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Abstract. In this article, we study the concept of Stepanov-like weighted pseudo
almost automorphic solutions to fractional order abstract integro-differential equations.
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1. Introduction

This work is mainly concerned with the existence of Stepanov-like weighted pseudo
almost automorphic mild solutions to the following fractional order integro-differential
equation

Dα
t x(t) = Ax(t) + Dα−1

t f (t, x(t),Kx(t)),

Kx(t) =
∫ t

−∞
k(t − s)h(s, x(s))ds, t ∈ R, (1.1)

where 1 < α < 2 and A :D(A)⊂ X → X is a linear densely defined operator of sectorial
type on a complex Banach space (X, ‖.‖). Moreover, the function k satisfies |k(t)| ≤
cke−bt for t ≥ 0 and ck, b are positive constants, the function f : R × X × X → X

and h : R × X → X are Stepanov-like weighted pseudo almost automorphic in t for
each x, y ∈ X, satisfying suitable conditions. The fractional derivative Dα

t is to be under-
stood in the Caputo’s sense. It is well known that integro-differential equations model
many situations arising from science and engineering. A particularly rich source is elec-
trical circuit analysis. The activity of interacting inhibitory and excitatory neurons can
be described by a system of integro-differential equations. Fractional integro-differential
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equations can model if the system dynamics is slower and faster. If the ordinary differen-
tial system can not explain the dynamics of a process, then fractional order system may
explain the dynamics. The problem considered here can be thought of as abstract version
of very general form of fractional oscillation/relaxation partial differential equation.

Recent years have witnessed tremendous work flow in the field of fractional differential
equations. Many works have been done to prove existence, uniqueness of the solutions
of various fractional differential equation of various order. At the same time people have
shown applications of fractional calculus in various fields like in the field of viscosity,
control, anomalous diffusion etc. It has been claimed in recent investigations that many
physical systems can be represented more accurately through fractional derivative formu-
lation [31]. A wonderful book on fractional differential equation is written by Podlubny
[36]. The existence and uniqueness of solutions of such kind of differential equations have
been shown by many authors, we refer to [1, 2, 4, 10, 13, 14, 24, 25, 30] and references
therein. A very natural question in the field of differential equations is to see whether
the solution follows the same pattern of forcing term or not. Same question can be asked
in the case of fractional differential equations and many people have already worked in
this direction ([5, 15] and references therein). In [5], Agarwal et al. have shown the exis-
tence of weighted pseudo almost periodic solutions of semilinear fractional differential
equations.

In order to describe the concept of Stepanov-like weighted pseudo almost automor-
phic, we need to go back to Bohr’s era, who introduced the concept of almost periodic
function. Since then there are many important generalizations of this function, the gen-
eralization includes pseudo almost periodic functions [42]. These functions are further
generalized to weighted pseudo almost periodic function by Diagana [16]. Another impor-
tant direction of generalization is almost automorphic function, which is introduced by
Bochner [8] in the literature. Pseudo almost automorphic functions are natural generaliza-
tion of almost automorphic functions and introduced by Liang et al. [29]. These functions
are further generalized by Blot et al. [6] and was named weighted pseudo almost auto-
morphic. The authors in [6] have proved very important properties of these functions
including composition theorem and completeness property. The study of weighted pseudo
almost automorphic solutions of various kind of differential equations are very new and
an attractive area of research. For more details on theory and a‘pplications of these func-
tions, we refer to [6] and references therein. Stepanov-like pseudo almost periodicity
is introduced and studied by Diagana [17, 18, 21], which is a natural generalization
of pseudo almost periodicity. Further, Stepanov-like almost automorphy has been intro-
duced by N’Guerekata and Pankov [34]. Diagana and N’Guerekata [22] have shown the
existence of almost automorphic solution under the condition that the forcing term is a
Stepanov almost automorphic function satisfying Lipschitz condition. Stepanov almost
automorphic sequence is studied by Abbas et al. [3]. A very good paper on Stepanov
version of Favard theory is discussed by Tarallo [38]. The concept of Stepanov weighted
pseudo almost automorphic functions are introduced by Zhang et al. [44]. It is called
Stepanov because it uses the norm proposed by Stepanov to define an almost periodic
function, which is named as Stepanov almost periodic [37]. In this work, we strengthen
many results of Stepanov almost automorphic function. The mathematical topic of inter-
ests are the nature of the solutions, stability, periodicity, almost periodicity etc. Stepanov
weighted pseudo almost automorphic functions are more general than almost periodic,
automorphic functions, and hence it covers wider class of functions. If the observed out-
put of any given system is not showing periodic, almost periodic or almost automorphic
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behaviour, then one could check whether its behaviour is Stepanov weighted pseudo
almost automorphic or not.

The paper is structured as follows. In §2, we give basic definitions and results which
are necessary for smooth reading of this paper. Section 3 is devoted to the existence of
Stepanov-like weighted pseudo almost automorphic solutions. In §4, we give an example
to illustrate our analytical findings.

2. Preliminaries and basic results

In this section, we introduce important notations, definitions, lemmas and preliminary
facts which are used throughout this work.

Let (X, ‖ · ‖) and (Y, ‖ · ‖Y ) be two complex Banach spaces. The notation C(R,X),
(respectively C(R × Y,X)) denote the collection of all continuous functions from R to X

(respectively from R × Y to X). Let BC(R,X) (respectively BC(R × Y,X)) denote the
Banach space of bounded continuous functions from R to X (respectively from R × Y to
X) with the supremum norm.

The notation L(X, Y ) stands for the Banach space of bounded linear operators from
X into Y endowed with the operator topology and we abbreviate it as L(X) whenever
X = Y . The space Lp(R,X) denotes the space of all equivalence (with respect to the
equality almost everywhere on R) classes of measurable functions f : R → X such that
‖f ‖ ∈ Lp(R,R). L

p
loc(R,X) denotes the space of all equivalence classes of measurable

functions f : R → X such that the restriction of f to every bounded subinterval of R is
in Lp(R,X).

The Riemann–Liouville fractional integral of order α > 0 is defined by

Iαf (t) = 1

�(α)

∫ t

0
(t − s)α−1f (s)ds,

also, the Caputo fractional derivative of function f of order α > 0 is defined by

Dα
t f (t) = 1

�(n − α)

∫ t

0
(t − s)n−α−1 dnf (s)

dsn
ds,

where �(α) is the gamma function.

DEFINITION 2.1 [7]

A function f ∈ C(R,X) is said to be almost automorphic in Bochner’s sense if for every
sequence of real numbers (sn)n∈N , there exists a subsequence (τn)n∈N such that

g(t) = lim
n→∞ f (t + τn)

is well-defined for each t ∈ R and

lim
n→∞ g(t − τn) = f (t)

for each t ∈ R.

Almost automorphic functions (denoted by AA(R,X)) (respectively AA(R × Y,X))
constitute a Banach space when it is endowed with the sup norm. They naturally
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generalize the concept of (Bochner) almost periodic functions. A typical example [22, 33]
of almost automorphic function but not almost periodic is given as

φ(t) = cos

(
1

2 + sin
√

2t + sin t

)
, t ∈ R.

Lemma 2.1 [32]. If f, f1, f2 ∈ AA(R,X), then

(i) f1 + f2 ∈ AA(R,X),

(ii) λf ∈ AA(R,X) for every scalar λ,

(iii) fα ∈ AA(R,X) where fα : R → X is defined by fα(·) = f (· + α), α ∈ R,

(iv) the range Rf = {f (t) : t ∈ R} is relatively compact in X, thus f is bounded in
norm,

(v) if fn → f uniformly on R, where each fn ∈ AA(R,X), then f ∈ AA(R,X) too.

DEFINITION 2.2 [41]

A function f ∈ C(R,X) (respectively C(R×Y,X)) is called pseudo almost automorphic
if it can be decomposed as f = g+φ, where g ∈ AA(R,X) (respectively AA(R×Y,X))

and φ ∈ BC(R,X) with

lim
T →∞

1

2T

∫ T

−T

‖φ(s)‖ds = 0

(respectively φ ∈ BC(R × Y,X)) with

lim
T →∞

1

2T

∫ T

−T

‖φ(s, u)‖ds = 0

uniformly for u in any bounded subset of Y ).

Denote by PAA(R,X) (respectively PAA(R×Y,X)) the collection of such functions
and (PAA(R,X), ‖ ·‖PAA) (respectively (PAA(R ×Y,X), ‖ ·‖PAA)) is a Banach space
when endowed with the sup norm. It is not difficult to show that the function defined by

fα,β,γ (t) = cos

(
1

3 − sin t − 2 sin βt

)
+ e−|t |γ

(1 + |t |)α , t ∈ R

is a pseudo almost automorphic function, where α ∈ (1,∞), β ∈ R/Q and γ ∈ [0,∞).
Let U be the set of all functions ρ : R → (0,∞) which are positive and locally

integrable over R. For a given T > 0 and each ρ ∈ U , set

μ(T , ρ) =
∫ T

−T

ρ(t)dt.

Define

U∞ =
{
ρ ∈ U : lim

T →∞ μ(T , ρ) = ∞
}

,
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UB =
{
ρ ∈ U∞ : ρ is bounded and inf

x∈R
ρ(x) > 0

}
.

