

Generators for finite depth subfactor planar algebras

VIJAY KODIYALAM and SRIKANTH TUPURANI

The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India E-mail: vijay@imsc.res.in; stupurani@gmail.com

MS received 19 June 2014; revised 14 August 2014

Abstract. We show that a subfactor planar algebra of finite depth *k* is generated by a single *s*-box, for $s \leq \min\{k+4, 2k\}.$

Keywords. Subfactor planar algebra, presentation.

1991 Mathematics Subject Classification. Primary: 46L37; Secondary: 57M99.

The main result of Kodiyalam and Tupurani [\[3\]](#page-5-0) shows that a subfactor planar algebra of finite depth is singly generated with a finite presentation. If *P* is a subfactor planar algebra of depth *k*, it is shown there that a single 2*k*-box generates *P*. It is natural to ask what the smallest *s* is such that a single *s*-box generates *P*. While we do not resolve this question completely, we show in this note that $s \leq \min\{k+4, 2k\}$ and that *k* does not suffice in general. All terminology and unexplained notation will be as in [\[3\]](#page-5-0).

For the rest of the paper fix a subfactor planar algebra *P* of finite depth *k*. Let 2*t* be such that it is the even number of $k + 3$ and $k + 4$. We will show that some *s*-box generates P as a planar algebra, where $s = \min\{2k, 2t\}$. The main observation is the following result about involutive algebra anti-automorphisms of finite-dimensional complex semisimple algebras. We mention as a matter of terminology that we always deal with C-algebra antiautomorphisms and automorphisms (as opposed to those that might induce a non-identity involution on the base field \mathbb{C}). Also, as is common in Hopf algebra literature, we will use *Sa* instead of *S(a)* to demote the image of *a* under a map *S* of algebras.

Theorem 1. Let A be a finite-dimensional complex semisimple algebra and let $S: A \rightarrow$ *A be an involutive algebra anti-automorphism. Suppose that A has no* 2 × 2 *matrix summand. Then, there exists* $a \in A$ *such that* a *and* Sa *generate* A *as an algebra.*

Before beginning the proof of this theorem, we observe that the somewhat peculiar restriction on *A* not having an $M_2(\mathbb{C})$ summand is really necessary.

Remark 2. The map $S : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ defined by $Sa = adj(a)$ is easily verified to be an involutive algebra anti-automorphism, while there exists no $a \in M_2(\mathbb{C})$ that together with *Sa* generates $M_2(\mathbb{C})$ since these generate only a commutative subalgebra.

We pave the way for a proof of Theorem 1 by studying the two special cases when $A = M_n(\mathbb{C})$ and $A = M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$. In these, *n* is a fixed positive integer. We will need the following lemmas that specify a 'standard form' for each of these two special cases.

Lemma 3. Let *S* be an involutive algebra anti-automorphism of $M_n(\mathbb{C})$. There is an alge*bra automorphism of Mn(*C*) under which S is identified with either (i) the transpose map or (ii) the transpose map followed by conjugation by the matrix*

$$
J = \begin{bmatrix} 0 & I_k \\ -I_k & 0 \end{bmatrix} (= -J^T = -J^{-1}).
$$

The second case may arise only when $n = 2k$ *is even* (*and* I_k *denotes, of course, the identity matrix of size k*)*.*

Proof. Let *T* denote the transpose map on $M_n(\mathbb{C})$. The composite map *T S* is then an algebra automorphism of $M_n(\mathbb{C})$ and is consequently given by conjugation with an invertible matrix, say *u*. Thus $Sx = (uxu^{-1})^T$. Involutivity of *S* implies that *u* is either symmetric or skew-symmetric. By Takagi's factorization (see p. 204 and p. 217 of [\[1\]](#page-5-1)), *u* is of the form $v^T v$ if it is symmetric and of the form $v^T J v$ if it is skew-symmetric, for some invertible *v*. For the algebra automorphism of $M_n(\mathbb{C})$ given by conjugation with *v*, *S* gets identified in the symmetric case with the transpose map and in the skew-symmetric case with the transpose map followed by conjugation by J .

