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1. Introduction

The theory of time scales was introduced by Hilger [14] to unify not only continuous and
discrete theory, but also to provide an accurate information of phenomena that manifest
themselves partly in continuous time and partly in discrete time. The new methods devel-
oped in time scale calculus [1, 8, 9] are significant in the theoretical study of differential
equations and difference equations. This theory is applicable to various real life situa-
tions like epidemic models, stock markets and mathematical modeling of physical and
biological systems.

Multi-point boundary value problems (BVPs) for ordinary differential or difference
equations arise in different areas of applied mathematics and physics such as the deflection
of a curved beam having a constant or varying cross section, three layer beam, electro-
magnetic waves or gravity-driven flow and so on. For example, the vibrations of a guy
wire of a uniform cross-section and composed of N parts of different densities can be set
up as a multi-point BVP [18] and also many problems in the theory of elastic stability
can be handled as multi-point problems [20]. The study of multi-point BVPs for second
order differential equations was introduced by Il’in and Moiseev [15, 16]. Since then,
such multi-point BVPs (continuous or discrete cases) have been studied by many authors
using different methods such as fixed point theorems in cones.
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There has been a lot of interest in establishing the existence of positive solutions of
the boundary value problems on time scales, often using Guo–Krasnosel’skii fixed point
theorem. To mention a few papers along these lines are [2–7, 10, 11, 13] and [19].

Till now, in the literature, the authors established results for the existence of positive
solutions for the system of dynamic equations on time scales satisfying same type of
boundary conditions. We wish to extend these results to system of dynamic equations on
time scales satisfying general boundary conditions.

In this paper, we consider the system of nonlinear second order dynamic equations on
time scales

u��(t) + λp(t)f (u(t), v(t)) = 0, t ∈ [a, σ (b)]T,

v��(t) + μq(t)g(u(t), v(t)) = 0, t ∈ [a, σ (b)]T,

}
(1.1)

satisfying the multi-point boundary conditions,

u(a) = 0, α1u(σ(b)) + β1u
�(σ(b)) =

m−1∑
k=2

u�(ξk), m ≥ 3,

v(a) = 0, α2v(σ (b)) + β2v
�(σ(b)) =

n−1∑
k=2

v�(ηk), n ≥ 3,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.2)

where T is the time scale with a, σ 2(b) ∈ T, 0 ≤ a < ξ2 < · · · < ξm−1 < σ(b),
0 ≤ a < η2 < · · · < ηn−1 < σ(b). We shall give sufficient conditions on λ,μ, f and
g such that the BVP (1.1)–(1.2) has positive solutions. By a positive solution of the BVP
(1.1)–(1.2), we mean a pair (u, v) ∈ C2 ([a, σ (b)]T) × C2 ([a, σ (b)]T) satisfying (1.1)
and (1.2) with u(t) ≥ 0, v(t) ≥ 0, for all t ∈ [a, σ (b)]T and (u, v) �= (0, 0).

We assume the following conditions hold throughout the paper:

(A1) the functions f, g : R+ × R
+ → R

+ are continuous,
(A2) the functions p, q : [a, σ (b)]T → R

+ are continuous and p, q do not vanish
identically on any closed subinterval of [a, σ (b)]T,

(A3) α1, α2, β1 and β2 are positive constants such that α1 ≥ β1

ξ2 − a
, α2 ≥ β2

η2 − a
, β1 >

m − 2 and β2 > n − 2,
(A4) each of these

f s
0 = lim

(u,v)→(0+,0+)
sup

f (u, v)

u + v
, gs

0 = lim
(u,v)→(0+,0+)

sup
g(u, v)

u + v
,

f i
0 = lim

(u,v)→(0+,0+)
inf

f (u, v)

u + v
, gi

0 = lim
(u,v)→(0+,0+)

inf
g(u, v)

u + v
,

f s∞ = lim
(u,v)→(∞,∞)

sup
f (u, v)

u + v
, gs∞ = lim

(u,v)→(∞,∞)
sup

g(u, v)

u + v
,

f i∞ = lim
(u,v)→(∞,∞)

inf
f (u, v)

u + v
, gi∞ = lim

(u,v)→(∞,∞)
inf

g(u, v)

u + v
,

exist as positive real numbers.

The rest of the paper is organized as follows. In §2, we construct the Green’s functions
for the homogeneous problems corresponding to (1.1)–(1.2) and estimate bounds for the
Green’s functions. In §3, we establish the existence of positive solutions of the BVP (1.1)–
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(1.2) by using Guo–Krasnosel’skii fixed point theorem for operators on a cone in a Banach
space. Finally as an application, we give an example to illustrate our result.

2. Green’s function and bounds

In this section, we construct the Green’s functions for the homogeneous problems
corresponding to (1.1)–(1.2) and estimate bounds for the Green’s functions.

