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Abstract. We consider sufficient conditions to ensure the smoothness of solutions to
3D magneto-micropolar fluid equations. It involves only the direction of the velocity
and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD
equations.
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1. Introduction and the main result

In this paper, we consider the 3D magneto-micropolar fluid equations studied by Galdi
and Rionero [5]:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + u · ∇u − (μ + χ)�u − b · ∇b + ∇(p + b2) − χ∇ × ω = 0,

∂tω − γ�ω − κ∇div ω + 2χω + u · ∇ω − χ∇ × u = 0,

∂tb − ν�b + u · ∇b − b · ∇u = 0,

∇ · u = ∇ · b = 0,

u(x, 0) = u0(x), ω(0, x) = ω0(x), b(0, x) = b0(x). (1.1)

Here u = u(x, t), b = b(x, t), ω = ω(x, t) represent the velocity field, the magnetic
field and the micro-rotational velocity respectively; p denotes the hydrodynamic pressure;
μ > 0 is the kinematic viscosity, χ > 0 is the vortex viscosity, κ > 0 and γ > 0 are
the spin viscosities, 1/ν (with ν > 0) is the magnetic Reynold; while u0, b0, ω0 are the
corresponding initial data with ∇ · u0 = ∇ · b0 = 0.

The global weak solution to system (1.1) is established by Rojas-Medar and Boldrini
[10], while the local strong solutions are given by Rojas-Medar [9]. However, whether or
not the local strong solutions can exist globally is still an open problem. Thus regularity
criteria appears. Notice that:

(1) Yuan [14] first established the following fundamental regularity criterion in terms of
the velocity or its gradient

u ∈ Lp(0, T ;Lq(R3)),
2

p
+ 3

q
= 1, 3 < q � ∞ (1.2)
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and

∇u ∈ Lp(0, T ;Lq(R3)),
2

p
+ 3

q
= 2,

3

2
< q � ∞. (1.3)

Then Gala [4] extended it to the Morrey–Campanato spaces, Zhang et al [16]
improved it to some more general Triebel–Lizorkin spaces.

(2) When ω = b = 0, system (1.1) is just the classical Naiver–Stokes equations. Serrin
[11], Prodi [8] and Beirão da Veiga [1] proved regularity if some scaling-invariant
norm of u or ∇u is bounded.

(3) When ω = 0, system (1.1) is then the 3D MHD equations, He and Xin [6], and Zhou
[19] gave criteria similar to the case for Navier–Stokes equations.

(4) When b = 0, system (1.1) is reduced to the micropolar fluid equations, Yuan [13]
gave some criteria in Lorentz spaces.

For later developments, see [2, 3, 15, 18] and references cited therein. Recently, Vasseur
[12] proved that if

div
u

|u| ∈ Lp(0, T ;Lq(R3)),
2

p
+ 3

q
� 1

2
, p � 4, q � 6, (1.4)

then the solutions to the Navier–Stokes equations are smooth. Later, Luo [7] extended
(1.4) to the MHD equations, but involves the magnetic field also. We now extend the result
of Vasseur [12] and Luo [7] to system (1.1). The main result is the following:

Theorem 1.1. Let u0, ω0, b0 ∈ H 1(R3) with ∇ · u0 = ∇ · b0 = 0 in the sense of
distributions. Suppose that (u, ω, b) is a strong solution to (1.1) in (0, T ) such that

u, ω, b ∈ C((0, T );H 1(R3)) ∩ C((0, T );H 2(R3))

and ∇ · u = ∇ · b = 0. If additionally,

div
u

|u| ∈ Lp(0, T ;Lq(R3)),
2

p
+ 3

q
� 1

2
, 4 � p < ∞, 6 � q � ∞

(1.5)

and

b ∈ Lr(0, T ;Ls(R3)),
2

r
+ 3

s
� 1, 2 � r < ∞, 3 � s � ∞, (1.6)

then the solution can be extended smoothly beyond t = T .

Remark 1.1. Theorem 1.1 shows that it is enough to control the rate of change in the
direction of the velocity and the norm of b to get full regularity of the solutions. Notice
that we add no conditions on the micro-rotational velocity ω.

