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Abstract. Let G be a finite group. A subgroup H of G is called an NE-subgroup of
G if it satisfies HG ∩ NG(H) = H . A subgroup H of G is said to be a NE∗-subgroup
of G if there exists a subnormal subgroup T of G such that G = HT and H ∩ T is a
NE-subgroup of G. In this article, we investigate the structure of G under the assump-
tion that subgroups of prime order are NE∗-subgroups of G. The finite groups, all of
whose minimal subgroups of the generalized Fitting subgroup are NE∗-subgroups are
classified.
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1. Introduction

All groups considered will be finite. We use conventional notions and notation, as in
Huppert [10]. Throughout this article, G stands for a finite group and π(G) denotes the
set of primes dividing |G|. Notation and basic results in the theory of formations are taken
mainly from Doerk and Hawkes [6].

Recall that a subgroup H of a group G is called c-supplemented (c-normal, weakly
c-normal, respectively) in G if there exists a subgroup (normal subgroup, subnormal sub-
group, respectively) K of G such that G = HK and H ∩ K ≤ HG, where HG =
CoreG(H) is the largest normal subgroup of G contained in H (see [3, 15, 17]). Follow-
ing Li [12], a subgroup R of G is called a NE-subgroup of G if RG ∩ NG(R) = R.
In the recent years, there has been much interest in investigating the influence of NE-
subgroups of prime order and cyclic subgroups of order 4 on the structure of the groups.
In [4], Bianchi et al. introduced the concept of a H-subgroup and investigated the influ-
ence of H-subgroups on the structure of a group G: a subgroup H of G is said to
be a H-subgroup of G if NG(H) ∩ Hg ≤ H for all g ∈ G. Asaad [1] described
the groups, all of whose certain subgroups of prime power orders are H-subgroups.
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Clearly an NE-subgroup is an H-subgroup in G. The converse is not true in general
(see [13]).

The aim of this paper is threefold. First, we introduce a new concept called NE∗-
subgroup which covers properly the notion of NE-subgroup (see Definition 1.1 and
Example 1.2 below). Our second aim is to characterize the structure of a group G with the
requirement that certain subgroups of G possess the NE∗-property. We state our results
in the broader context of formation theory and only consider the conditions on minimal
subgroups of G (dropping the assumption that every cyclic subgroup of order 4 is an NE∗-
subgroup). Our final aim is to investigate the structure of groups G with the property that
all the cyclic subgroups of prime order or order 4 of G satisfy the NE∗-property. We first
introduce the following concept:

DEFINITION 1.1

A subgroup H of a finite group G is said to be an NE∗-subgroup of G if there exists a
subnormal subgroup T of G such that G = HT and H ∩ T is an NE-subgroup of G.

It is clear that NE-subgroups are NE∗-subgroups but the converse is not true in general.

Example 1.2. G = S4, the symmetric group of degree 4, and L = A4, the alternating
group of degree 4. Clearly, G = L � H , where H = 〈(13)〉. Observe that H ∩ A4 = 1,

this yields that H is an NE∗-subgroup of G by Definition 1.1. Now H(12)(34) = 〈(24)〉 ≤
NG(H) and (12)(34) 	∈ NG(H) show that H is not an NE-subgroup of G.

Buckley [5] proved that a finite group of odd order, all of whose minimal subgroups are
normal is supersolvable. We prove the following theorem which is an improvement of a
recent result due to Asaad and Ramadan (see Theorem 1.1 of [2]). Hence, Q8 will denote
the quaternion group of order 8 and a group G is called Q8-free if no quotient group of
any subgroup of G is isomorphic to Q8. Throughout this paper, U will denote the class
of all supersolvable groups. Clearly, U is a formation. The U-hypercentre ZU (G) of G is
the product of all normal subgroups H of G such that each chief factor of G below H has
prime order.

Theorem 1.3. Let G be Q8-free and let P be a nontrivial normal p-subgroup of G. If
all minimal subgroups of P are NE∗-subgroups of G, then P ≤ ZU (G), where U is the
formation of all supersolvable groups.

Theorem 1.3 may be false if we drop the first condition. The following example shows
the necessity of the ‘Q8-free’ hypothesis in Theorem 1.3.