Let G(t, s) be the Green’s function for the homogeneous BVP,

−u��(t) = 0, t ∈ [a, σ (b)]T, (2.1)

u(a) = 0, α1u(σ(b)) + β1u
�(σ(b)) =

m−1∑
k=2

u�(ξk), m ≥ 3. (2.2)

Lemma 2.1. Let d1 = α1(σ (b)−a)+β1 −m+ 2 �= 0. Then the Green’s function G(t, s)

for the homogeneous BVP (2.1)–(2.2) is given by

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1(t, s), a ≤ s ≤ σ(s) ≤ ξ2,

G2(t, s), ξ2 ≤ s ≤ σ(s) ≤ ξ3,

·
·
·
Gm−2(t, s), ξm−2 ≤ s ≤ σ(s) ≤ ξm−1,

Gm−1(t, s), ξm−1 ≤ s ≤ σ(s) ≤ σ(b),

(2.3)

where

Gj(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

d1
[(α1(σ (b)−t)+β1−m+j+1)(σ (s)−a)+(j−1)(t −σ(s))],

σ (s) ≤ t,
1

d1
(t − a)[α1(σ (b) − σ(s)) + β1 − m + j + 1], t ≤ s,

for all j = 1, 2, . . . , m − 1.

Proof. It is easy to see that, if h(t) ∈ C
([a, σ (b)]T,R+)

, then the following problem

−u��(t) = h(t), t ∈ [a, σ (b)]T,

satisfying the boundary conditions (2.2) has a unique solution

u(t) = 1

d1
(t − a)

[∫ σ(b)

a

(α1(σ (b)−σ(s))+β1)h(s)�s−
m−1∑
k=2

∫ ξk

a

h(s)�s

]

−
∫ t

a

(t − σ(s))h(s)�s.
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Rearranging the terms, it can be written as

u(t) = 1

d1
(t −a)

[∫ σ(b)

a

(α1(σ (b)−σ(s))+β1)h(s)�s−(m−2)

∫ ξ2

a

h(s)�s

−
m−2∑
j=2

(m − j − 1)

∫ ξj+1

ξj

h(s)�s

⎤
⎦ +

∫ t

a

(σ (s) − t)h(s)�s.

Case 1. Let a ≤ s ≤ σ(s) ≤ ξ2 and σ(s) ≤ t . Then we have

G(t, s) = 1

d1
(t − a)[α1(σ (b) − σ(s)) + β1 − (m − 2)] + σ(s) − t

= 1

d1
(α1(σ (b) − t) + β1 − m + 2)(σ (s) − a).

Case 2. Let a ≤ s ≤ σ(s) ≤ ξ2 and t ≤ s. Then we have

G(t, s) = 1

d1
(t − a)[α1(σ (b) − σ(s)) + β1 − m + 2].

Case 3. Let ξj ≤ s ≤ σ(s) ≤ ξj+1, for j = 2, 3, . . . , m − 2 and σ(s) ≤ t . Then we have

G(t, s) = 1

d1
(t − a)[α1(σ (b) − σ(s)) + β1 − (m − j − 1)] + σ(s) − t

= 1

d1
[(α1(σ (b)− t)+β1−m+j +1)(σ (s)−a)+ (j −1)(t −σ(s))].

Case 4. Let ξj ≤ s ≤ σ(s) ≤ ξj+1, for j = 2, 3, . . . , m − 2 and t ≤ s. Then we have

G(t, s) = 1

d1
(t − a)[α1(σ (b) − σ(s)) + β1 − m + j + 1].

Case 5. Let ξm−1 ≤ s ≤ σ(s) ≤ σ(b) and σ(s) ≤ t . Then we have

G(t, s) = 1

d1
(t − a)[α1(σ (b) − σ(s)) + β1] + σ(s) − t

= 1

d1
[(α1(σ (b) − t) + β1)(σ (s) − a) + (m − 2)(t − σ(s))].

Case 6. Let ξm−1 ≤ s ≤ σ(s) ≤ σ(b) and t ≤ s. Then we have

G(t, s) = 1

d1
(t − a)[α1(σ (b) − σ(s)) + β1]. �

Lemma 2.2. Assume that the condition (A3) is satisfied. Then the Green’s function
G(t, s) of (2.1)–(2.2) is positive, for all (t, s) ∈ (a, σ (b))T × (a, b)T.
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Proof. By simple algebraic calculations, we can easily establish the positivity of the
Green’s function. �

Lemma 2.3. Assume that the condition (A3) is satisfied. Then the Green’s function
G(t, s) in (2.3) satisfies the following inequality:

g(t)G(σ(s), s) ≤ G(t, s) ≤ G(σ(s), s), f or all (t, s) ∈ [a, σ (b)]T×[a, b]T,

(2.4)

where

g(t) = min

{
σ(b) − t

σ (b) − a
,

t − a

σ(b) − a

}
. (2.5)

Proof. The Green’s function G(t, s) is given in (2.3). In each case, we prove the inequality
as in (2.4).

Case 1. Let s ∈ [a, b]T and σ(s) ≤ t . Then

G(t, s)

G(σ(s), s)
= (α1(σ (b)−t)+β1−m+j+1)(σ (s)−a)+(j−1)(t−σ(s))

(α1(σ (b) − σ(s)) + β1 − m + j + 1)(σ (s) − a)

≤ α1(σ (b) − t) + β1 − m + j + 1 + α1(t − σ(s))

α1(σ (b) − σ(s)) + β1 − m + j + 1
= 1

and also

G(t, s)

G(σ(s), s)
= (α1(σ (b)− t)+β1 −m+j+1)(σ (s)−a)+ (j −1)(t −σ(s))

(α1(σ (b) − σ(s)) + β1 − m + j + 1)(σ (s) − a)

≥ σ(b) − t

σ (b) − a
.