Lemma 4*. Let S be an involutive algebra anti-automorphism of* $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ *that interchanges the two minimal central projections. There is an algebra automorphism of* $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ *fixing the minimal central projections under which S is identified with the map* $x \oplus y \mapsto y^T \oplus x^T$.

Proof. The map $x \oplus y \mapsto S(y^T \oplus x^T)$ is an algebra automorphism of $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ fixing the minimal central projections and is therefore given by $x \oplus y \mapsto u x u^{-1} \oplus v y v^{-1}$ for invertible *u*, *v*. Hence $S(x \oplus y) = uy^T u^{-1} \oplus vx^T v^{-1}$.

Thus, $S^2(x \oplus y) = u(v^{-1})^T x v^T u^{-1} \oplus v(u^{-1})^T y u^T v^{-1}$. Involutivity of *S* now implies that $v^T u^{-1}$ and $u^T v^{-1}$ are both scalar matrices, or equivalently, $v^T = \lambda u$ and $u^T = \mu v$ for non-zero scalars λ , μ . Taking transposes shows that $\lambda \mu = 1$ and finally, by replacing u by λu , we may assume that $v = u^T$.

The commutativity of the following diagram:

$$
M_n(\mathbb{C}) \oplus M_n(\mathbb{C}) \xrightarrow{x \oplus y \mapsto u^{-1}xu \oplus y} M_n(\mathbb{C}) \oplus M_n(\mathbb{C})
$$

$$
\downarrow s \qquad \qquad \downarrow x \oplus y \mapsto y^T \oplus x^T
$$

$$
M_n(\mathbb{C}) \oplus M_n(\mathbb{C}) \xrightarrow{x \oplus y \mapsto u^{-1}xu \oplus y} M_n(\mathbb{C}) \oplus M_n(\mathbb{C})
$$

now implies that under the algebra automorphism of $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ given by $x \oplus y \mapsto$
 $u^{-1}xu \oplus y$. S is identified with $x \oplus y \mapsto y^T \oplus x^T$. $u^{-1}xu \oplus y$, *S* is identified with $x \oplus y \mapsto y^T \oplus x^T$.

The proof of Theorem 1 in the case $A = M_n(\mathbb{C})$ (for $n \neq 2$) needs some preparation. For a subset $S \subseteq M_n(\mathbb{C})$ we use the notation S' , as usual, to denote its commutant in $M_n(\mathbb{C})$.

Lemma 5*. If* $U \subseteq \mathbb{C}^{2N}$ *is non-empty and Zariski open, then*

$$
U \cap \{(z_1,\ldots,z_N,\overline{z_1},\ldots,\overline{z_N}) : z_i \in \mathbb{C}\} \neq \emptyset.
$$

Proof. It suffices to show that $S = \{(z_1, \ldots, z_N, \overline{z_1}, \ldots, \overline{z_N}) : z_i \in \mathbb{C}\}\)$ is Zariski dense in \mathbb{C}^{2N} . If a polynomial *f* in 2*N* variables vanishes on *S*, then the polynomial $p(u_1, \ldots, u_N, v_1, \ldots, v_N) = f(u_1 + iv_1, \ldots, u_N + iv_N, u_1 - iv_1, \ldots, u_N - iv_N)$ vanishes on \mathbb{R}^{2N} . It is then easily seen by induction on the number of variables that *p* identically vanishes and then, so does f .

PROPOSITION 6

For $n > 1$ *, the set*

$$
U = \left\{ (P, Q) \in M_n(\mathbb{C}) \times M_n(\mathbb{C}) : P, Q \text{ invertible and} \left\{ \begin{bmatrix} 0 & P \\ Q & 0 \end{bmatrix}, \begin{bmatrix} 0 & P^T \\ Q^T & 0 \end{bmatrix} \right\}' = \mathbb{C} I_{2n} \right\}.
$$

is a non-empty Zariski open subset of $M_n(\mathbb{C}) \times M_n(\mathbb{C})$.