It is clear that UB ⊂ U∞ ⊂ U .

DEFINITION 2.3

Let ρ1, ρ2 ∈ U∞, ρ1 is said to be equivalent to ρ2 (i.e., ρ1 ∼ ρ2) if ρ1
ρ2

∈ UB .

It is trivial to show that ‘∼’ is a binary equivalence relation on U∞. The equivalence
class of a given weight ρ ∈ U∞ is denoted by cl(ρ) = {Q ∈ U∞ : ρ ∼ Q}. It is clear that
U∞ = ∪ρ∈U∞cl(ρ).

For ρ1 ∈ U∞, define the weighted ergodic space

PAA0(R,X, ρ1)=
{
f ∈BC(R,X) : lim

T →∞
1

μ(T , ρ1)

∫ T

−T

ρ1(s)‖f (s)‖ds =0

}
.

Particularly, for ρ1, ρ2 ∈ U∞, define ([20]),

PAA0(R,X, ρ1, ρ2) =
{
f ∈ BC(R,X) : lim

T →∞
1

μ(T , ρ1)

∫ T

−T

ρ2(s)‖f (s)‖ds = 0

}
,

clearly, when ρ1 ∼ ρ2, this space coincides with the weighted ergodic space PAA0(R, X,

ρ1), that is, PAA0(R, X, rho1, ρ2) =PAA0(R, X, ρ2, ρ1) =PAA0(R, X, ρ1) =PAA0(R, X,
ρ2). This fact suggests that the weighted ergodic space PAA0(R, X, ρ1, ρ2) are most inter-
esting when ρ1 and ρ2 are not necessarily equivalent. So the space PAA0(R, X, ρ1, ρ2) are
general and richer than PAA0(R, X, ρ1) and gives rise to an enlarged space of weighted
pseudo almost automorphic functions.

Similarly, define

PAA0(R × X,X, ρ1, ρ2)

=
{
f ∈ BC(R×X,X) : lim

T →∞
1

μ(T , ρ1)

∫ T

−T

ρ2(s)‖f (s, u)‖ds =0 uniformlyin u ∈ X

}
.

DEFINITION 2.4

Let ρ1, ρ2 ∈ U∞. A function f ∈ C(R,X) (respectively C(R×Y,X)) is called weighted
pseudo almost automorphic if it can be decomposed as f = g + φ, where g ∈ AA(R,X)

(respectively AA(R × Y,X)) and φ ∈ PAA0(R,X, ρ1, ρ2) (respectively PAA0(R ×
Y,X, ρ1, ρ2)). Denote by WPAA(R,X, ρ1, ρ2) (respectively WPAA(R×Y,X, ρ1, ρ2))

the set of such functions.

Let p ∈ [1, ∞). The space BSp(R,X) of all Stepanov bounded functions, with the
exponent p, consists of all measurable functions f : R → X such that f b ∈ L∞(R, Lp
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([0, 1], X)), where f b is the Bochner transform of f = defined by f b(t, s) = f (t+ s), t ∈ R,
s ∈ [0, 1]. BSp(R,X) is a Banach space with the norm

‖f ‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f (τ)‖pdτ

) 1
p

.

It is obvious that Lp(R,X) ⊂ BSp(R,X) ⊂ L
p
loc(R,X) and BSp(R,X) ⊂ BSq(R,X)

for p ≥ q ≥ 1.

DEFINITION 2.5 [19]

The space SpAA(R, X) of Stepanov-like almost automorphic functions (or Sp-almost auto-
morphic functions) consists of all f ∈ BSp(R,X) such that f b ∈ AA(R,Lp([0, 1], X)).

In other words, a function f ∈ L
p
loc(R,X) is said to be Stepanov-like almost automor-

phic if its Bochner transform f b : R → Lp([0, 1], X) is almost automorphic in the sense
that for every sequence of real numbers (sn)n∈N , there exist a subsequence (τn)n∈N and
a function g ∈ L

p
loc(R,X) such that

lim
n→∞

(∫ t+1

t

‖f (s + τn) − g(s)‖pds

) 1
p

= 0,

lim
n→∞

(∫ t+1

t

‖g(s − τn) − f (s)‖pds

) 1
p

= 0,

pointwise on R. The collection of all such functions is denoted by SpAA(R,X).
From [9], we know that if 1 ≤ p < q < ∞ and f ∈ L

q
loc(R,X) is Sq -almost

automorphic, then f is Sp-almost automorphic. Also, if f ∈ AA(R,X), then f is Sp-
almost automorphic for any 1 ≤ p < ∞, in other words, AA(R,X) ⊂ SpAA(R,X). An
interesting example of f such that f ∈ SpAA(R,X) for p ≥ 1 but f /∈ AA(R,X) is
given in [33].

DEFINITION 2.6 [19]

A function f : R × Y → X, (t, u) → f (t, u) with f (·, u) ∈ L
p
loc(R, Y ) for each u ∈ Y

is said to be Sp-almost automorphic in t ∈ R uniformly for u ∈ Y if for every sequence of
real numbers (sn)n∈N , there exist a subsequence (τn)n∈N and a function g : R × Y → X

with g(·, u) ∈ L
p
loc(R, Y ) such that

lim
n→∞

(∫ 1

0
‖f (t + s + τn, u) − g(t + s, u)‖pds

) 1
p

= 0

and

lim
n→∞

(∫ 1

0
‖g(t + s − τn, u) − f (t + s, u)‖pds

) 1
p

= 0,

for each t ∈ R and for each u ∈ Y . We denote by SpAA(R × Y,X) the set of all such
functions.
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DEFINITION 2.7 [19]

A function f ∈ BSp(R,X) is called Stepnaov-like pseudo almost automorphic (or
Sp-pseudo almost automorphic) if it can be decomposed as f = g + φ, where gb ∈
AA(R,Lp([0, 1], X)) and φb ∈ PAA0(R,Lp([0, 1], X)). Denote by SpPAA(R,X) the
collection of such functions.

Clearly, a function f ∈ L
p
loc(R,X) is said to be Sp-pseudo almost automorphic if

its Bochner transform f b : R → Lp([0, 1], X) is pseudo almost automorphic in the
sense that there exist two functions g, φ : R → X such that f = g + φ, where
gb ∈ AA(R,Lp([0, 1], X)) and φb ∈ PAA0(R,Lp([0, 1], X)).

From [19], we know that the space SpPAA(R,X) is a Banach space equipped with
the norm ‖ · ‖Sp . If f ∈ PAA(R,X), then f ∈ SpPAA(R,X) for each 1 ≤ p < ∞,
in other words, PAA(R,X) ⊂ SpPAA(R,X). One can find in [19] the example of the
function f ∈ SpPAA(R,X) for p ≥ 1, but f /∈ PAA(R,X).

DEFINITION 2.8 [19]

A function f : R × Y → X, (t, u) → f (t, u) with f (·, u) ∈ L
p
loc(R,X) for each u ∈ Y

is said to be Sp-pseudo almost automorphic if it can be decomposed as f = g + φ,
where gb ∈ AA(R × Y,Lp([0, 1], X)) and φb ∈ PAA0(R × Y,Lp([0, 1], X)). Denote
by SpPAA(R × Y,X) the collection of such functions.

DEFINITION 2.9

Let ρ1, ρ2 ∈ U∞. A function f ∈ BSp(R,X) is said to be weighted Stepanov-
like pseudo almost automorphic (or weighted Sp-pseudo almost automorphic) if it
can be decomposed as f = g + φ, where gb ∈ AA(R,Lp([0, 1], X)) and
φb ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2). Denote by SpWPAA(R,X, ρ1, ρ2) the collec-
tion of such functions.

In other words, a function f ∈ L
p
loc(R,X) is said to be weighted Sp-pseudo almost

automorphic if its Bochner transform f b : R → Lp([0, 1], X) is weighted pseudo almost
automorphic in the sense that there exist two functions g, φ : R → X such that f = g+φ,
where gb ∈ AA(R,Lp([0, 1], X)) and φb ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2), i.e.,

lim
T →∞

1

μ(T , ρ1)

∫ T

−T

ρ2(t)

(∫ t+1

t

‖φ(σ)‖pdσ

) 1
p

= 0.

DEFINITION 2.10

Let ρ1, ρ2 ∈ U∞. A function f : R × Y → X, (t, u) → f (t, u) with f (·, u) ∈
L

p
loc(R,X) for each u ∈ Y is said to be weighted Sp-pseudo almost automorphic if

it can be decomposed as f = g + φ, where gb ∈ AA(R × Y,Lp([0, 1], X)) and
φb ∈ PAA0(R × Y,Lp([0, 1], X), ρ1, ρ2). The space of such functions is denoted by
SpWPAA(R × Y,X, ρ1, ρ2).
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Further, let V∞ be the collection of continuous weights ρ1, ρ2 ∈ U∞ such that
lim supt→∞

ρ2(t+τ)
ρ2(t)

< ∞ and lim supT →∞
μ(T ,ρ2)
μ(T ,ρ1)

< ∞ for any τ ∈ R.