Example 1.4. Let G be the semidirect product of the quaternion group P of order 8 and
the cyclic group 〈c〉 of order 9, where P = 〈a, b|a4 = 1, b2 = a2, ab = a−1〉, which is
isomorphic to Q8 and c acts on P or equivalently, c is the automorphism of order 3 of
G given by ac = b, bc = ab. Thus G = P � 〈c〉 is a group of order 23 · 32. We obtain
that there are only two minimal subgroups, i.e., 〈a2〉 and 〈c3〉 in G, and the centre of G

is Z(G) = 〈a2〉 × 〈c3〉 (see p. 292 of [14]). Thus all minimal subgroups of G are normal
and hence are certainly NE∗-subgroups of G. Note that the chief series of G containing
P is 1 � Z(P) � P � (P × 〈c3〉) � G. This yields that P 	≤ ZU (G).
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Li showed that if every minimal subgroup of G is an NE-subgroup of G, then
G is solvable (see Theorem 1(b) of [12]). The following theorem shows that this
result remains true if, in Theorem 1 of [12], we consider NE∗-subgroups instead of
NE-subgroups.

Theorem 1.5. If all minimal subgroups of a group G are NE∗-subgroups of G, then G is
solvable.

Recall that a p-group G is called ultra-special if G′ = �(G) = Z(G) = �1(G). For
any group G, F ∗(G) denotes the generalized fitting subgroup: the set of all elements g

of G which induce inner automorphisms on every chief factor of G. The following new
characterizations of groups involve the requirement that certain minimal subgroups of
F ∗(H) possess the NE∗-property.

Theorem 1.6. Let F be a saturated formation containing all supersolvable groups and
let H be a normal subgroup of G such that G/H ∈ F . If all minimal subgroups of F ∗(H)

are NE∗-subgroups of G, then either G ∈ F or G contains a minimal non-nilpotent
subgroup K with the following properties:

(1) K has a nontrivial normal Sylow 2-subgroup, say K2;
(2) K2 ≤ O2(H), |K2| = 23s , and |�(K2)| = 2s, where s ≥ 1;
(3) K2 is ultra-special, that is, K ′

2 = �(K2) = Z(K2) = �1(K2);
(4) If p is the odd prime dividing |K|, then p divides 2s + 1.

As an easy consequence of Theorem 1.6, we obtain the following result.

COROLLARY 1.7

Let F be a saturated formation containing all supersolvable groups and let H be a normal
subgroup of a group G such that G/H ∈ F . Let F ∗(H) be of even order and let S be a
Sylow 2-subgroup of F ∗(H). Further, assume that every minimal subgroup of F ∗(H) is
an NE∗-subgroup of G. Then G ∈ F if one of the following conditions holds:

(1) �2(S) ≤ Z(S);
(2) For all primes p dividing |G| and all s ≥ 1, we have that p does not divide 2s + 1.

Theorems 1.5 and 1.6 are not true if the hypothesis of the NE∗-condition on minimal
subgroups of G (respectively of F ∗(H)) is replaced by just the condition on minimal sub-
groups of noncyclic Sylow subgroups of G (respectively of F ∗(H)). For example, the
group G := SL(2, 5) shows these facts: the only Sylow subgroups of G which are non-
cyclic are the Sylow 2-subgroups, which are quaternion groups. Then the only minimal
subgroup under consideration would be the centre Z(G) of the group, which is normal. It
is clear that Z(G) satisfies the NE∗-condition in G.

Using Theorems 1.5 and 1.6, we can derive the following results.

Theorem 1.8. Let F be a saturated formation containing all supersolvable groups and
let H be a normal subgroup of G such that G/H ∈ F . If all minimal subgroups and
cyclic subgroups of order 4 of F ∗(H) are NE∗-subgroups of G, then G ∈ F .
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Theorem 1.9. Assume that every minimal subgroup of a group G is an NE∗-subgroup
of G. Then either G is supersolvable or G is solvable, G2′ is supersolvable and
G2′/CG2′ (O2(G)) is abelian for any Hall 2′-subgroup G2′ of G.