Case 2. Let s ∈ [a, b]T and t ≤ s. Then

G(t, s)

G(σ(s), s)
= t − a

σ(s) − a
≤ 1

and also

G(t, s)

G(σ(s), s)
= t − a

σ(s) − a
≥ t − a

σ(b) − a
.

Hence the result. �

Lemma 2.4. Assume that the condition (A3) is satisfied and s ∈ [a, b]T. Then the Green’s
function G(t, s) in (2.3) satisfies

min
t∈[ξm−1,σ (b)]T

G(t, s) ≥ k1G(σ(s), s),
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where

k1 = β1 − m + 2

α1(σ (b) − a) + β1 − m + 2
< 1. (2.6)

Proof. By Lemma 2.3, we can easily establish the result. �

We can also formulate the same results as Lemmas 2.1–2.4 above for the following
BVP,

−v��(t) = 0, t ∈ [a, σ (b)]T, (2.7)

v(a) = 0, α2v(σ (b)) + β2v
�(σ(b)) =

n−1∑
k=2

v�(ηk), n ≥ 3, (2.8)

where 0 ≤ a < η2 < · · · < ηn−1 < σ(b).
If d2 = α2(σ (b) − a) + β2 − n + 2 �= 0, we denote by H(t, s), the Green’s function

for the homogeneous BVP (2.7)–(2.8) and define in a similar manner as G(t, s).
Under similar assumptions as those from Lemmas 2.2–2.4, we have

(B1) the Green’s function H(t, s) is positive, for all (t, s) ∈ (a, σ (b))T × (a, b)T,

(B2) g(t)H(σ(s), s) ≤ H(t, s) ≤ H(σ(s), s), for all (t, s) ∈ [a, σ (b)]T × [a, b]T,

where g(t) is given in (2.5),
(B3)

min
t∈[ηn−1,σ (b)]T

H(t, s) ≥ k2H(σ(s), s), s ∈ [a, b]T,

where

k2 = β2 − n + 2

α2(σ (b) − a) + β2 − n + 2
< 1. (2.9)

To establish criteria for the existence of positive solutions for the BVP (1.1)–(1.2), we
will employ the following Guo–Krasnosel’skii fixed point theorem [12, 17].

Theorem 2.5. Let X be a Banach space, κ ⊆ X be a cone and suppose that 
1,
2 are
open subsets of X with 0 ∈ 
1 and 
̄1 ⊂ 
2. Suppose further that T : κ ∩ (
̄2\
1) → κ

is a completely continuous operator such that either

(i) ‖T u‖ ≤ ‖u‖, u ∈ κ ∩ ∂
1 and ‖T u‖ ≥ ‖u‖, u ∈ κ ∩ ∂
2, or
(ii) ‖T u‖ ≥ ‖u‖, u ∈ κ ∩ ∂
1 and ‖T u‖ ≤ ‖u‖, u ∈ κ ∩ ∂
2 holds.

Then T has a fixed point in κ ∩ (
̄2\
1).

3. Existence of positive solutions

In this section, we shall give sufficient conditions on λ, μ, f and g such that the BVP
(1.1)–(1.2) has positive solutions in a cone.
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We consider the Banach space X = {x | x ∈ C[a, σ (b)]T} with the supremum norm
‖ · ‖, and the Banach space Y = X × X with the norm ‖(u, v)‖Y = ‖u‖ + ‖v‖, where

‖u‖ = sup
t∈[a,σ (b)]T

|u(t)|.

Define a cone P ⊂ Y by

P =
{

(u, v) ∈ Y | u(t) ≥ 0, v(t) ≥ 0 on [a, σ (b)]T and
min

t∈[r,σ (b)]T
(u(t) + v(t)) ≥ k‖(u, v)‖Y

}
,

where r = max{ξm−1, ηn−1}, k = min{k1, k2} and k1, k2 are defined in (2.6) and (2.9)
respectively.

We shall present some existence results for the positive solutions of the BVP (1.1)–(1.2)
under various assumptions on f s

0 , gs
0, f i

0 , gi
0, f s∞, gs∞, f i∞ and gi∞.

Now, we define the positive numbers L1, L2, L3 and L4 by

L1 =α

[
kk1f

i∞
∫ σ(b)

r

G(σ(s), s)p(s)�s

]−1

,

L2 =α

[
f s

0

∫ σ(b)

a

G(σ(s), s)p(s)�s

]−1

,

L3 =β

[
kk2g

i∞
∫ σ(b)

r

H(σ(s), s)q(s)�s

]−1

,

L4 =β

[
gs

0

∫ σ(b)

a

H(σ(s), s)q(s)�s

]−1

,

where α > 0 and β > 0 are two positive real numbers such that α + β = 1.

Theorem 3.1. Assume that the conditions (A1)–(A4) hold.

(i) If f s
0 , gs

0, f
i∞, gi∞ ∈ (0,∞), L1 < L2 and L3 < L4, then for each λ ∈ (L1, L2) and

μ ∈ (L3, L4) there exists a positive solution (u(t), v(t)) on [a, σ (b)]T for (1.1)–
(1.2).