Remark 1.2. Our theorem covers the results of Vasseur [12] and Luo [7] for Navier–
Stokes and MHD equations, respectively. Observe that the condition (1.6) is a
scaling-invariant, but (1.5) is not. Whether or not the 1/2 in (1.5) can increase to 1 is our
future work.

Before giving a proof, let us first recall the definition of weak solutions to system (1.1).
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DEFINITION 1.1

Let u0, ω0, b0 ∈ L2(R3) with ∇ · u0 = ∇ · b0 = 0. A triple (u, ω, b) of measurable
functions on R

3 × (0, T ) is said to be a weak solution of system (1.1) if

(1) u, ω, b ∈ L∞(0, T ;L2) ∩ L2(0, T ;H 1) with ∇ · u = ∇ · b = 0;
(2) System (1.1) holds in the sense of distributions.

Remark 1.3. Testing (1.1)1, (1.1)2, (1.1)3 by u, ω, b respectively, after suitable integra-
tion by parts, one has the energy inequality:

‖(u(t), ω(t), b(t))‖2
L2 + 2(μ + χ)

∫ t

0
‖∇u(s)‖2

L2 ds

+ 2γ

∫ t

0
‖∇ω(s)‖2

L2 ds + 2ν

∫ t

0
‖∇b(s)‖2

L2 ds

+ 2χ

∫ t

0
‖ω(s)‖2

L2 ds � ‖(u0, ω0, b0)‖2
L2 . (1.7)

Throughout the proof in the next section, we shall frequently use the following
interpolation inequality (see [17]):

‖u‖p,q � C ‖u‖
3
q
− 1

2
∞,2 ‖∇u‖

3
2 − 3

q

2,2 � C
(‖u‖∞,2 + ‖∇u‖2,2

)
, (1.8)

for (p, q) satisfying

2

p
+ 3

q
� 3

2
, 2 � q � 6.

In this paper, we shall use standard notations for Lebesgue space Lq(R3) endowed with
the norm ‖·‖q , and anisotropic Lebesgue space Lp(I ;Lq(R3)) endowed with the norm
‖·‖p,q . Here I ⊂ R

+ is an interval. A constant C (C = C(∗, ∗, . . .) which depends on
the parameters) may differ from line to line.

2. Proof of Theorem 1.1

By decreasing p or r if necessary, we may assume that

2

p
+ 3

q
= 1

2
,

2

r
+ 3

s
= 1.

For an ε > 0 to be chosen sufficiently small (see (2.12)), choose t1 ∈ (0, T ) such that
∥
∥
∥
∥div

u

|u|
∥
∥
∥
∥

p,q

< ε (2.1)

and
‖b‖r,s < ε. (2.2)

Hereafter, the integrals are over R3 × (t1, T ).
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Utilizing the regularity criteria (1.2), we complete the proof of Theorem 1.1 provided

u ∈ L8(t1, T ;L4(R3)). (2.3)

To this end, denote by

I = ‖|u|2‖∞,2 + ‖∇|u|2‖2,2 + ‖|b|2‖∞,2 + ‖∇|b|2‖2,2. (2.4)

Multiplying (1.1)1, (1.1)3 by |u|2 u, |b|2 b respectively and integrating over R
3 ×

(t1, T ), we find that

1

4
‖|u|2‖2∞,2 + μ + χ

2
‖∇|u|2‖2

2,2 + (μ + χ) ‖|u| |∇u|‖2
2,2

=
∫ T

t1

∫

R3
− b ·∇(|u|2 u) · b+(p+ |b|2)u ·∇ |u|2

+ χω ·∇×(|u|2 u)dxdt, (2.5)

as well as
1

4
‖|b|2‖2∞,2 + ν

2
‖∇|b|2‖2

2,2 + ν ‖|b| |∇b|‖2
2,2

=
∫ T

t1

∫

R3
−b · ∇(|b|2 b) · u dxdt. (2.6)