Theorem 1.8 is an improvement of Theorem 4.2 of Li in [13]. We do not know whether
Theorem 1.8 can be extended by considering minimal subgroups and cyclic subgroups of
order 4 of only noncyclic Sylow subgroups of F ∗(H).

It is natural to ask the question: are there differences between both NE∗-subgroups and
weakly c-normal subgroups? For any subgroup H of a finite group G, it follows that
every weakly c-normal subgroup is an NE∗-subgroup. Here we give an explanation. Let
H be a weakly c-normal subgroup of G. Then there exists a subnormal subgroup K of
G such that G = HK and H ∩ K ≤ HG. Let K1 = HGK , applying Wielandt’s results
(see [16]), we have K1 = 〈HG,K〉 is a subnormal subgroup of G. Since G = HK1 and
H ∩K1 = HG(H ∩K) = HG, so H ∩K1 is normal in G. Thus H is an NE∗-subgroup of
G. In general, if R is an NE∗-subgroup of G, R is not necessary to be weakly c-normal in
G (see Example 1.10 below). But if H is an NE∗-subgroup contained in a normal nilpo-
tent subgroup K of G, then it is true that H is weakly c-normal in G (see Lemma 2.2).

Example 1.10. Let G = A5 and H = A4, the alternating subgroups with degree 5 and 4,
respectively. Then G = HG and HG ∩ NG(H) = H . Thus H is a NE∗-subgroup of G

but not weakly c-normal in G.

Example 1.11. Let G = A5, the alternating group of degree 5, and H a Sylow 5-
subgroup. Noting that G is a nonabelian simple group, we get that HG ∩ NG(H) =
NG(H) of order 10. Hence H is neither an NE∗-subgroup nor a weakly c-normal
subgroup of G.

2. Preliminaries

In this section, we state some lemmas which are useful.

Lemma 2.1. Let K and H be subgroups of a group G.

(1) If H ≤ K and H is an NE-subgroup of G, then H is an NE-subgroup of K .
(2) If H is a subnormal subgroup of K and H is an NE-subgroup of G, then H is normal

in K .

Proof. See Lemmas 1 and 4 of [12]. �

Lemma 2.2. Let K and H be subgroups of a group G.

(1) If H ≤ K and H is a NE∗-subgroup of G, then H is a NE∗-subgroup of K .
(2) If H is a NE∗-subgroup that is contained in a normal nilpotent subgroup K , then H

is weakly c-normal in G.

Proof.

(1) Since H is an NE∗-subgroup of G, there exists a subnormal subgroup L of G such
that G = HL and H ∩ L is an NE-subgroup of G. It follows that K = K ∩ HL =
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H(K ∩ L) and K ∩ L is subnormal in K (see [16]). This implies that H ∩ L is an
NE-subgroup of K by Lemma 2.1(1). So claim (1) holds.
(2) Clearly H is subnormal in G. Since H is an NE∗-subgroup of G, there exists a
subnormal subgroup L of G such that G = HL and H ∩ L is a NE-subgroup of G. It
follows that the intersection H ∩ L is a subnormal subgroup of G. Therefore it follows
immediately from Lemma 2.1(2) that H ∩ L is normal in G. Thus H ∩ L ≤ HG

holds. �

Lemma 2.3. Let S be a nontrivial 2-group and let H be a nontrivial group of automor-
phisms of S fixing the involutions of S. If H is cyclic of odd order and H acts irreducibly
on S/�(S), then |S| = 23s, |�(S)| = 2s, where s ≥ 1, S is ultra-special and |H | divides
2s + 1.

Proof. See Theorems 1.3 and 2.2 of [9].

Lemma 2.4. Let S be a nontrivial 2-group and let H be a nontrivialgroup of automorphisms
of S fixing the involutions of S. If 2 does not divide |H |, then H is abelian.

Proof. See Theorem 4.4 of [9].