Example 1. The function defined by f (t) = signum(cos 2πθt) + e−|t | for θ irrational
with the weight functions ρ1(t) = 1 + t2, ρ2(t) = 1 is weighted Sp-pseudo almost
automorphic. Also the function f (t) is Sp-pseudo almost automorphic. Moreover the
function signum(cos 2πθt) is Sp-almost automorphic. The proof for discrete version is
given in Abbas et al. [3], the continuous version follows similarly.

Lemma 2.2. Let ρ1, ρ2 ∈ V∞, f = g + φ ∈ SpWPAA(R,X, ρ1, ρ2) with gb ∈
AA(R,Lp([0, 1], X)), φb ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2) then {g(t + ·) : t ∈ R} ⊂
{f (t + ·) : t ∈ R} in Lp([0, 1], X).

Proof. We prove this lemma by the contradiction arguments. If the claim is not true, then
there exist a t0 ∈ R and an ε > 0 such that

‖g(t0 + ·) − f (t + ·)‖p ≥ 2ε, t ∈ R,

where ‖ · ‖p denotes the norm of Lp([0, 1], X). Since gb ∈ AA(R,Lp([0, 1], X)), fix
t0 ∈ R and ε > 0 and set Bε = {τ ∈ R : ‖g(t0+τ+·)−g(t0+·)‖p < ε}, by Lemma 2.1 of
[41], there exist s1, . . . , sm ∈ R such that ∪m

i=1(si +Bε) = R. Let ŝi = si − t0(1 ≤ i ≤ m)

and η = max1≤i≤m |ŝi |. For T ∈ R with |T | > η and B
(i)
ε,T = [−T +η − ŝi , T −η − ŝi] ∩

(t0 + Bε), 1 ≤ i ≤ m, one has ∪m
i=1

(
ŝi + B

(i)
ε,T

)
= [−T + η, T − η].

Using the fact that B
(i)
ε,T ⊂ [−T , T ] ∩ (t0 + Bε), i = 1, ..., m, we have

μ(T − η, ρ2) =
∫ T −η

−T +η

ρ2(t)

≤
m∑

i=1

∫
ŝi+B

(i)
ε,T

ρ2(t)dt

≤
m∑

i=1

∫
B

(i)
ε,T

ρ2(t + ŝi )dt

≤
m∑

i=1

ai

∫
B

(i)
ε,T

ρ2(t)dt

≤ max
1≤i≤m

{ai}
m∑

i=1

∫
[−T ,T ]∩(t0+Bε)

ρ2(t)dt

= max
1≤i≤m

{ai} · m ·
∫

[−T ,T ]∩(t0+Bε)

ρ2(t)dt,

where ai = lim supt→∞
ρ2(t+ŝi )

ρ2(t)
< ∞.

On the other hand, by the Minkowski inequality, for any t ∈ t0 + Bε , one has

‖φ(t + ·)‖p = ‖f (t + ·) − g(t + ·)‖p

≥ ‖g(t0 + ·) − f (t + ·)‖p − ‖g(t + ·) − g(t0 + ·)‖p

> ε.
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Then

1

μ(T , ρ1)

∫ T

−T

ρ2(t)

(∫ t+1

t

‖φ(s)‖pds

) 1
p

ds

= 1

μ(T , ρ1)

∫ T

−T

ρ2(t)‖φ(t + ·)‖pdt

≥ 1

μ(T , ρ1)

∫
[−T ,T ]∩(t0+Bε)

ρ2(t)‖φ(t + ·)‖pdt

>
ε

μ(T , ρ1)

∫
[−T ,T ]∩(t0+Bε)

ρ2(t)dt

≥ ε

μ(T , ρ1)
· μ(T − η, ρ2)

m · max1≤i≤m{ai}
→ εb

m · max1≤i≤m{ai} as T → ∞,

where b = lim supT →∞
μ(T −η,ρ2)

μ(T ,ρ1)
< ∞ since ρ1, ρ2 ∈ V∞. This is a contradiction, since

φb ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2). Hence the claim is true.

Theorem 2.1. For any given ρ1, ρ2 ∈ V∞, the space SpWPAA(R,X, ρ1, ρ2) is a
Banach space endowed with the norm ‖ · ‖Sp .

Proof. It suffices to prove that SpWPAA(R, X, ρ1, ρ2) is a closed subspace of BSp(R,
X). Let fn = gn + φn ∈ SpWPAA(R, X, ρ1, ρ2) with gb

n ∈AA(R, Lp([0, 1], X)) and φb
n ∈

PAA0(R,Lp([0, 1], X), ρ1, ρ2) such that ‖fn − f ‖Sp → 0 as n → ∞. Since fn =
gn + φn, by Lemma 2.2, {gn(t + ·) : t ∈ R} ⊂ {fn(t + ·) : t ∈ R} in Lp([0, 1], X) then
‖gn(t + ·)‖p ≤ ‖fn(t + ·)‖p, whence ‖gn‖Sp ≤ ‖fn‖Sp for any n ∈ N . Therefore, there
exists a function g ∈ SpAA(R,X) such that ‖gn − g‖Sp → 0 as n → ∞. Whence
fn − gn = φn → φ = f − g as n → ∞.

By writing φ = (φ − φn) + φn, we have

1

μ(T , ρ1)

∫ T

−T

ρ2(t)

(∫ t+1

t

‖φ(σ)‖pdσ

) 1
p

dt

≤ 1

μ(T , ρ1)

∫ T

−T

ρ2(t)

(∫ t+1

t

‖φn(σ ) − φ(σ)‖pdσ

) 1
p

dt

+ 1

μ(T , ρ1)

∫ T

−T

ρ2(t)

(∫ t+1

t

‖φn(σ )‖pdσ

) 1
p

dt

≤ ‖φn − φ‖Sp + 1

μ(T , ρ1)

∫ T

−T

ρ2(t)

(∫ t+1

t

‖φn(σ )‖pdσ

) 1
p

dt.

First taking T → ∞ and then n→ ∞ in the above inequality, we obtain φb ∈PAA0(R,
Lp([0, 1], X), ρ1, ρ2), which implies, f = g+ φ ∈ SpWPAA(R, X, ρ1, ρ2). Hence
SpWPAA(R,X, ρ1, ρ2) is a Banach space.
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DEFINITION 2.11

Assume ρ ∈ U∞, τ ∈ R, and define ρτ by ρτ (t) = ρ(t + τ) for t ∈ R. Define UT (see
[43]) by

UT = {ρ ∈ U∞ : ρ ∼ ρτ for each τ ∈ R}.

It is easy to see that UT contains many weights, such as 1, (1+ t2)/(2+ t2), et and 1+|t |n
with n ∈ N .

Moreover, it is not difficult to observe that (WPAA(R,X, ρ1, ρ2), ‖ · ‖) (respectively
(WPAA(R × Y,X, ρ1, ρ2), ‖ · ‖)), ρ1, ρ2 ∈ UT is a Banach space endowed with the sup
norm.

Lemma 2.3 [39]. Let ρ1, ρ2 ∈ UT , then PAA0(R,X, ρ1, ρ2) = PAA0(R,X, ρτ
1 , ρτ

2 ) for
τ ∈ R.

Lemma 2.4 [39]. Let ρ1, ρ2 ∈ UT , φ ∈ PAA0(R,X, ρ1, ρ2), then φ(· − τ) ∈
PAA0(R,X, ρ1, ρ2) for τ ∈ R.

Lemma 2.5. WPAA(R,X, ρ1, ρ2) ⊂ SpWPAA(R,X, ρ1, ρ2) and SqWPAA(R,X,
ρ1, ρ2) ⊂ SpWPAA(R,X, ρ1, ρ2) for 1 ≤ p < q < ∞, ρ1, ρ2 ∈ U∞.

The proof is similar to the proof of Propositions 4.1 and 4.2 in [9]. The details are omitted
here.

Theorem 2.2. Assume that ρ1, ρ2 ∈ U∞, f = f1 + f2 ∈ SpWPAA(R × X ×
X,X, ρ1, ρ2) with f b

1 ∈ AA(R × X × X,Lp([0, 1], X)), f b
2 ∈ PAA0(R × X ×

X,Lp([0, 1], X), ρ1, ρ2) and

(i) there exist constants Lf ,Lf1 > 0 such that

‖f (t, x1, x2) − f (t, y1, y2)‖ ≤ Lf (‖x1 − y1‖X + ‖x2 − y2‖X) ,

t ∈ R, xi, yi ∈ X, i = 1, 2

and

‖f1(t, x1, x2) − f1(t, y1, y2)‖ ≤ Lf1 (‖x1 − y1‖X + ‖x2 − y2‖X) ,

t ∈ R, xi, yi ∈ X, i = 1, 2.

(ii) h1 = α1 + β1, h2 = α2 + β2 ∈ SpWPAA(R,X, ρ1, ρ2) with αb
1 , αb

2 ∈
AA(R,Lp([0, 1], X)), βb

1 , βb
2 ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2) and K =

{α1(t) : t ∈ R},M = {α2(t) : t ∈ R} are compact in X.

Then f (·, h1(·), h2(·)) ∈ SpWPAA(R,X, ρ1, ρ2).