Proof. For an arbitrary matrix $\begin{bmatrix} X & Y \\ Z & W \end{bmatrix} \in M_{2n}(\mathbb{C})$, the condition that it commute with both $\begin{bmatrix} 0 & P \\ 0 & 0 \end{bmatrix}$ *Q* 0 $\begin{bmatrix} 0 & P^T \\ 0 & P^T \end{bmatrix}$ Q^T 0 is given by a set of $8n^2$ homogeneous linear equations in the $4n^2$ entries of *X*, *Y*, *Z*, *W* with coefficient (linear) polynomials in the entries of *P* and *Q*.

The solution space for this system is at least one dimensional (since it certainly contains the identity matrix) and thus the coefficient matrix has rank at most $4n^2-1$. The condition that the solution space is exactly one dimensional is hence equivalent to the condition that the coefficient matrix has rank at least $4n^2 - 1$, which is clearly Zariski open condition in the entries of *P* and *Q*. It follows that *U* is Zariski open.

To show non-emptiness of *U*, choose an invertible $Q \in M_n(\mathbb{C})$ such that Q and Q^T generate $M_n(\mathbb{C})$ as an algebra. For instance, Q could be $I_n + N_n$, where N_n is the $n \times n$ nilpotent matrix with super-diagonal entries, all 1 and 0 entries elsewhere. The condition that $\begin{bmatrix} X & Y \\ Z & W \end{bmatrix} \in M_{2n}(\mathbb{C})$ commutes with both $\begin{bmatrix} 0 & I \\ Q & C \end{bmatrix}$ *Q* 0 $\begin{bmatrix} 0 & I \\ 0 & I \end{bmatrix}$ Q^T 0 is equivalent to the set of equations:

$$
YQ = QY = Z = YQT = QTY,
$$

$$
WQ = QX, X = W, WQT = QTX.
$$

Since *Y* commutes with *Q* and Q^T (which generate $M_n(\mathbb{C})$), $Y = \lambda I_n$ for a scalar $\lambda \in \mathbb{C}$. Thus $Z = \lambda Q = \lambda Q^T$. Now (and this is the crucial point where $n > 1$ is needed), since *Q* and Q^T generate $M_n(\mathbb{C})$ which is not commutative, they cannot be equal and so $\lambda = 0$. Since $X = W$ and hence commutes with both *Q* and Q^T , $X = W = \mu I$ for some scalar $\mu \in \mathbb{C}$. Thus $(I, O) \in U$. $\mu \in \mathbb{C}$. Thus $(I, Q) \in U$.

PROPOSITION 7

Let S be an involutive algebra anti-automorphism of $M_m(\mathbb{C})$ *with* $m \neq 2$ *. There exists invertible* $x \in M_m(\mathbb{C})$ *which, together with* Sx *, generates* $M_m(\mathbb{C})$ *as an algebra.*

Proof. First, we may assume by Lemma 3 that *S* is either (i) the transpose map or (ii) the transpose map followed by conjugation by *J* . In Case (i), as in the proof of Proposition 6, $x = I_m + N_m$ is invertible and such that *x* and *Sx* generate $M_m(\mathbb{C})$ as an algebra.

In Case (ii), $m = 2n$ is necessarily even. It then follows from Proposition 6 and Lemma 5 that there is an invertible $P \in M_n(\mathbb{C})$ such that

$$
\left\{ \left[\begin{array}{cc} 0 & P \\ \bar{P} & 0 \end{array} \right], \left[\begin{array}{cc} 0 & P^T \\ \bar{P}^T & 0 \end{array} \right] \right\}' = \mathbb{C}I_{2n}
$$

The commutant of these two matrices is the same as that of the algebra they generate which is a ∗-subalgebra of $M_m(\mathbb{C})$ since they are adjoints of each other. By the double commutant theorem, it follows that the algebra generated by these is the whole of $M_m(\mathbb{C})$. Now take $x = \begin{bmatrix} 0 & P \\ \bar{P} & 0 \end{bmatrix}$ *P*^{0} $\overline{}$. The contract of the contract of the contract of \Box

In proving Theorem 1 for $A = M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$, we will need the following lemma.