3. Proofs

Proof of Theorem 1.3. We prove the theorem by induction on |G| + |P |. Suppose, first,
that p > 2. Then by Lemma 2.2(2), the condition that every minimal subgroup of P is
NE∗-subgroup of G implies that every minimal subgroup of P is weakly c-normal in G.
In particular, every minimal subgroup of P is c-supplemented in G. Hence we conclude
that P ≤ ZU (G) by Theorem 1.1 of [2]. Thus we may assume that p = 2. If every
minimal subgroup H of P is normal in G, then HQ = H ×Q for any Sylow q-subgroup
Q of G, where q is an odd prime. This implies that �1(P ) ≤ CG(Q). Since G is Q8-free,
by Lemma 2.15 of [7], we obtain that Q ≤ CG(P), yielding that G/CG(P) is a p-group.
This means that P ≤ ZU (G), as claimed. Then we may assume that P has a minimal
subgroup H such that H is not normal in G, which implies that H is a NE∗-subgroup
of G. It follows that there exists a subnormal subgroup K of G such that G = HK and
H ∩ K is a NE-subgroup of G. Assume H ∩ K 	= 1, G = K and so H is a NE-subgroup
and, of course, a H-subgroup. Since H is a subnormal subgroup of G, it follows that
H � G by Lemma 2.1, a contradiction. Hence we conclude that H ∩ K must be 1. Let
L = P ∩ K . Since K is a maximal subgroup of G, we conclude that the subnormal
subgroup K of G is normal in G. Thus L = P ∩ K � G. Because H ≤ P , Dedekind’s
law implies P = HL. By our hypothesis, every minimal subgroup of L is a NE∗-subgroup
of G. Therefore, L ≤ ZU (G) by induction. Observe that if P/L is normal in G/L with
order p then P/L ≤ ZU (G/L). So L ≤ ZU (G), yielding ZU (G/L) = ZU (G)/L, which
implies that P ≤ ZU (G) and the proof is complete. �

Proof of Theorem 1.5. Assume that the theorem is false and let G be a counterexample of
minimal order. Then:

(1) Every proper subgroup of G is solvable. Let T be a proper subgroup of G. By Lemma
2.2(1), every minimal subgroup of T is a NE∗-subgroup of T , and so T satisfies the
hypothesis of G. The minimal choice of G yields that T is solvable.
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(2) G/�(G) is a minimal simple group. By (1), G has a nontrivial maximal normal
solvable subgroup, say M . Clearly, �(G) is a subgroup of M . We shall show that
�(G) = M . Because otherwise we have M 	≤ �(G), and we can conclude that there
exists a maximal subgroup N of G such that G = MN and consequently G is solvable
by (1), a contradiction. Thus the subgroup �(G) is the unique maximal subgroup of G,
and so G/�(G) is a minimal simple group.
(3) �(G) is a 2-group. By (2), applying Thompson’s classification of minimal simple
groups, we obtain that G/�(G) is isomorphic to one of the following groups:

(i) PSL(3, 3);
(ii) the Suzuki group Sz(2q), where q is an odd prime;
(iii) PSL(2, p), where p is an odd prime with p2 ≡ 1(mod 5);
(iv) PSL(2, 2q ), where q is a prime;
(v) PSL(2, 3q ), where q is an odd prime.

Using this result, we shall show that �(G) is a 2-group. Let K be the 2-complement of
�(G), then K � G and K is nilpotent. We wish to show, first, that K ≤ Z(G). Let p be
a prime dividing |K| and let P ∈ Sylp(K). It is clear that P is normal in G. By hypoth-
esis, every subgroup L of order p in P is a NE∗-subgroup of G. It follows that there
exists a subnormal subgroup T of G such that G = LT and L ∩ T is a NE-subgroup
of G. If L ∩ T = 1, then G has a subgroup T of index p. Since T is a maximal sub-
group of G and T is a subnormal subgroup of G, we have T � G. Thus G is solvable
by (1), a contradiction. So L ∩ T = L and so T = G. This implies that L is a NE-
subgroup of G, and is normal in G by Lemma 2.1(2). Assume that L 	≤ Z(G). Then
CG(L) is a proper subgroup and so CG(L) ≤ �(G) by simplicity of G/�(G). This
implies that G/CG(L) is cyclic and so G is solvable, a contradiction. Consequently,
each subgroup of P of order p lies in the centre Z(G). Consider the group D = SP ,
where S is a Sylow 2-subgroup of G. It follows from Itô’s lemma (see Chapter IV, Satz
5.5 of [10]) that D is p-nilpotent, and hence, D is nilpotent. Thus S ≤ CG(P) � G.
Applying the simplicity of G/�(G) again, we can conclude that P ≤ Z(G). Next, we
denote by S0 a Sylow 2-subgroup of �(G), and consider the group Ḡ = G/S0. Since
K ≤ Z(G), we have that G/Z(G) ∼= G/�(G) and Ḡ is a quasisimple group with the
centre of odd order. By checking the table on Schur multipliers of the known simple
groups (see p. 302 of [8]), we can conclude that the Schur multiplier of each of the mini-
mal simple groups is a 2-group. It follows that Z(Ḡ) must be 1, and therefore �(G) is a
2-group.
(4) Let R be a Sylow r-subgroup of G, where r > 2. Then there exists a subgroup L

