the other case, n ≤ k − 1. Choose a path
ξ1ξ2ξ3 · · · ξn from ∗ to v. Then ξ2 �= ξ1. Then we have three paths ξ1ξ1ξ1ξ1ξ1ξ2 · · · ξn,
ξ1ξ2ξ2ξ2ξ2ξ2 · · · ξn, and ξ1ξ1ξ1ξ2ξ2ξ2 · · · ξn of length n + 4 from ∗ to v. Thus if n and k

have the same parity, so that t = k + 4, then there exist at least 3 paths of length t from ∗
to v. If n and k have opposite parity then t = k + 3 and since n ≤ k − 1 in this case, since
there exist at least 3 distinct paths of length n + 4 from ∗ to v, there also exist 3 distinct
paths of length t from ∗ to v. �

We now prove the main result.

Theorem 11. Let P be a subfactor planar algebra of finite depth k. Let 2t be the even
number in {k + 3, k + 4}. Let s = min{2k, 2t}. Then P is generated by a single s-box.
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Proof.

Case I: If k ≤ 3, s = 2k. Then by Proposition 5.1 of [3], P is generated by a single s box.

Case II: If k > 3, so that s = 2t, let � be the principal graph of the subfactor planar
algebra P . Then from Proposition 10, the number of paths of length s from the ∗-vertex
to any even vertex v in � is at least 3. So Ps does not have an M2(C) summand. Consider
the t-th power, say X, of the s-rotation tangle. This tangle changes the position of ∗ on an
s-box from the top left to the bottom right position. Clearly ZP

X : Ps → Ps is an involutive
algebra anti-automorphism. From Theorem 1, there exists an element a ∈ Ps such that
a and ZP

X(a) generate Ps as an algebra. Since s ≥ k, the planar algebra generated by Ps

contains Pk and thus is the whole of P . Hence the single s-box containing a generates the
planar algebra P . �

We finish by showing that k + 1 might actually be needed.

Example 12. Let P = P(V) be the tensor planar algebra (see [2]) for details) of a vector
space V of dimension greater than 1. It is easy to see that depth(P) = 1. However, given
any a ∈ P1 = End(V), if Q is the planar subalgebra of P generated by a, a little thought
shows that Q1 is just the algebra generated by a and is hence abelian while P1 is not.
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