(ii) If f s
0 = gs

0 = 0, f i∞, gi∞ ∈ (0,∞), then for each λ ∈ (L1,∞) and μ ∈ (L3,∞)

there exists a positive solution (u(t), v(t)) on [a, σ (b)]T for (1.1)–(1.2).
(iii) If f s

0 , gs
0 ∈ (0,∞), f i∞ = gi∞ = ∞, then for each λ ∈ (0, L2) and μ ∈ (0, L4)

there exists a positive solution (u(t), v(t)) on [a, σ(b)]T for (1.1)–(1.2).
(iv) If f s

0 = gs
0 = 0, f i∞ = gi∞ = ∞, then for each λ ∈ (0,∞) and μ ∈ (0,∞) there

exists a positive solution (u(t), v(t)) on [a, σ (b)]T for (1.1)–(1.2).

Proof.

(i) Let T1, T2 : P → X and T : P → Y be the operators defined by

T1(u, v)(t) = λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s,
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T2(u, v)(t) = μ

∫ σ(b)

a

H(t, s)q(s)g(u(s), v(s))�s

and

T (u, v)(t) = (T1(u, v)(t), T2(u, v)(t)), for (u, v) ∈ Y,

where G(t, s) and H(t, s) are the Green’s functions for the homogeneous BVPs (2.1)–
(2.2) and (2.7)–(2.8) respectively. It is obvious that a fixed point of T is a solution of the
BVP (1.1)–(1.2). We now show that T : P → P . Let (u, v) ∈ P . From Lemma 2.2 and
(B1), T1(u, v)(t) ≥ 0 and T2(u, v)(t) ≥ 0 on [a, σ (b)]T. Also, for (u, v) ∈ P , by
Lemma 2.3, we have

T1(u, v)(t) = λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)f (u(s), v(s))�s

so that

‖T1(u, v)‖ ≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)f (u(s), v(s))�s.

Next, if (u, v) ∈ P , then by Lemma 2.4, we have

min
t∈[r,σ (b)]T

T1(u, v)(t) ≥ min
t∈[ξm−1,σ (b)]T

T1(u, v)(t)

= min
t∈[ξm−1,σ (b)]T

λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s

≥ λk1

∫ σ(b)

a

G(σ(s), s)p(s)f (u(s), v(s))�s

≥ k1‖T1(u, v)‖.
In a similar manner, we conclude that

min
t∈[r,σ (b)]T

T2(u, v)(t) ≥ k2‖T2(u, v)‖.

Therefore,

min
t∈[r,σ (b)]T

(T1(u, v)(t) + T2(u, v)(t)) ≥ min
t∈[r,σ (b)]T

T1(u, v)(t)

+ min
t∈[r,σ (b)]T

T2(u, v)(t)

≥ k1‖T1(u, v)‖ + k2‖T2(u, v)‖
≥ k‖(T1(u, v), T2(u, v))‖Y

= k‖T (u, v)‖Y .

Hence T (u, v) ∈ P and so T : P → P . By standard arguments, we can easily show that
T1 and T2 are completely continuous and so, T is a completely continuous operator.
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Now, let λ ∈ (L1, L2), μ ∈ (L3, L4) and let ε > 0 be a positive number such that
ε < f i∞, ε < gi∞ and

α

[
kk1(f

i∞ − ε)

∫ σ(b)

r

G(σ(s), s)p(s)�s

]−1

≤ λ,

α

[
(f s

0 + ε)

∫ σ(b)

a

G(σ(s), s)p(s)�s

]−1

≥ λ,

β

[
kk2(g

i∞ − ε)

∫ σ(b)

r

H(σ(s), s)q(s)�s

]−1

≤ μ,

β

[
(gs

0 + ε)

∫ σ(b)

a

H(σ(s), s)q(s)�s

]−1

≥ μ.

By the definitions of f s
0 and gs

0, there exists J1 > 0 such that

f (u, v) ≤ (f s
0 +ε)(u+v) and g(u, v) ≤ (gs

0+ε)(u+v), 0 < u+v ≤ J1.

By (A1), the above inequalities are also valid for u = v = 0.
Let (u, v) ∈ P with ‖(u, v)‖Y = J1. i.e., ‖u‖ + ‖v‖ = J1. Then, from Lemma 2.3, for

a ≤ t ≤ σ(b), we have

T1(u, v)(t) = λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)f (u(s), v(s))�s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)(f s
0 + ε)(u(s) + v(s))�s

≤ λ(f s
0 + ε)

∫ σ(b)

a

G(σ(s), s)p(s)(‖u‖ + ‖v‖)�s

≤ α(‖u‖ + ‖v‖)
= α‖(u, v)‖Y .

Hence,

‖T1(u, v)‖ ≤ α‖(u, v)‖Y .

In a similar manner, we conclude that

‖T2(u, v)‖ ≤ β‖(u, v)‖Y .