The proof is similar to the proof of Theorem 3.6 in [40] and hence the details are omitted
here.
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Lemma 2.6 [23]. Assume that f ∈ SpAA(R×X,X) with p > 1 and satisfies the follow-
ing:

(i) there exists a non-negative function L ∈ SrAA(R,R) with r ≥ max
{
p,

p
p−1

}
such

that

‖f (t, u) − f (t, v)‖ ≤ L(t)‖u − v‖, u, v ∈ X, t ∈ R,

(ii) x ∈ SpAA(R,X) and K = {x(t) : t ∈ R} is compact in X.

Then there exists q ∈ [1, p) such that f (·, x(·)) ∈ SqAA(R,X).

Theorem 2.3. Assume that ρ1, ρ2 ∈ U∞, p > 1, f = f1 + f2 ∈ SpWPAA(R × X ×
X,X, ρ1, ρ2) with f b

1 ∈ AA(R × X × X,Lp([0, 1], X)), f b
2 ∈ PAA0(R × X ×

X,Lp([0, 1], X), ρ1, ρ2) and

(i) there exist nonnegative functions Lf ,Lf1 ∈ SrAA(R,R) with r ≥ max
{
p,

p
p−1

}
such that

‖f (t, x1, x2) − f (t, y1, y2)‖ ≤ Lf (t) (‖x1 − y1‖X + ‖x2 − y2‖X) ,

t ∈ R, xi, yi ∈ X, i = 1, 2,

and

‖f1(t, x1, x2) − f1(t, y1, y2)‖ ≤ Lf1(t) (‖x1 − y1‖X + ‖x2 − y2‖X) ,

t ∈ R, xi, yi ∈ X, i = 1, 2.

(ii) h1 = α1 + β1, h2 = α2 + β2 ∈ SpWPAA(R,X, ρ1, ρ2) with αb
1 , αb

2 ∈
AA(R,Lp([0, 1], X)), βb

1 , βb
2 ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2) and K =

{α1(t) : t ∈ R},M = {α2(t) : t ∈ R} are compact in X.

Then there exists q ∈ [1, p) such that f (·, h1(·), h2(·)) ∈ SqWPAA(R,X, ρ1, ρ2).

The proof is similar to the proof of Theorem 3.7 in [40] and hence we omit the details.

Theorem 2.4 [44]. Let ρ1, ρ2 ∈ U∞ and f : R × X × X → X be a Sp-weighted pseudo
almost automorphic function. Suppose that f satisfies the following conditions:

(i) f (t, x, y) is uniformly continuous in any bounded subset M3 ⊂ X × X uniformly
for t ∈ R,

(ii) g(t, x, y) is uniformly continuous in any bounded subset M3 ⊂ X×X uniformly for
t ∈ R,

(iii) for every bounded subset M3 ⊂ X × X, f (·, x, y) : x, y ∈ M3 is bounded in
SpWPAA(R,X, ρ1, ρ2).

If h1 = α1 + β1, h2 = α2 + β2 ∈ SpWPAA(R, X, ρ1, ρ2), with αb
1 , αb

2 ∈AA(R, Lp([0, 1],
X)), βb

1 , βb
2 ∈PAA0(R, Lp([0, 1], X), ρ1, ρ2) and K = {α1(t) : t ∈ R}, M =

{α2(t) : t ∈ R} are compact in X, then f (·, h1(·), h2(·)) ∈ SpWPAA(R,X, ρ1, ρ2).

Now, we recall a useful compactness criterion.
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Let h : R → R be a continuous function such that h(t) ≥ 1 for all t ∈ R and h(t) → ∞
as |t | → ∞. We consider the space

Ch(X) =
{
u ∈ C(R,X) : lim|t |→∞

u(t)

h(t)
= 0

}
.

The space Ch(X) is a Banach space equipped with the norm ‖u‖h = supt∈R
‖u(t)‖
h(t)

.
(see [11]).

Lemma 2.7 [11]. A subset K ′ ⊂ Ch(X) is relatively compact if it satisfies the following
conditions:
(c-1) The set K ′(t) = {u(t) : u ∈ R} is relatively compact in X for all t ∈ R.
(c-2) The set R is equicontinuous.
(c-3) For each ε > 0, there exists L′ > 0 such that ‖u(t)‖ ≤ εh(t) for all u ∈ R and all

|t | > L′.

Lemma 2.8 ([28], Leray–Schauder alternative theorem). Let D be a closed convex subset
of a Banach space X such that 0 ∈ D. Let F : D → D be a completely continuous map.
Then the set {x ∈ D : x = λF(x), 0 < λ < 1} is unbounded or the map F has a fixed
point in D.

DEFINITION 2.12 [10]

A closed linear operator (A,D(A)) with dense domain D(A) in a Banach space X is said
to be sectorial of type ω and angle θ if there are constants ω ∈ R, θ ∈ (0, π

2 ), M > 0,
such that its resolvent exists outside the sector

ω + �θ := {λ + ω : λ ∈ C, | arg(−λ)| < θ}, (2.1)

‖(λ − A)−1‖ ≤ M

|λ − ω| , λ /∈ ω + �θ . (2.2)

DEFINITION 2.13

Let 1 < α < 2 and A be a closed and linear operator with domain D(A) defined on a
Banach space X. The operator A is called the generator of a solution operator if there exist
ω ∈ R and a strongly continuous functions Sα : R+ → L(X), such that {λα : Re λ >

ω} ⊂ ρ(A) and

λα−1(λαI − A)−1x =
∫ ∞

0
e−λtSα(t)xdt, Re λ > ω, x ∈ X.

In [10], Cuesta proved that if A is sectorial of type ω ∈ R with 0 ≤ θ < π(1 − α/2),
then A is a generator of a solution operator given by

Sα(t) = 1

2πi

∫
G

eλtλα−1(λα − A)−1dλ, t ≥ 0,

where G a suitable path lying outside the sector ω + �0. Furthermore, he showed that the
following lemma holds.
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Theorem 2.5 [Theorem 1 of [10]]. Let A : D(A) ⊂ X → X be a sectorial operator in a
complex Banach space X, satisfying hypothesis (2.1) and (2.2), for some M > 0, ω < 0
and 0 ≤ θ < π(1 − α/2). Then there exists C(θ, α) > 0 depending solely on θ and α,

such that

‖Sα(t)‖L(X) ≤ C(θ, α)M

1 + |ω|tα , t ≥ 0. (2.3)

3. Stepanov-type weighted pseudo almost automorphic solutions

In this section, we first investigate the existence and uniqueness of a weighted pseudo
almost automorphic mild solutions for the problem (1.1).

Cuevas and Lizama [12] have shown that the equation of type (1.1) can be thought of
as a limiting case of the following equation:

z′(t) =
∫ t

0

(t − s)α−2

�(α − 1)
Az(s)ds + f (t, x(t),Kx(t)), t ≥ 0,

z(s) = φ(s), s ∈ [−r, 0], (3.1)

in the sense that the solutions are asymptotic to each other as t → ∞. If the operator A

is sectorial of type ω with θ ∈ [0, π(1 − α
2 )), then the problem (3.1) is well posed (see

[10]). Thus using variation of parameter formula, one can obtain

z(t) = Sα(t)φ(0) +
∫ t

0
Sα(t − s)f (s, x(s),Kx(s))ds, t ≥ 0, (3.2)

where

Sα(t) = 1

2πi

∫
γ

eλtλα−1(λαI − A)−1dλ, t ≥ t0.

Here the path γ lies outside the sector ω + Sθ . Further, if Sα(t) is integrable then the
solution is given by

x(t) =
∫ t

−∞
Sα(t − s)f (s, x(s),Kx(s))ds. (3.3)

Subtracting equation (3.3) from equation (3.2), one obtain

z(t) − x(t) = Sα(t)x0 −
∫ ∞

t

Sα(s)f (t − s, x(t − s),Kx(t − s)).

Hence for f ∈ Lp′
(R+ × X,X), where p′ ∈ [1,∞), we have v(t)−u(t) → 0 as t → ∞.

A mild solution of (1.1) satisfies the following integral equation:

x(t) = Sα(t − a)φ(0) +
∫ t

a

Sα(t − s)f (s, x(s),Kx(s))ds. (3.4)

By taking a → −∞, we get the desired form of solution, which motivates the following
definition:
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DEFINITION 3.1

A continuous function x : R → X is called a mild solution of (1.1), if s →
Sα(t − s)f (s, x(s),Kx(s)) is integrable on (−∞, t) for each t ∈ R and

x(t) =
∫ t

−∞
Sα(t − s)f (s, x(s),Kx(s)) ds, t ∈ R.

In order to prove our results, we need the following assumptions:

(A1) A is a sectorial operator of type ω < 0.
(A2) f = f1 + f2 ∈ SpWPAA(R × X × X,X, ρ1, ρ2) with f b

1 ∈ AA(R × X ×
X,Lp([0, 1], X)), f b

2 ∈ PAA0(R × X × X,Lp([0, 1], X), ρ1, ρ2), there exist constants
Lf ,L′

f , Lf1 , Lf ′
1

> 0 such that

‖f (t, x1, x2) − f (t, y1, y2)‖ ≤ Lf ‖x1 − y1‖ + L′
f ‖x2 − y2‖,

t ∈ R, xi, yi ∈ X, i = 1, 2

and

‖f1(t, x1, x2) − f1(t, y1, y2)‖ ≤ Lf1‖x1 − y1‖ + Lf ′
1
‖x2 − y2‖,

t ∈ R, xi, yi ∈ X, i = 1, 2.