Lemma 8*. Let A and B be finite dimensional complex unital algebras and let* $a \in A$ *and* $b \in B$ *be invertible. Then, for all but finitely many* $\lambda \in \mathbb{C}$ *, the algebra generated by* $a \oplus \lambda b \in A \oplus B$ *contains both* $a (= a \oplus 0)$ *and* $b (= 0 \oplus b)$ *.*

Proof. We may assume that $\lambda \neq 0$ and then it suffices to see that *a* is expressible as a polynomial in $a \oplus \lambda b$. Note that since $a \oplus \lambda b$ is invertible and $A \oplus B$ is finite dimensional, the algebra generated by $a \oplus \lambda b$ is actually unital. In particular, it makes sense to evaluate any complex univariate polynomial on *a* ⊕ *λb*.

Let $p(X)$ and $q(X)$ be the minimal polynomials of *a* and *b* respectively. By invertibility of *a* and *b*, neither *p* nor *q* has 0 as a root. The minimal polynomial of λb is $q(\frac{X}{\lambda})$. Unless *λ* is the quotient of a root of *p* by a root of *q*, *p*(*X*) and *q*($\frac{X}{\lambda}$) will have no common roots and therefore be coprime. So there will exist a polynomial $r(X)$ that is divisible by $q(\frac{X}{\lambda})$ but is *X* modulo $p(X)$. Thus $r(a \oplus \lambda b) = a$, as desired.

PROPOSITION 9

Let S be an involutive algebra anti-automorphism of $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ *that interchanges the two minimal central projections. There exists invertible* $x \oplus y \in M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ *which together with* $S(x \oplus y)$ *generates* $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$ *as an algebra.*

Proof. First, by Lemma 4, we may assume that *S* is the map $x \oplus y \mapsto y^T \oplus x^T$. Now, as in the proof of Proposition 7, there is an invertible $x \in M_n(\mathbb{C})$ such that *x* and x^T generate $M_n(\mathbb{C})$. By Lemma 8, for all but finitely many $\lambda \in \mathbb{C}$, the algebra generated by $x \oplus \lambda x$ contains $x \oplus 0$ and $0 \oplus x$ and similarly the algebra generated by $\lambda x^T \oplus x^T$ contains $x^T \oplus 0$ and $0 \oplus x^T$. Thus the algebra generated by $x \oplus \lambda x$ and $\lambda x^T \oplus x^T$ is the whole of $M_n(\mathbb{C}) \oplus M_n(\mathbb{C})$. \Box

Proof of Theorem 1. Let \hat{A} denote the (finite) set of all inequivalent irreducible representations of *A* and for $\pi \in \hat{A}$, let d_{π} denote its dimension. Since *S* is an involutive anti-automorphism, it acts as an involution on the set of minimal central projections of *A*. It is then easy to see that there exist subsets \hat{A}_1 and \hat{A}_2 of \hat{A} and an identification

$$
A \to \bigoplus_{\pi \in \hat{A}_1} M_{d_{\pi}}(\mathbb{C}) \oplus \bigoplus_{\pi \in \hat{A}_2} (M_{d_{\pi}}(\mathbb{C}) \oplus M_{d_{\pi}}(\mathbb{C}))
$$

such that each summand is *S*-stable.

Now, by Propositions 7 and 9, in each summand of the above decomposition, either $M_{d_{\pi}}(\mathbb{C})$ or $M_{d_{\pi}}(\mathbb{C}) \oplus M_{d_{\pi}}(\mathbb{C})$, there is an invertible element which together with its image under *S* generates that summand.

Finally, an inductive application of Lemma 8 shows that if *a* is a general linear combination of these generators, then *a* and *Sa* generate *A* as an algebra.

Before we prove our main result, we will need a result about connected pointed bipartite graphs. Recall that a bipartite graph has its vertex set partitioned into 'even' and 'odd' vertices and all its edges connect an even and an odd vertex. It is pointed if a certain even vertex, normally denoted by ∗, is distinguished. Its depth is the largest distance of a vertex from ∗.

PROPOSITION 10

Let Γ *be a connected pointed bipartite graph of depth* $k \geq 3$ *. For any vertex v of* Γ *, let t be the one of k* + 3*, k* + 4 *with the same parity as v. The number of paths of length t from* ∗ *to v is at least 3.*

Proof. We analyse three cases depending on the distance of *v* from ∗.