Therefore,

‖T (u, v)‖Y = ‖(T1(u, v), T2(u, v))‖Y

= ‖T1(u, v)‖ + ‖T2(u, v)‖
≤ α‖(u, v)‖Y + β‖(u, v)‖Y

= (α + β)‖(u, v)‖Y

= ‖(u, v)‖Y .
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Hence, ‖T (u, v)‖Y ≤ ‖(u, v)‖Y . If we set


1 = {(u, v) ∈ Y | ‖(u, v)‖Y < J1},
then

‖T (u, v)‖Y ≤ ‖(u, v)‖Y , for (u, v) ∈ P ∩ ∂
1. (3.1)

By the definitions of f i∞ and gi∞, there exists J̄2 > 0 such that

f (u, v) ≥ (f i∞ −ε)(u+v) and g(u, v) ≥ (gi∞ −ε)(u+v), u+v ≥ J̄2.

Let

J2 = max

{
2J1,

J̄2

k

}
.

Choose (u, v) ∈ P with ‖(u, v)‖Y = J2. Then

min
t∈[r,σ (b)]T

(u(t) + v(t)) ≥ k‖(u, v)‖Y ≥ J̄2.

From Lemma 2.4, we have

T1(u, v)(t) = λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s

≥λk1

∫ σ(b)

a

G(σ(s), s)p(s)f (u(s), v(s))�s

≥λk1

∫ σ(b)

r

G(σ(s), s)p(s)f (u(s), v(s))�s

≥λk1

∫ σ(b)

r

G(σ(s), s)p(s)(f i∞ − ε)(u(s) + v(s))�s

≥λk1(f
i∞ − ε)

∫ σ(b)

r

G(σ(s), s)p(s)k‖(u, v)‖Y �s

≥α‖(u, v)‖Y .

Hence,

‖T1(u, v)‖ ≥ α‖(u, v)‖Y .

In a similar manner, we conclude that

‖T2(u, v)‖ ≥ β‖(u, v)‖Y .

Therefore,

‖T (u, v)‖Y = ‖(T1(u, v), T2(u, v))‖Y

= ‖T1(u, v)‖ + ‖T2(u, v)‖
≥ α‖(u, v)‖Y + β‖(u, v)‖Y

= (α + β)‖(u, v)‖Y

= ‖(u, v)‖Y .
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Hence, ‖T (u, v)‖Y ≥ ‖(u, v)‖Y . If we set


2 = {(u, v) ∈ Y | ‖(u, v)‖Y < J2},
then

‖T (u, v)‖Y ≥ ‖(u, v)‖Y , for (u, v) ∈ P ∩ ∂
2. (3.2)

Applying Theorem 2.5 to (3.1) and (3.2), we obtain that T has a fixed point (u, v)

in P ∩ (
̄2\
1) and hence the BVP (1.1)–(1.2) has a positive solution such that J1 ≤
‖u‖ + ‖v‖ ≤ J2.

(ii) Let λ ∈ (L1,∞), μ ∈ (L3,∞) and let ε > 0 be a positive number such that ε < f i∞,
ε < gi∞ and

α

[
kk1(f

i∞ − ε)

∫ σ(b)

r

G(σ(s), s)p(s)�s

]−1

≤ λ,

β

[
kk2(g

i∞ − ε)

∫ σ(b)

r

H(σ(s), s)q(s)�s

]−1

≤ μ,

ε ≤ α

λ

[∫ σ(b)

a

G(σ(s), s)p(s)�s

]−1

,

ε ≤ β

μ

[∫ σ(b)

a

H(σ(s), s)q(s)�s

]−1

.

By the definitions of f s
0 = 0 and gs

0 = 0, there exists J1 > 0 such that

f (u, v) ≤ ε(u + v) and g(u, v) ≤ ε(u + v), 0 ≤ u + v ≤ J1.

Let (u, v) ∈ P with ‖(u, v)‖Y = J1. i.e., ‖u‖ + ‖v‖ = J1. Then, from Lemma 2.3, for
a ≤ t ≤ σ(b), we have

T1(u, v)(t) = λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s

≤λ

∫ σ(b)

a

G(σ(s), s)p(s)f (u(s), v(s))�s

≤λ

∫ σ(b)

a

G(σ(s), s)p(s)ε(u(s) + v(s))�s

≤λε

∫ σ(b)

a

G(σ(s), s)p(s)(‖u‖ + ‖v‖)�s

≤α(‖u‖ + ‖v‖)
=α‖(u, v)‖Y .

Hence,

‖T1(u, v)‖ ≤ α‖(u, v)‖Y .

In a similar manner, we conclude that

‖T2(u, v)‖ ≤ β‖(u, v)‖Y .
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Therefore,

‖T (u, v)‖Y = ‖(T1(u, v), T2(u, v))‖Y

= ‖T1(u, v)‖ + ‖T2(u, v)‖
≤ α‖(u, v)‖Y + β‖(u, v)‖Y

= (α + β)‖(u, v)‖Y

= ‖(u, v)‖Y .

Hence, ‖T (u, v)‖Y ≤ ‖(u, v)‖Y . Define the set


1 = {(u, v) ∈ Y | ‖(u, v)‖Y < J1},
then

‖T (u, v)‖Y ≤ ‖(u, v)‖Y , for (u, v) ∈ P ∩ ∂
1. (3.3)

By the definitions of f i∞, gi∞ ∈ (0,∞), there exists J̄2 > 0 such that

f (u, v) ≥ (f i∞−ε)(u+v) and g(u, v) ≥ (gi∞−ε)(u+v), u+v ≥ J̄2.