(A3) h = h1 + h2 ∈ SpWPAA(R × X,X, ρ1, ρ2) with hb
1 ∈ AA(R × X,Lp([0, 1],

X)), hb
2 ∈ PAA0(R × X,Lp([0, 1], X), ρ1, ρ2), there exist constants Lh,Lh1 > 0 such

that

‖h(t, x) − h(t, y)‖ ≤ Lh‖x − y‖, t ∈ R, x, y ∈ X

and

‖h1(t, x) − h1(t, y)‖ ≤ Lh1‖x − y‖, t ∈ R, x, y ∈ X.

(A4) ρ1, ρ2 ∈ UT and supT >0
μ(T ,ρ2)
μ(T ,ρ1)

< ∞.

Lemma 3.1. If x ∈ WPAA(R,X, ρ1, ρ2), and (A1), (A3)–(A4) hold, then Kx ∈
WPAA(R,X, ρ1, ρ2).

Proof. Since (A3) holds, hence by Theorem 2.2 it is clear that γ (·) = h(·, x(·)) ∈
SpWPAA(R × X,X, ρ1, ρ2).

Let γ (t) = γ1(t) + γ2(t), where γ b
1 ∈ AA(R,Lp([0, 1], X)) and γ b

2 ∈
PAA0(R,Lp([0, 1], X), ρ1, ρ2). Consider the following integrals

xn(t) =
∫ t−n+1

t−n

k(t − s)γ (s)ds

=
∫ t−n+1

t−n

k(t − s)γ1(s)ds +
∫ t−n+1

t−n

k(t − s)γ2(s)ds

= un(t) + vn(t), n ∈ N,

where un(t) = ∫ t−n+1
t−n

k(t − s)γ1(s)ds and vn(t) = ∫ t−n+1
t−n

k(t − s)γ2(s)ds.
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In order to prove that each xn is weighted pseudo almost automorphic function, we only
need to verify un ∈ AA(R,X) and vn ∈ PAA0(R,X, ρ1, ρ2) for each n = 1, 2, ....

Now, let us show that un ∈ AA(R,X). For each n ∈ N , let

un(t) =
∫ t−n+1

t−n

k(t − s)γ1(s)ds =
∫ n

n−1
k(s)γ1(t − s)ds.

Fix n ∈ N and t ∈ R, we obtain

‖un(t + h) − un(t)‖ ≤
∫ n

n−1
k(s)‖γ1(t + h − s) − γ1(t − s)‖ds

≤ ck

∫ n

n−1
e−bs‖γ1(t + h − s) − γ1(t − s)‖ds

≤ ck

(∫ n

n−1
e−qbsds

) 1
q

(∫ n

n−1
‖γ1(t + h − s) − γ1(t − s)‖pds

) 1
p

≤ cke
−bn q

√
eqb − 1

qb

(∫ n

n−1
‖γ1(t + h − s) − γ1(t − s)‖pds

) 1
p

.

Since γ1 ∈ L
p
loc(R,X), we get

lim
h→0

∫ n

n−1
‖γ1(t + h − s) − γ1(t − s)‖pds = 0,

which yields

lim
h→0

‖un(t + h) − un(t)‖ = 0.

The above equality assure the continuity of un(t). By Holder inequality, it follows that

‖un(t)‖ ≤
∫ t−n+1

t−n

k(t − s)‖γ1(s)‖ds

≤ ck

∫ t−n+1

t−n

e−b(t−s)‖γ1(s)‖ds

≤ ck

(∫ t−n+1

t−n

e−qb(t−s)ds

) 1
q

(∫ t−n+1

t−n

‖γ1(s)‖pds

) 1
p

≤ ck

(∫ n

n−1
e−qbsds

) 1
p ‖γ1‖Sp

≤ cke
−bn q

√
eqb − 1

qb
‖γ1‖Sp ,

where ‖γ1‖Sp = supt∈R(
∫ t+1
t

‖γ1(s)‖pds)
1
p < ∞, thus we have ck

q

√
eqb−1

qb

∑∞
n=1 e−bn <

∞. Hence we deduce from the well known Weierstrass theorem that the series
∑∞

n=1 un(t)

is uniformly convergent on R.
Clearly, u(t) ∈ C(R,X) and ‖u(t)‖ ≤ ∑∞

n=1 ‖un(t)‖ ≤ Ln(ck, b, q)‖γ1‖Sp , where
Ln(ck, b, q) > 0 is a constant, which depends only on the parameters ck, b and q.
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Let u(t) = ∑∞
n=1 un(t) for each t ∈ R, then

u(t) =
∫ t

−∞
k(t − s)γ1(s)ds, t ∈ R.

Since γ b
1 ∈ AA(R,Lp([0, 1], X)), then for every sequence of real numbers {sn}n∈N

there exist a subsequence {sm}m∈N and a function γ̃1(·) ∈ L
p
loc(R,X) such that for each

t ∈ R,

lim
m→∞

(∫ t+1

t

‖γ1(s + sm) − γ̃1(s)‖pds

) 1
p

= 0,

and

lim
m→∞

(∫ t+1

t

‖γ̃1(s − sm) − γ1(s)‖pds

) 1
p

= 0.

Let ũn(t) = ∫ n

n−1 k(σ )γ̃1(t − σ)dσ , then using the Holder inequality, we obtain

‖un(t + sm) − ũn(t)‖ =
∥∥∥∥
∫ n

n−1
k(σ )

[
γ1(t + sm − σ) − γ̃1(t − σ)

]
dσ

∥∥∥∥
≤ ck

∫ n

n−1
e−bσ ‖γ1(t + sm − σ) − γ̃1(t − σ)‖dσ

≤ ck

(∫ n

n−1
e−qbσ dσ

) 1
q
(∫ n

n−1
‖γ1(t+sm−σ)−γ̃1(t−σ)‖pdσ

) 1
p

≤ cke
−bn q

√
eqb − 1

qb

(∫ n

n−1
‖γ1(t + sm − σ) − γ̃1(t − σ)‖pdσ

) 1
p

→ 0 as m → ∞.

By a similar argument, we can prove that

lim
m→∞ ‖ũn(t − sm) − un(t)‖ = 0.

Thus, we conclude that un ∈ AA(R,X) for n ∈ N , and thus by Lemma 2.1, we have
u(t) = ∑∞

n=1 un(t) ∈ AA(R,X).
Next, we intend to verify that vn ∈ PAA0(R,X, ρ1, ρ2). For this, we have the

following estimates

‖vn(t)‖ ≤
∫ t−n+1

t−n

k(t − s)‖γ2(s)‖ds

≤ ck

∫ t−n+1

t−n

e−b(t−s)‖γ2(s)‖ds

≤ ck

(∫ t−n+1

t−n

e−qb(t−s)ds

) 1
q

(∫ t−n+1

t−n

‖γ2(s)‖pds

) 1
p

≤ cke
−bn q

√
eqb − 1

qb

(∫ t−n+1

t−n

‖γ2(s)‖pds

) 1
p

.
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Then for T > 0, we get

1
μ(T ,ρ1)

∫ T

−T
ρ2(t)‖vn(t)‖dt ≤ cke−bn q

√
eqb−1

qb
1

μ(T ,ρ1)

∫ T

−T
ρ2(t)(∫ t−n+1

t−n
‖γ2(s)‖pds

) 1
p

dt.

Since γ b
2 ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2), the above inequality gives vn ∈ PAA0(R,

X, ρ1, ρ2) for each n = 1, 2, . . .. Further, the last estimate leads to

‖vn(t)‖ ≤ cke−bn q

√
eqb − 1

qb
‖γ2‖Sp .

Since ck
q

√
eqb−1

qb

∑∞
n=1 e−bn < ∞, we deduce from the Weierstrass test that the series∑∞

n=1 vn(t) is uniformly convergent on R. Moreover,

v(t) =
∫ t

−∞
k(t − s)γ2(s)ds =

∞∑
n=1

vn(t),

and clearly v(t) ∈ C(R,X) and

‖v(t)‖ =
∞∑

n=1

‖vn(t)‖ ≤ K(ck, b, q)‖γ2‖Sp ,

where K(ck, b, q) > 0 is a constant that depends only on the constants ck, b and q. Using
the fact that vn ∈ PAA0(R,X, ρ1, ρ2) and the inequality

1

μ(T , ρ1)

∫ T

−T

ρ2(t)‖v(t)‖dt ≤ 1

μ(T , ρ1)

∫ T

−T

ρ2(t)

∥∥∥∥∥v(t) −
n∑

k=1

vk(t)

∥∥∥∥∥ dt

+
n∑

k=1

1

μ(T , ρ1)

∫ T

−T

ρ2(t)‖vk(t)‖dt,

we deduce that v(·)= ∑∞
n=1 vn(t) ∈PAA0(R,X, ρ1, ρ2). Hence Kx∈WPAA(R, X, ρ1, ρ2).