Case I: If $v = *$, note that $t > 6$ is even. To show that there are at least 3 paths of length t from ∗ to ∗, it suffices to show that there are at least 3 paths of length 6 from ∗ to ∗. Since $k \geq 3$, choose any vertex at distance 2 from $*$ and a path from $*$ to the chosen vertex. It is easy to see that there are at least 3 paths of length 6 from ∗ to ∗ supported on the edges of this path.

Case II: If *v* is at distance 1 from *, then $t \ge 7$ is odd. As observed in Case I, there are at least 3 paths of length 6 from ∗ to ∗ and consequently at least 3 paths of length 7 from ∗ to *v*.

Case III: Suppose *v* is at a distance *n* from *, where $n > 1$. Observe that if *n* and *k* have the same parity, then $n \leq k$ while in the other case, $n \leq k - 1$. Choose a path *ξ*1*ξ*2*ξ*³ ··· *ξn* from ∗ to *v*. Then *ξ*² = *ξ*1*.* Then we have three paths *ξ*1*ξ*1*ξ*1*ξ*1*ξ*1*ξ*² ··· *ξn*, *ξ*1*ξ*2*ξ*2*ξ*2*ξ*2*ξ*² ··· *ξn*, and *ξ*1*ξ*1*ξ*1*ξ*2*ξ*2*ξ*² ··· *ξn* of length *n* + 4 from ∗ to *v*. Thus if *n* and *k* have the same parity, so that $t = k + 4$, then there exist at least 3 paths of length *t* from $*$ to *v*. If *n* and *k* have opposite parity then $t = k + 3$ and since $n \leq k - 1$ in this case, since there exist at least 3 distinct paths of length $n + 4$ from $*$ to *v*, there also exist 3 distinct paths of length t from $*$ to *v*. paths of length *t* from ∗ to *v*. -

We now prove the main result.

Theorem 11. *Let P be a subfactor planar algebra of finite depth k. Let* 2*t be the even number in* $\{k+3, k+4\}$ *. Let* $s = \min\{2k, 2t\}$ *. Then P* is generated by a single s-box.

Proof.

Case I: If $k < 3$, $s = 2k$. Then by Proposition 5.1 of [\[3\]](#page-5-0), P is generated by a single *s* box.

Case II: If $k > 3$, so that $s = 2t$, let Γ be the principal graph of the subfactor planar algebra *P*. Then from Proposition 10, the number of paths of length *s* from the ∗-vertex to any even vertex *v* in Γ is at least 3. So P_s does not have an $M_2(\mathbb{C})$ summand. Consider the *t*-th power, say *X*, of the *s*-rotation tangle. This tangle changes the position of $*$ on an *s*-box from the top left to the bottom right position. Clearly $Z_X^P : P_s \to P_s$ is an involutive algebra anti-automorphism. From Theorem 1, there exists an element $a \in P_s$ such that *a* and $Z_X^P(a)$ generate P_s as an algebra. Since $s \ge k$, the planar algebra generated by P_s contains P_k and thus is the whole of P . Hence the single s -box containing a generates the planar algebra P . planar algebra P .

We finish by showing that $k + 1$ might actually be needed.

Example 12. Let $P = P(V)$ be the tensor planar algebra (see [\[2\]](#page-5-2)) for details) of a vector space *V* of dimension greater than 1. It is easy to see that depth $(P) = 1$. However, given any $a \in P_1 = \text{End}(V)$, if Q is the planar subalgebra of P generated by a, a little thought shows that Q_1 is just the algebra generated by *a* and is hence abelian while P_1 is not.

Acknowledgement

The authors are grateful to Prof. T Y Lam for his remarks.

References

- [1] Horn R A and Johnson C R, Matrix analysis (Cambridge University Press) (1990)
- [2] Jones V F R, Planar algebras I, *New Zealand J. Math.*, to appear, e-print arXiv: [math.QA/9909027](http://arxiv.org/abs/math.QA/9909027)
- [3] Kodiyalam V and Tupurani S, Universal skein theory for finite depth subfactor planar algebras, (English) Zbl 1252.46064, *Quantum Topol.* **2(2)** (2011) 157–172

COMMUNICATING EDITOR: B V Rajarama Bhat