Define the set


2 = {(u, v) ∈ Y | ‖(u, v)‖Y < J2}
and proceeding in a similar manner of proof (i), we get

‖T (u, v)‖Y ≥ ‖(u, v)‖Y , for (u, v) ∈ P ∩ ∂
2. (3.4)

Applying Theorem 2.5 to (3.3) and (3.4), we obtain that T has a fixed point (u, v)

in P ∩ (
̄2\
1) and hence the BVP (1.1)–(1.2) has a positive solution such that J1 ≤
‖u‖ + ‖v‖ ≤ J2. Similarly, we can prove the remaining. �

Prior to our next result, we define the positive numbers M1,M2,M3 and M4 by

M1 =γ

[
kk1f

i
0

∫ σ(b)

r

G(σ(s), s)p(s)�s

]−1

,

M2 =γ

[
f s∞

∫ σ(b)

a

G(σ(s), s)p(s)�s

]−1

,

M3 =δ

[
kk2g

i
0

∫ σ(b)

r

H(σ(s), s)q(s)�s

]−1

,

M4 =δ

[
gs∞

∫ σ(b)

a

H(σ(s), s)q(s)�s

]−1

,

where γ > 0 and δ > 0 are two positive real numbers such that γ + δ = 1.
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Theorem 3.2. Assume that the conditions (A1)–(A4) hold.

(i) If f i
0 , gi

0, f
s∞, gs∞ ∈ (0,∞), M1 < M2 and M3 < M4, then for each λ ∈ (M1,M2)

and μ ∈ (M3,M4) there exists a positive solution (u(t), v(t)) on [a, σ (b)]T for
(1.1)–(1.2).

(ii) If f s∞ = gs∞ = 0, f i
0 , gi

0 ∈ (0,∞), then for each λ ∈ (M1, ∞) and μ ∈ (M3,∞)

there exists a positive solution (u(t), v(t)) on [a, σ (b)]T for (1.1)–(1.2).
(iii) If f s∞, gs∞ ∈ (0,∞), f i

0 = gi
0 = ∞, then for each λ ∈ (0,M2) and μ ∈ (0,M4)

there exists a positive solution (u(t), v(t)) on [a, σ (b)]T for (1.1)–(1.2).
(iv) If f s∞ = gs∞ = 0, f i

0 = gi
0 = ∞, then for each λ ∈ (0,∞) and μ ∈ (0,∞) there

exists a positive solution (u(t), v(t)) on [a, σ(b)]T for (1.1)–(1.2).

Proof.

(i) let λ ∈ (M1,M2), μ ∈ (M3,M4) and let ε > 0 be a positive number such that ε < f i
0 ,

ε < gi
0 and

γ

[
kk1(f

i
0 − ε)

∫ σ(b)

r

G(σ(s), s)p(s)�s

]−1

≤ λ,

γ

[
(f s∞ + ε)

∫ σ(b)

a

G(σ(s), s)p(s)�s

]−1

≥ λ,

δ

[
kk2(g

i
0 − ε)

∫ σ(b)

r

H(σ(s), s)q(s)�s

]−1

≤ μ,

δ

[
(gs∞ + ε)

∫ σ(b)

a

H(σ(s), s)q(s)�s

]−1

≥ μ.

By the definitions of f i
0 , gi

0 ∈ (0,∞), there exists J3 > 0 such that

f (u, v) ≥ (f i
0 −ε)(u+v) and g(u, v) ≥ (gi

0 −ε)(u+v), 0 < u+v ≤ J3.

By (A1), the above inequalities are also valid for u = v = 0.
Let (u, v) ∈ P with ‖(u, v)‖Y = J3. i.e., ‖u‖ + ‖v‖ = J3. Then, from Lemma 2.4, for

a ≤ t ≤ σ(b), we have

T1(u, v)(t) = λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s

≥λk1

∫ σ(b)

r

G(σ(s), s)p(s)f (u(s), v(s))�s

≥λk1

∫ σ(b)

r

G(σ(s), s)p(s)(f i
0 − ε)(u(s) + v(s))�s

≥λk1(f
i
0 − ε)

∫ σ(b)

r

G(σ(s), s)p(s)k‖(u, v)‖Y �s

≥γ ‖(u, v)‖Y .

Hence,

‖T1(u, v)‖ ≥ γ ‖(u, v)‖Y .
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In a similar manner, we conclude that

‖T2(u, v)‖ ≥ δ‖(u, v)‖Y .

Therefore,

‖T (u, v)‖Y = ‖(T1(u, v), T2(u, v))‖Y

= ‖T1(u, v)‖ + ‖T2(u, v)‖
≥ γ ‖(u, v)‖Y + δ‖(u, v)‖Y

= (γ + δ)‖(u, v)‖Y

= ‖(u, v)‖Y .

Hence, ‖T (u, v)‖Y ≥ ‖(u, v)‖Y . If we set


3 = {(u, v) ∈ Y | ‖(u, v)‖ < J3},
then

‖T (u, v)‖Y ≥ ‖(u, v)‖Y , for (u, v) ∈ P ∩ ∂
3. (3.5)

Now, we define the functions f ∗, g∗ : R+ → R
+ by

f ∗(x) = max
0≤u+v≤x

f (u, v) and g∗(x) = max
0≤u+v≤x

g(u, v), for all x ∈ R
+.