Lemma 3.2 [24]. Let {E(t)}t≥0 ⊂ B(X) be a strongly continuous family of bounded linear
operators such that

‖E(t)‖ ≤ ϕ(t), t ∈ R+,

where ϕ(t) ∈ L1(R+) is nonincreasing. If ψ = ψ1 + ψ2 ∈ SpWPAA(R,X, ρ1, ρ2),
with ψb

1 ∈ AA(R,Lp([0, 1], X)) and ψb
2 ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2) and (A4)

holds, then

(�ψ)(t) =
∫ t

−∞
E(t − s)ψ(s)ds, t ∈ R

lies in the space WPAA(R,X, ρ1, ρ2).

Proof. For each n ∈ N, let ψn(t) = ∫ t−n+1
t−n

E(t− s)ψ(s)ds = ∫ n

n−1 E(s)ψ(t− s)ds, t∈R.
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In addition, for each n ∈ N, by the principle of uniform boundedness,
Mn = supn−1≤s≤n ‖E(s)‖ < ∞.

We first show that �ψ ∈ BC(R,X). In fact, if ψ ∈ SpWPAA(R,X, ρ1, ρ2), then
‖ψ‖Sp < ∞, which gives

‖(�ψ)(t)‖ ≤
∫ t

−∞
ϕ(t − s)‖ψ(s)‖ds

≤
∫ ∞

0
ϕ(s)‖ψ(t − s)‖ds

=
∞∑

k=0

∫ k+1

k

ϕ(s)‖ψ(t − s)‖ds

≤
∞∑

k=0

ϕ(k)

∫ k+1

k

‖ψ(t − s)‖ds

≤
∞∑

k=0

ϕ(k)

(∫ k+1

k

‖ψ(t − s)‖pds

) 1
p

≤
∞∑

k=0

ϕ(k)‖ψ‖Sp

=
[
ϕ(0) + ϕ(1) +

∞∑
k=2

∫ k−1

k−2
ϕ(s)ds

]
‖ψ‖Sp

≤ [
ϕ(0) + ϕ(1) + ‖ϕ‖L1(R+)

] ‖ψ‖Sp

< ∞.

Let ψ(t) = ψ1(t) + ψ2(t), where ψb
1 ∈AA(R, Lp([0, 1], X)) and ψb

2 ∈PAA0(R, Lp([0, 1],
X), ρ1, ρ2). Consider the following integrals

xn(t) =
∫ t−n+1

t−n

E(t − s)ψ(s)ds

=
∫ t−n+1

t−n

E(t − s)ψ1(s)ds +
∫ t−n+1

t−n

E(t − s)ψ2(s)ds

= un(t) + vn(t), n ∈ N, t ∈ R,

where un(t) = ∫ t−n+1
t−n

E(t − s)ψ1(s)ds and vn(t) = ∫ t−n+1
t−n

E(t − s)ψ2(s)ds.
We show that un ∈ AA(R,X). Fix n ∈ N and t ∈ R, we have

‖un(t + h) − un(t)‖ ≤
∫ n

n−1
ϕ(s)‖ψ1(t + h − s) − ψ1(t − s)‖ds

≤ Mn

∫ t−n+1

t−n

‖ψ1(s + h) − ψ1(s)‖ds

≤ Mn

(∫ t−n+1

t−n

‖ψ1(s + h) − ψ1(s)‖pds

) 1
p

.
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In view of ψ1 ∈ L
p
loc(R,X), we get

lim
h→0

∫ t−n+1

t−n

‖ψ1(s + h) − ψ1(s)‖pds = 0,

which yields

lim
h→0

‖un(t + h) − un(t)‖ = 0.

The above relation implies that un(t) is continuous.
Since ψb

1 ∈ AA(R,Lp([0, 1], X)), then for every sequence of real numbers {sn}n∈N ,
there exist a subsequence {sm}m∈N and a function ψ̃1 ∈ L

p
loc(R,X) such that for each

t ∈ R,

lim
m→∞

(∫ t+1

t

‖ψ1(s + sm) − ψ̃1(s)‖pds

) 1
p

= 0,

and

lim
m→∞

(∫ t+1

t

‖ψ̃1(s − sm) − ψ1(s)‖pds

) 1
p

= 0.

Let ũn(t) = ∫ n

n−1 ϕ(σ)ψ̃1(t − σ)dσ . By using the Holder inequality, we obtain

‖un(t + sm) − ũn(t)‖ =
∥∥∥∥
∫ n

n−1
ϕ(σ)

[
ψ1(t + sm − σ) − ψ̃1(t − σ)

]
dσ

∥∥∥∥
≤ Mn

∫ n

n−1
‖ψ1(t + sm − σ) − ψ̃1(t − σ)‖dσ

≤ Mn

(∫ t−n+1

t−n

‖ψ1(s + sm) − ψ̃1(s)‖pds

) 1
p

→ 0 as m → ∞.

Similarly, we can prove that

lim
m→∞ ‖ũn(t − sm) − un(t)‖ = 0.

Thus, we conclude that un ∈ AA(R,X) for n ∈ N .
By Hölder inequality, it follows that

‖un(t)‖ ≤
∫ n

n−1
ϕ(s)‖ψ1(t − s)‖ds

≤ ϕ(n − 1)

∫ n

n−1
‖ψ1(t − s)‖ds

≤ ϕ(n − 1)

∫ t−n+1

t−n

‖ψ1(s)‖ds

≤ ϕ(n − 1)

(∫ t−n+1

t−n

‖ψ1(s)‖pds

) 1
p

≤ ϕ(n − 1)‖ψ1‖Sp ,
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where ‖ψ1‖Sp = supt∈R

(∫ t+1
t

‖ψ1(s)‖pds
) 1

p
< ∞. Hence

∞∑
k=1

ϕ(n − 1)‖ψ1‖Sp ≤
(

ϕ(0) +
∞∑

k=2

∫ n−1

n−2
ϕ(t)dt

)
‖ψ1‖Sp

≤ (
ϕ(0) + ‖ϕ‖L1(R+)

) ‖ψ1‖Sp

< ∞,

which implies that
∑∞

n=1 un(t) is uniformly convergent on R.
Let u(t) = ∑∞

n=1 un(t) for each t ∈ R, then

u(t) =
∫ t

−∞
E(t − s)ψ1(s)ds, t ∈ R.

By Lemma 2.1, we have u(t) = ∑∞
n=1 un(t) ∈ AA(R,X).

Next, we show that vn ∈ PAA0(R,X, ρ1, ρ2). Indeed

‖vn(t)‖ ≤
∫ n

n−1
ϕ(s)‖ψ2(t − s)‖ds

≤ ϕ(n − 1)

(∫ t−n+1

t−n

‖ψ2(s)‖pds

) 1
p

,

then

1

μ(T , ρ1)

∫ T

−T

ρ2(t)‖vn(t)‖dt

≤ ϕ(n − 1)

μ(T , ρ1)

∫ T

−T

ρ2(t)

(∫ t−n+1

t−n

‖ψ2(s)‖pds

) 1
p

dt.

Since ψb
2 ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2), the above inequality leads to vn ∈

PAA0(R,X, ρ1, ρ2) for each n = 1, 2, . . .. Further, the last estimate leads to

‖vn(t)‖ ≤ ϕ(n − 1)‖ψ2‖Sp .

Since
∞∑

n=1

ϕ(n − 1)‖ψ2‖Sp ≤
(

ϕ(0) +
∞∑

n=2

∫ n−1

n−2
ϕ(t)dt

)
‖ψ2‖Sp

≤ (
ϕ(0) + ‖ϕ‖L1(R+)

) ‖ψ2‖Sp

< ∞,

hence we deduce from the Weierstrass test that the series
∑∞

n=1 vn(t) is uniformly
convergent on R. Moreover,

v(t) =
∫ t

−∞
E(t − s)ψ2(s)ds =

∞∑
n=1

vn(t),
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which clearly implies v(t) ∈ C(R,X). Using the fact that vn ∈ PAA0(R,X, ρ1, ρ2) and
the inequality

1

μ(T , ρ1)

∫ T

−T

ρ2(t)‖v(t)‖dt ≤ 1

μ(T , ρ1)

∫ T

−T

ρ2(t)

∥∥∥∥∥v(t) −
n∑

k=1

vk(t)

∥∥∥∥∥ dt

+
n∑

k=1

1

μ(T , ρ1)

∫ T

−T

ρ2(t)‖vk(t)‖dt,

we deduce v(·) = ∑∞
n=1 vn(t) ∈PAA0(R, X, ρ1, ρ2). Thus � ψ ∈ WPAA(R, X, ρ1, ρ2).

Theorem 3.1. Assume that (A1)–(A4) hold. Then problem (1.1) has a unique weighted
pseudo almost automorphic mild solution on R, provided

Q =
[
Lf + L′

f Lh

ck

b

] C(θ, α)M|ω| −1
α π

α sin(π/α)
< 1.