of order r such that L is not normal in G. Obviously, CG(�1(R)) < G, because otherwise
we would have �1(R) ≤ Z(G) and so G would be r-nilpotent by Chapter IV, Satz 5.5 of
[10]. It follows that G is solvable by (1), a contradiction. Then �1(R) is solvable by (1).
Assume that every minimal subgroup of R is normal in G. Then we can conclude that
�1(R) is an elementary abelian normal subgroup of G and every chief factor of G which
lies below �1(R) is cyclic of order r , which implies that �1(R) ≤ ZU (G). It follows that
G/CG(�1(R)) is supersolvable by Chapter IV, Theorem 6.10 of [6] and so G is solvable,
a contradiction. Thus there exists a subgroup L of order r such that L is not normal
in G.
(5) Let Ḡ = G/�(G). Then 3 does not divide |Ḡ|. Assume that 3 divides |Ḡ|. Then
G has a subgroup L of order 3 such that L is not normal in G by (4). By hypothesis, L

is a NE∗-subgroup of G. It follows that there exists a subnormal subgroup T of G such
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that G = LT and L ∩ T is a NE-subgroup of G. If L ∩ T = 1, consequently G has
a subgroup T of index 3. Since T is a maximal subgroup of G, we conclude that the
subnormal subgroup T of G is normal in G. Thus G is solvable by (1), a contradiction.
So assume for the rest of this paragraph that L ≤ T . Clearly L is a NE-subgroup of G,
which implies that LG ∩NG(L) = L and so L is a Sylow subgroup of LG. By the Frattini
argument, we can conclude that G = NG(L)LG. Moreover LG is a Frobenius group with
complement L. Let N be the kernel of LG. Then N is nilpotent and so normal in G. Hence
G = NG(L)N , which means that G is solvable, a contradiction. Thus 3 does not divide
|Ḡ|.
(6) Completing the proof. By (1), (2), and (5), Ḡ is a minimal simple group, (3, |Ḡ|) = 1.
It follows by Chapter II, Bemerkung 7.5 of [10], that Ḡ is isomorphic to the Suzuki group
Sz(2q), where q is odd. However |Sz(2q)| ≡ 0 (mod 5) by Chapter XI, Remarks 3.7(b) of
[11] and so 5 divides |Ḡ|. Therefore Ḡ has a subgroup of index 5 by a discussion similar
to (5) above. This implies that Ḡ is isomorphic to a subgroup of S5, the symmetric group
on five letters. Since 3 does not divide |Ḡ| by (5), it implies that |π(G)| = 2 because
�(G) is a 2-group by (3) and so G is solvable, a final contradiction. �

Proof of Theorem 1.6. Suppose that the result is false and let G be a counterexample of a
minimal order. Then:

(1) F ∗(H) = F(H). By Lemma 2.2, every minimal subgroup of F ∗(H) is a NE∗-
subgroup of F ∗(H). Then F ∗(H) is solvable by Theorem 1.5. It follows that F ∗(H) =
F(H) by Chapter X, Theorem 13.13 of [11].
(2) F(H) is of even order. Otherwise, F(H) is of odd order. Theorem 1.3 implies that
F(H) ≤ ZU (G). Since U ⊆ F and U and F are saturated formations, it follows that
ZU (G) ≤ ZF (G) by Proposition 3.11 of [6]. Then we can conclude that F(H) ≤ ZF (G)