Using (2.5) and (2.6), notice that (see [12])

div
u

|u| = − u

|u|2 ∇u

and (see [13])

|∇| u‖ � |∇u| .
Thus we have

I 2 + ‖|u| |∇u|‖2
2,2 + ‖|b| |∇b|‖2

2,2

� C

∫ T

t1

∫

R3
|b|2 |u| (|u| |∇u| + |b| |∇b|) dxdt

+ C

∫ T

t1

∫

R3
(p + |b|2) |u|3

∣
∣
∣
∣div

u

|u|
∣
∣
∣
∣ dxdt

+ C

∫ T

t1

∫

R3
|ω| |u|2 |∇u| dxdt (2.7)

≡ I1 + I2 + I3. (2.8)

Here C is a constant depending only on μ, χ, ν.
Using Cauchy–Schwartz inequality, I1 can be bounded as

I1 � 1

4
‖|u| |∇u|‖2

2,2 + 1

2
‖|b| |∇b|‖2

2,2 + C‖|b|2|u‖2
2,2.

By generalized Hölder inequality and (1.8), it follows that

‖|b|2|u|‖2
2,2 � ‖b‖2

r,s ‖b‖2
a,b ‖u‖2

c,d

= ‖b‖2
r,s ‖|b|2‖ a

2 , b
2
‖|u|2‖ c

2 , d
2

� Cε2I 2,
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where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

r
+ 1

a
+ 1

c
= 1

2
= 1

s
+ 1

b
+ 1

d
,

2

a/2
+ 3

b/2
= 3

2
,

2

c/2
+ 3

d/2
= 3

2
,

and we have used (1.8). In fact, we can choose

a = c = 4r

r − 2
, b = d = 4s

s − 2
,

where r, s are as in (1.6). Thus

I1 � 1

4
‖|u| |∇u|‖2

2,2 + 1

2
‖|b| |∇b|‖2

2,2 + CεI 2. (2.9)

For I2, let us first take divergence of (1.1)1 to see

−�p =
3∑

i,j=1

∂ij (uiuj − bibj + δij |b|2),

thus classical Calderón–Zygmund estimates imply

‖p‖a,b � C(‖|u|2‖a,b + ‖|b|2‖a,b),

invoking again the generalized Hölder inequality and (1.8),

I2 � C‖p + |b|2‖a,b‖|u|3‖c,d‖div
u

|u| ‖p,q

� Cε
(‖u‖a1,b1

‖u‖3c,3d + ‖b‖a1,b1
‖b‖3c,3d

) ‖u‖3
3c,3d

= Cε ‖u‖a1,b1
‖|u|2‖2

3c
2 , 3d

2
+ Cε ‖b‖a1,b1

‖|b|2‖
1
2
3c
2 , 3d

2
‖|u|2‖

3
2
3c
2 , 3d

2

� CεI 2, (2.10)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

a
+ 1

c
+ 1

p
= 1 = 1

b
+ 1

d
+ 1

q
,

1

a
= 1

a1
+ 1

3c
,

1

b
= 1

b1
+ 1

3d
,

2

a1
+ 3

b1
= 3

2
,

2

3c/2
+ 3

3d/2
= 3

2
.

In fact, we can choose

a = c = 2

3
a1 = 2p

p − 1
, b = d = 2

3
b1 = 2q

q − 1
,

where p, q are as in (1.5).
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Finally, using (1.8), I3 is treated as

I3 � 1

4
‖|u| |∇u|‖2

2,2 + C ‖|ω| |u|‖2
2,2

� 1

4
‖|u| |∇u|‖2

2,2 + C ‖ω‖2
2,4 ‖u‖2∞,4

� 1

4
‖|u| |∇u|‖2

2,2 + CI

� 1

4
‖|u| |∇u|‖2

2,2 + CεI 2 + C. (2.11)

Combining the estimates for I1, I2, I3, i.e. (2.9), (2.10), (2.11), and substituting into
(2.7), we find

I 2 + 1

2
‖|u| |∇u|‖2

2,2 + 1

2
‖|b| |∇b|‖2

2,2 � 3CεI 2 + C,

where C is the generic constant appearing in (2.9), (2.10) and (2.11). Thus, we see that

I �
√

2C < ∞,

provided

ε = 1

6C
. (2.12)

Consequently, by (2.4), we have

u ∈ L∞(t1, T , L4(R3)) ⊂ L8(t1, T , L4(R3)).

The proof is completed.
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