Proof. Consider the operator ϒ : WPAA(R, X, ρ1, ρ2) →WPAA(R, X, ρ1, ρ2) such that

(ϒx)(t) =
∫ t

−∞
Sα(t − s)f (s, x(s),Kx(s))ds, t ∈ R. (3.5)

Let x= x1 + x2 ∈WPAA(R, X, ρ1, ρ2), where x1 ∈AA(R, X), x2 ∈PAA0(R, X, ρ1, ρ2). By
Lemma 3.1, Kx∈ WPAA(R, X, ρ1, ρ2) ⊂ SpWPAA(R, X, ρ1, ρ2), thus h(·) = f (·, x(·),
Kx(·)) ∈ SpWPAA(R, X, ρ1, ρ2) from Theorem 2.2. By Lemma 3.2, it is not difficult to see
that ϒ is well defined.

For any x, y ∈ WPAA(R,X, ρ1, ρ2), by inequality (2.3), we have

‖(ϒx)(t) − (ϒy)(t)‖ =
∥∥∥∥
∫ t

−∞
Sα(t − s)[f (s, x(s),Kx(s))

−f (s, y(s),Ky(s))]ds

∥∥∥∥
≤

∫ t

−∞
C(θ, α)M

1 + |ω|(t − s)α
[Lf ‖x(s) − y(s)‖

+L
′
f ‖Kx(s) − Ky(s)‖]ds.

Consider

‖Kx(s) − Ky(s)‖ ≤
∫ t

−∞
|k(t − s)|‖h(s, x(s)) − h(s, y(s))‖ds

≤
∫ t

−∞
|k(t − s)|Lh‖x(s) − y(s)‖ds

≤ sup
t∈R

‖x(t) − y(t)‖Lh

(∫ t

−∞
|k(t − s)|ds

)

≤ sup
t∈R

‖x(t) − y(t)‖Lh

∫ ∞

0
|k(s)|ds

≤ sup
t∈R

‖x(t) − y(t)‖Lh

∫ ∞

0
cke−bsds

≤ ck

b
Lh sup

t∈R

‖x(t) − y(t)‖. (3.6)
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Using (3.2), the last estimate gives

‖(ϒx)(t)−(ϒy)(t)‖ ≤
[
Lf + L′

f Lh

ck

b

]
sup
t∈R

‖x(t)−y(t)‖
∫ ∞

0

C(θ, α)M

1 + |ω|sα
ds

≤
[
Lf + L′

f Lh

ck

b

] C(θ, α)M|w|−1/απ

α sin(π/α)
‖x − y‖WPAA

≤ Q‖x − y‖WPAA.

Hence ϒ is a contraction since Q < 1. By the Banach contraction principle, ϒ has a
unique fixed point in WPAA(R,X, ρ1, ρ2), which is the unique weighted pseudo almost
automorphic solution to the problem (1.1).

Theorem 3.2. Assume that there exist non-negative functions Lf ,Lf1 ∈ SrAA(R,R)

with r ≥ max
{
p,

p
p−1

}
, such that

‖f (t, x1, x2) − f (t, y1, y2)‖ ≤ Lf (t)[‖x1 − y1‖ + ‖x2 − y2‖],

t ∈ R, xi, yi ∈ X, i = 1, 2,

and

‖f1(t, x1, x2) − f1(t, y1, y2)‖ ≤ Lf1(t)[‖x1 − y1‖ + ‖x2 − y2‖],

t ∈ R, xi, yi ∈ X, i = 1, 2.

Let (A1), (A3)–(A4) hold, then problem (1.1) has a unique weighted pseudo almost
automorphic solution, provided

‖Lf ‖Sr <
bα sin(π/α)

C(θ, α)M(b + ckLh)[α sin(π/α) + |ω| −1
α π ]

.

Proof. Let x= x1 + x2 ∈WPAA(R, X, ρ1, ρ2), where x1 ∈AA(R, X), x2 ∈PAA0(R, X, ρ1,
ρ2). By Lemma 2.1, K = {x1(t) : t ∈ R} and M = {x2(t) : t ∈ R} are compact in X. By
Lemma 3.1 and Lemma 2.5, Kx ∈ WPAA(R,X, ρ1, ρ2) ⊂ SpWPAA(R,X, ρ1, ρ2)

and SqWPAA(R,X, ρ1, ρ2) ⊂ SpWPAA(R,X, ρ1, ρ2), so by Theorem 2.3, there
exists q∈ [1, p) such that f (·, x(·),Kx(·)) ∈ SqWPAA(R,X, ρ1, ρ2).

Define ϒ : WPAA(R,X, ρ1, ρ2) → WPAA(R,X, ρ1, ρ2) as in equation (3.1). By
Lemma 3.2, ϒ maps WPAA(R,X, ρ1, ρ2) into WPAA(R,X, ρ1, ρ2).

For any x, y ∈ WPAA(R,X, ρ1, ρ2), by inequality (2.3), we have

‖(ϒx)(t) − (ϒy)(t)‖ =
∥∥∥∥
∫ t

−∞
Sα(t − s)[f (s, x(s),Kx(s))

−f (s, y(s),Ky(s))]ds

∥∥∥∥
≤

∫ t

−∞
C(θ, α)M

1 + |ω|(t − s)α
Lf (s)[‖x(s) − y(s)‖

+‖Kx(s) − Ky(s)‖]ds.
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Using (3.2), the last estimate leads to

‖(ϒx)(t) − (ϒy)(t)‖ ≤
∫ t

−∞
C(θ, α)M

1 + |ω|(t − s)α
Lf (s)

[
1 + ck

b
Lh

]
‖x(s) − y(s)‖ds

≤
[
1 + ck

b
Lh

] ∫ ∞

0

C(θ, α)M

1 + |ω|sα
Lf (t − s)ds‖x − y‖WPAA

≤
[
1 + ck

b
Lh

] ∞∑
k=0

∫ k+1

k

C(θ, α)M

1 + |ω|sα
Lf (t − s)ds‖x − y‖WPAA

≤
[
1 + ck

b
Lh

] ∞∑
k=0

C(θ, α)M

1 + |ω|kα

∫ k+1

k

Lf (t − s)ds‖x − y‖WPAA

≤
[
1 + ck

b
Lh

] ∞∑
k=0

C(θ, α)M

1 + |ω|kα
‖Lf ‖Sr ‖x − y‖WPAA

≤
[
1 + ck

b
Lh

](
C(θ, α)M

+
∞∑

k=1

∫ k

k−1

C(θ, α)M

1 + |ω|sα
ds

)
‖Lf ‖Sr ‖x − y‖WPAA

≤
[
1 + ck

b
Lh

] (
C(θ, α)M

+
∫ ∞

0

C(θ, α)M

1 + |ω|sα
ds

)
‖Lf ‖Sr ‖x − y‖WPAA

= C(θ, α)M
[
1 + ck

b
Lh

] [
1 + |ω| −1

α π

α sin(π/α)

]

‖Lf ‖Sr ‖x − y‖WPAA,

which gives

‖(ϒx)−(ϒy)‖≤C(θ, α)M
[
1+ ck

b
Lh

][
1+ |ω| −1

α π

α sin(π/α)

]
‖Lf ‖Sr ‖x−y‖WPAA.

By the Banach contraction principle, ϒ has a unique fixed point in WPAA(R,X, ρ1, ρ2),
which is the unique weighted pseudo almost automorphic solution to the problem (1.1).

We next study the existence of weighted pseudo almost automorphic mild solutions of
equation (1.1) when the perturbation f is not necessarily Lipschitz continuous. For that,
we require the following assumptions:

(A5) The function f = g+ φ ∈ SpWPAA(R, X, ρ1, ρ2), where gb ∈AA(R, Lp([0, 1], X))
is uniformly continuous in any bounded subset M2 ⊂ X × X uniformly in t ∈ R and
φb ∈ PAA0(R,Lp([0, 1], X), ρ1, ρ2).
(A6) f ∈ SpWPAA(R,X, ρ1, ρ2) and f (t, x, y) is uniformly continuous in any
bounded subset M2 ⊂ X × X uniformly for t ∈ R, and for every bounded subset
M2 ⊂ X × X, {f (·, x, y) : x, y ∈ M2} is bounded in SpWPAA(R,X, ρ1, ρ2).
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(A7) There exists a continuous nondecreasing function W : [0,∞) → (0,∞) such that

‖f (t, x, y)‖ ≤ W(‖x‖ + ‖y‖) for all t ∈ R and x ∈ X.

The following existence result is based upon the nonlinear Leray–Schauder alternative
theorem.

Theorem 3.3. Assume that A is sectorial of type ω < 0. Let f : R ×X ×X → X be
a function which satisfies the assumptions (A5)–(A7) and the following additional
conditions:
(i) For each C ≥ 0,

lim|t |→∞

∫ t

−∞
W ((1 + k)Ch(s))

1 + |ω|(t − s)α
ds = 0,

where h is the function given in Lemma 2.7. We set

β(C) := C(θ, α)M

∥∥∥∥
∫ t

−∞
W ((1 + k)Ch(s))

1 + |ω|(t − s)α
ds

∥∥∥∥ ,

where C(θ, α) and M are constants given in (2.3).
(ii) For each ε > 0, there is δ > 0 such that for every u, v ∈ Ch(X), ‖u − v‖h ≤ δ

implies that

C(θ,α)M

∫ t

−∞
‖f(s,u(s),Ku(s)) − f (s, v(s),Kv(s))‖

1 + |ω|(t − s)α
ds ≤ ε, for all t ∈ R.