Then

f (u, v) ≤ f ∗(x) and g(u, v) ≤ g∗(x), u + v ≤ x.

It follows that the functions f ∗, g∗ are nondecreasing and satisfy the conditions

lim
x→∞ sup

f ∗(x)

x
= f s∞, lim

x→∞ sup
g∗(x)

x
= gs∞.

Next, by the definitions of f s∞, gs∞ ∈ (0,∞), there exists J̄4 > 0 such that

f ∗(x) ≤ (f s∞ + ε)x and g∗(x) ≤ (gs∞ + ε)x, x ≥ J̄4.

Let

J4 = max
{
2J3, J̄4

}
.

Choose (u, v) ∈ P with ‖(u, v)‖Y = J4. Then, by the definitions of f ∗ and g∗, we
have

f (u(t), v(t)) ≤ f ∗(u(t) + v(t)) ≤ f ∗(‖u‖ + ‖v‖) = f ∗(‖(u, v)‖Y )

and

g(u(t), v(t)) ≤ g∗(u(t) + v(t)) ≤ g∗(‖u‖ + ‖v‖) = g∗(‖(u, v)‖Y ).

From Lemma 2.3, for a ≤ t ≤ σ(b), we have

T1(u, v)(t) = λ

∫ σ(b)

a

G(t, s)p(s)f (u(s), v(s))�s
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≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)f (u(s), v(s))�s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)f ∗(‖(u, v)‖Y )�s

≤ λ

∫ σ(b)

a

G(σ(s), s)p(s)(f s∞ + ε)‖(u, v)‖Y �s

≤ γ ‖(u, v)‖Y .

Hence,

‖T1(u, v)‖ ≤ γ ‖(u, v)‖Y .

In a similar manner, we conclude that

‖T2(u, v)‖ ≤ δ‖(u, v)‖Y .

Therefore,

‖T (u, v)‖Y = ‖(T1(u, v), T2(u, v))‖Y

= ‖T1(u, v)‖ + ‖T2(u, v)‖
≤ γ ‖(u, v)‖Y + δ‖(u, v)‖Y

= (γ + δ)‖(u, v)‖Y

= ‖(u, v)‖Y .

Hence, ‖T (u, v)‖ ≤ ‖(u, v)‖Y . If we set


4 = {(u, v) ∈ Y | ‖(u, v)‖ < J4},
then

‖T (u, v)‖Y ≤ ‖(u, v)‖Y , for (u, v) ∈ P ∩ ∂
4. (3.6)

Applying Theorem 2.5 to (3.5) and (3.6), we obtain that T has a fixed point (u, v)

in P ∩ (
̄4\
3) and hence the BVP (1.1)–(1.2) has a positive solution such that J3 ≤
‖(u, v)‖Y ≤ J4.

The proofs of the remaining cases (ii)–(iv) are similar that of (i) and we shall omit
them. �

4. Example

Let us consider an example to illustrate the above result.
Let T = {( 1

2 )p : p ∈ N0} ∪ [1, 2]. Take m = 3, n = 4, a = 1
2 , b = 2, ξ2 = 3

2 , η2 =
1, η3 = 3

2 , α1 = 4, α2 = 7, β1 = 2, β2 = 3. Now, consider the BVP,

u��(t) + λp(t)f (u(t), v(t)) = 0, t ∈
[

1

2
, σ (2)

]
T

,

v��(t) + μq(t)g(u(t), v(t)) = 0, t ∈
[

1

2
, σ (2)

]
T

,

⎫⎪⎪⎬
⎪⎪⎭

(4.1)
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u

(
1

2

)
= 0, 4u(σ(2)) + 2u�(σ(2)) = u�

(
3

2

)
,

v

(
1

2

)
= 0, 7v(σ (2)) + 3v�(σ(2)) = v�(1) + v�

(
3

2

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

where

f (u, v) = (u + v)[1600(u + v) + 1](5 + sin v)

u + v + 1
,

g(u, v) = (u + v)[700(u + v) + 1](10 + cos u)

u + v + 1
,

and p(t) = q(t) = 1. The Green’s function G(t, s) is

G(t, s) =
{

G1(t, s),
1
2 ≤ s ≤ σ(s) ≤ 3

2 ,

G2(t, s),
3
2 ≤ s ≤ σ(s) ≤ σ(2),

where

G1(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

1

7
[4(σ (2) − t) + 1]

(
σ(s) − 1

2

)
, σ (s) ≤ t,

1

7

(
t − 1

2

)
[4(σ (2) − σ(s)) + 1], t ≤ s,

and

G2(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

7

[
(4(σ (2) − t) + 2)

(
σ(s) − 1

2

)
+ t − σ(s)

]
, σ (s) ≤ t,

1

7

(
t − 1

2

)
[4(σ (2) − σ(s)) + 2], t ≤ s.