(iii) lim infξ→∞ ξ
β(ξ)

> 1.

(iv) For all a, b ∈ R, a < b and � > 0, the set {f (s, h(s)x,K(h(s)x) : a ≤ s ≤ b, x ∈
Ch(X), ‖x‖h ≤ �} is relatively compact in X.

Then equation (1.1) has a weighted pseudo almost automorphic mild solution.

Proof. We define the operator � : Ch(X) → Ch(X) by

(�x)(t) =
∫ t

−∞
Sα(t − s)f (s, x(s),Kx(s))ds, t ∈ R.

We will show that � has a fixed point in WPAA(R,X). For the sake of convenience, we
divide the proof into several steps.

Step 1: For x ∈ Ch(X), we have

‖(�x)(t)‖ ≤ C(θ, α)M

∫ t

−∞
W(‖x(s)‖ + K‖x(s)‖)

1 + |ω|(t − s)α
ds

≤ C(θ, α)M

∫ t

−∞
W((1 + ‖K‖)‖x‖hh(s))

1 + |ω|(t − s)α
ds

It follows from condition (i) that � is well defined.

Step 2: The operator � is continuous.
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In fact, for any ε > 0, we can choose δ > 0 given in condition (ii). If x, y ∈ Ch(X) and
‖x − y‖h ≤ δ, then

‖(�x)(t) − (�y)(t)‖
≤C(θ, α)M

∫ t

−∞
‖f(s, x(s),Kx(s))−f(s, y(s),Ky(s))‖

1 + |ω|(t − s)α
ds ≤ ε,

which proves the assertion.

Step 3: In this step, we show that � is completely continuous.
Denote B�(X) a closed ball with center at 0 and radius � in the space X. Let

V ′(t) = �(B�(Ch(X))) and v′ = �(x) for x ∈ B�(Ch(X)). First, we prove that V ′(t)
is a relatively compact subset of X for each t ∈ R. It follows form condition (i) that the
function s → C(θ,α)MW((1+K)�h(t−s))

1+|ω|sα is integrable on [0,∞). Hence, for ε > 0, we can

choose a ≥ 0 such that C(θ, α)M
∫ ∞
a

W((1+K)�h(t−s))
1+|ω|sα ds ≤ ε. Since,

v′(t) =
∫ a

0
Sα(s)f (t − s, x(t − s),Kx(t − s))ds

+
∫ ∞

a

Sα(s)f (t − s, x(t − s),Kx(t − s))ds,

and ∥∥∥∥
∫ ∞

a

Sα(s)f (t − s, x(t − s),Kx(t − s))ds

∥∥∥∥

≤ C(θ, α)M

∫ ∞

a

W((1 + K)�h(t − s))

1 + |ω|sα
ds

≤ ε,

we obtain v′(t) ∈ ac0(N) + Bε(X), where c0(N) denotes the convex hull of N and
N = {Sα(s)f (ξ, h(ξ)x,K(h(ξ)x) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t, ‖x‖h ≤ �}. Using
the strong continuity of Sα(·) and property (iv) of f , we can infer that N is a relatively
compact set and V ′(t) ⊂ ac0(N) + Bε(X), which establishes our assertion.

Next, we show that the set V ′ is equicontinuous. In fact, we can decompose

v′(t + s) − v′(t) =
∫ s

0
Sα(σ )f (t + s − σ, x(t + s − σ),

Kx(t + s − σ))dσ

+
∫ a

0
[Sα(σ + s) − Sα(σ )]f (t − σ, x(t − σ),

Kx(t − σ))dσ

+
∫ ∞

a

[Sα(σ + s)−Sα(σ )]f (t −σ, x(t −σ),

Kx(t − σ))dσ.
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For each ε > 0, we can choose a > 0 and δ1 > 0, such that∥∥∥∥
∫ s

0
Sα(σ )f (t + s − σ, x(t + s − σ),Kx(t + s − σ))dσ

+
∫ ∞

a

[Sα(σ + s) − Sα(σ )]f (t − σ, x(t − σ),Kx(t − σ))dσ

∥∥∥∥
≤ C(θ, α)M

[∫ s

0

W((1 + K)�h(t + s − σ))

1 + |ω|σα
dσ

+
∫ ∞

a

W((1 + K)�h(t − σ))

1 + |ω|σα
dσ

]

≤ ε

2

for s ≤ δ1. Moreover, since {f (t−σ, x(t−σ),Kx(t−σ)) : 0 ≤ σ ≤ a, x ∈ B�(Ch(X))}
is a relatively compact set and Sα(·) is strongly continuous, we can choose δ2 > 0 such
that ‖[Sα(σ + s) − Sα(σ )]f (t − σ, x(t − σ),Kx(t − σ))‖ ≤ ε

2a
for s ≤ δ2. Combining

these estimates, we get ‖v′(t + s) − v′(t)‖ ≤ ε for ε small enough and independent of
x ∈ B�(Ch(X)).

Finally, applying condition (i), we obtain

‖v′(t)‖
h(t)

≤ C(θ, α)M

h(t)

∫ t

−∞
W((1 + K)�h(s)

1 + |ω|(t − s)α
ds

→ 0, |t | → ∞,

and this convergence is independent of x ∈ B�(Ch(X)). Hence by Lemma 2.7, V ′ is a
relatively compact set in Ch(X).

Step 4: Let us assume that xλ(·) is a solution of equation xλ = λ�(xλ) for some 0 < λ <

1. We obtain the following estimate

‖xλ(t)‖ = λ

∥∥∥∥
∫ t

−∞
Sα(t − s)f (s, xλ(s),Kxλ(s))ds

∥∥∥∥
≤ C(θ, α)M

∫ t

−∞
W((1 + K)‖xλ‖hh(s))

1 + |ω|(t − s)α
ds

≤ β(‖xλ‖h).

Hence, we get

‖xλ‖h

β(‖xλ‖h)
≤ 1.

Combining the above relation with condition (iii), we conclude that the set {xλ : xλ =
λ�(xλ), λ ∈ (0, 1)} is bounded.

Step 5: It follows from Lemma 2.5, (A5)–(A6) and Theorem 2.4 that the function
t → f (t, x(t),Kx(t)) belongs to SpWPAA(R,X), whenever x ∈ WPAA(R,X).
Hence using Lemma 3.2, we get �(WPAA(R,X)) ⊂ WPAA(R,X) and notice that
WPAA(R,X) is a closed subspace of Ch(X). Consequently we can consider the map,
� : WPAA(R,X) → WPAA(R,X). Using Steps 1–3, we deduce that this map is
completely continuous. Applying Lemma 2.8, we infer that � has a fixed point x ∈
WPAA(R,X), which completes the proof. �
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4. Example

Fractional partial differential equations have already appeared in several texts on physics
and mathematics. Diffusion wave equations of fractional order has been used in many
branches of science. These kind of equations represent propagation of mechanical waves
in visco-elastic media, charge transport in amorphous semiconductors and many more
phenomena. Mathematical aspects of the boundary value problems for these kind of equa-
tions and their applications in physics have been considered by many authors (e.g. [31, 36]
and reference therein). For example, Mainardi [31] discussed the fractional wave equa-
tion governing the propagation of mechanical diffusive waves in viscoelastic media which
exhibit a power law creep and Giona et al. [27] have studied the relaxation phenomena in
complex viscoelastic material using fractional diffusion equations.

Motivated by the above literature, we consider the following relaxation/oscillation
partial differential equation of fractional order as an example of our abstract system,

∂αw(t, x)

∂tα
− ∂2w(t, x)

∂x2
= ∂α−1

∂tα−1
(f (t, x,w(t, x),Kw(t, x))),

t ∈ R, x ∈ (0, 1)

Kw(t, x) =
∫ t

−∞
k(t − s)h(s, x,w(s, x))ds, (4.1)

w(t, 0) = w(t, 1) = 0, (4.2)

where α ∈ (1, 2) and k satisfy |k(t)| ≤ cke−bt for t ≥ 0 and ck, b are positive constants,
is a real valued function. The function f is defined from R × (0, 1) × R × R into R and
h is defined from R × (0, 1) × R into R. We define an operator A as follows:

Au = −u′′,

for u ∈ D(A) = {u ∈ H 1
0 (0, 1) ∩ H 2(0, 1) : u′′ ∈ H }. The operator A is the infinites-

imal generator of an analytic semigroup {T (t) : t ≥ 0}, and also self-adjoint [35]. By
introducing u(t)x = w(t, x), the above example can be written as

Dα
t u(t) = Au(t) + Dα−1

t f (t, u(t),Ku(t)), u ∈ X,

and Ku(t) = ∫ t

−∞ k(t −s)h(s, u(s))ds. If we assume that f satisfy all the assumptions of
our result with Lipschitz constant Lf , then the existence of a Stepanov weighted pseudo
almost automorphic solution of equation (4.2) is ensured.
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