The Green’s function H(t, s) is

H(t, s) =

⎧⎪⎨
⎪⎩

H1(t, s)
1
2 ≤ s ≤ σ(s) ≤ 1,

H2(t, s), 1 ≤ s ≤ σ(s) ≤ 3
2 ,

H3(t, s),
3
2 ≤ s ≤ σ(s) ≤ σ(2),

where

H1(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

23
[7(σ (2) − t) + 1]

(
σ(s) − 1

2

)
, σ (s) ≤ t,

2

23

(
t − 1

2

)
[7(σ (2) − σ(s)) + 1], t ≤ s,

H2(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

23

[
(7(σ (2) − t) + 2)

(
σ(s) − 1

2

)
+ t − σ(s)

]
, σ (s) ≤ t,

2

23

(
t − 1

2

)
[7(σ (2) − σ(s)) + 2], t ≤ s,



Existence of positive solutions for systems 369

and

H3(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

23

[
(7(σ (2)− t)+3)

(
σ(s) − 1

2

)
+ 2(t − σ(s))

]
, σ (s) ≤ t,

2

23

(
t − 1

2

)
[7(σ (2) − σ(s)) + 3], t ≤ s.

After simple calculations, we get

k1 = 1

7
, k2 = 2

23
, k = 2

23
, f s

0 = 5, f i
0 = 5, f s∞ = 9600,

f i∞ = 6400, gs
0 = 11, gi

0 = 11, gs∞ = 7700, gi∞ = 6300,

L1 = 0.04802556818α, L2 = 0.1162629758α,

L3 = 0.08336416581β, L4 = 0.1095672886β,

where α > 0, β > 0 are two positive real numbers such that α + β = 1.
Employing Theorem 3.1 of (i), for each λ ∈ (L1, L2) and μ ∈ (L3, L4), there exists a

positive solution (u(t), v(t)) of the BVP (4.1)–(4.2).

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and comments.

References

[1] Agarwal R P and Bohner M, Basic calculus on time scales and some of its applications,
Results Math. 35 (1999) 3–22

[2] Agarwal R P, Bohner M and Wong P, Strum-Liouville eigenvalue problems on time
scales, Appl. Math. Comput. 99 (1999) 153–166

[3] Anderson D R, Eigenvalue intervals for a second-order mixed-conditions problem on
time scale, Int. J. Nonlinear Diff. Eqns. 7 (2002) 97–104

[4] Anderson D R, Eigenvalue intervals for a two-point boundary value problem on a
measure chain, J. Comp. Appl. Math. 141 (2002) 57–64

[5] Anderson D R, Eigenvalue intervals for even order Strum-Liouville dynamic equations,
Comm. Appl. Nonlinear Anal. 12 (2005) 1–13

[6] Benchohra M, Berhoun F, Hamani S, Henderson J, Ntouyas S K, Ouahab A and Purnaras
I K, Eigenvalues for iterative of systems of nonlinear boundary value problems on time
scales, Nonlinear Dyn. Sys. Theory 9 (2009) 11–22

[7] Benchohra M, Henderson J and Ntouyas S K, Eigenvalue problems for systems of non-
linear boundary value problems on time scales, Adv. Difference Eqns. 2007 (2007) 1–10
Article ID: 31640

[8] Bohner M and Peterson A C, Dynamic Equations on Time Scales, An Introduction with
Applications (2001) (Boston, MA: Birkhäuser)

[9] Bohner M and Peterson A C, Advances in Dynamic Equations on Time Scales (2003)
(Boston: Birkhauser)

[10] Chyan C J, Davis J M, Henderson J and Yin W K C, Eigenvalue comparisons for
nonlinear differential equations on a measure chain, Elec. J. Diff. Eqns. 1998 (1998) 1–7

[11] Chyan C J and Henderson J, Eigenvalue problems for nonlinear differential equations on
a measure chain, J. Math. Anal. Appl. 245 (2000) 547–559



370 K R Prasad et al.

[12] Guo D and Lakshmikantham V, Nonlinear Problems in Abstract Cones (1988) (Orlando:
Academic Press)

[13] Henderson J and Prasad K R, Comparison of eigenvalues for Lidstone boundary value
problems on measure chain, Comp. Math. Appl. 38 (1999) 55–62

[14] Hilger S, Analysis on measure chains – A unified approach to continuous and discrete
calculus, Results Math. 18 (1990) 18–56

[15] Il’in V A and Moiseev E I, Nonlocal boundary value problem of the first kind for a
Sturm-Liouville operator in its differential and finite difference aspects, Diff. Eqns. 23
(1987) 803–810

[16] Il’in V A and Moiseev E I, Nonlocal boundary value problem of the second kind for a
Sturm-Liouville operator, Diff. Eqns. 23 (1987) 979–987

[17] Krasnosel’skii M A, Positive Solutions of Operator Equations (1964) (Groningen, The
Netherlands: P. Noordhoff Ltd)

[18] Moshinsky M, Sobre los problemas de condiciones a la frontiera en una dimension de
caracteristicas discontinuas, Bol. Soc. Mat. Mexicana 7 (1950) 10–25

[19] Prasad K R, Sreedhar N and Narasimhulu Y, Eigenvalue intervals for iterative systems
of nonlinear m-point boundary value problems on time scales, Diff. Eqns. Dyn. Sys. 22
(2014) 353–368

[20] Timoshenko S, Theory of Elastic Stability (1961) (New York: McGraw-Hill)

COMMUNICATING EDITOR: B V Rajarama Bhat


	Existence of positive solutions for systems of second order multi-point boundary value problems on time scales
	Abstract
	Introduction
	Green's function and bounds
	Existence of positive solutions
	Example
	References