and hence G/CG(F(H)) ∈ U by Chapter IV, Theorem 6.10 of [6]. Moreover, since
G/H ∈ U by our hypothesis, it follows that G/CH(F(H)) ∈ U . By Chapter X, Theorem
13.12 of [11], we get that CH(F ∗(H)) ≤ F(H) and CH (F(H)) ≤ F(H) since F ∗(H) =
F(H) by (1). Then G/F(H) ∈ F and since F(H) ≤ ZF (G), it follows that G ∈ F , a
contradiction. This proves (2).
(3) There exists a Sylow subgroup P of G such that O2(H)P is not 2-nilpotent,
where |O2(H)| and |P | are co-prime. If not, O2(H) ≤ Z∞(G), where Z∞(G) is
the hypercentre of G. Since Z∞(G) ≤ ZU (G), it follows that O2(H) ≤ ZU (G).
Applying Theorem 1.3, we get that every Sylow subgroup of F(H) of odd order
lies in ZU (G) and hence F(H) ≤ ZU (G). By a discussion similar to Step (2),
noting that ZU (G) ≤ ZF (G), it follows that G ∈ F , a contradiction. Therfore
there exists a Sylow subgroup P of G such that O2(H)P is not 2-nilpotent, where
(|O2(H)|, |P |) = 1.
(4) Completing the proof. By (3), it is clear that O2(H)P contains a minimal non-2-
nilpotent subgroup, say K . By Chapter IV, Satz 5.4 of [10], we have that K is a minimal
non-nilpotent subgroup of G. Applying Chapter III, Satz 5.2 of [10] we can conclude
that K has a normal Sylow 2-subgroup K2 and a cyclic Sylow p-subgroup Kp, for a
prime p 	= 2. Clearly Kp fixes the involutions of K2, because otherwise we get that
Kp is normal in K , a contradiction. Moreover Kp acts irreducibly on K2/�(K2). It
follows by Lemma 2.3 that |K2| = 23s and �(|K2|) = 2s, where s ≥ 1, K2 is ultra-
special and Kp/CKp(K2) divides 2s + 1. This is a final contradiction and the proof is
complete. �
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Proof of Theorem 1.8. Suppose that the result is false. By Theorem 1.6, there exists a
minimal non-nilpotent subgroup K of G satisfying the properties (1), (2) and (3). For
every cyclic subgroup L of K2 of order 4, since K2 is ultra-special, it follows that L 	≤
Z(K2) = �1(K2) and consequently K2 	≤ CK(L). If CK(L) is normal in K , it follows
that Kp is normal in K , where Kp is a Sylow p-subgroup of K and p > 2, a contradiction.
Thus CK(L) is not normal in K and so L is not normal in K . We may conclude, by our
assumptions, that L is a NE∗-subgroup of G and so L is a NE∗-subgroup of K . Then there
exists a subnormal subgroup K1 of K such that K = LK1 and L ∩ K1 is a NE-subgroup
of G. Since L is not normal and K is a minimal non-nilpotent group, it follows that if K1
is a proper subgroup of K , then the fact that Kp char K1 and K1 � K would imply that
Kp is subnormal in K . Since Kp is a subnormal Hall-subgroup of K , Kp is normal in
K , a contradiction. This means that K1 = K and hence L is a NE-subgroup of G. Thus,
by Theorem 4.2 of [13], we get that G belongs to F . This is a final contradiction and the
proof is complete. �

Proof of Theorem 1.9. Theorem 1.5 immediately yields the solvability of G. Let G2′ be
a Hall 2′-subgroup of G. It follows by Lemma 2.2 and Theorem 1.6 that G2′ is super-
solvable. Hence, if G has odd order, then G is supersolvable and we are done. Assume
that 2 divides the order of G and that O2(G) is nontrivial. Then if G2′ centralizes the
involutions of O2(G), then Lemma 2.4 implies that G2′/CG2′ (O2(G)) is abelian. Hence
we may assume that there exists an involution x ∈ O2(G) which is not centralized by
G, which implies that 〈x〉 is not normal in G. Noting that 〈x〉 is a NE∗-subgroup of G,
we deduce that G = 〈x〉K for some subnormal subgroup K of G such that 〈x〉 ∩ K is
a NE-subgroup of G. If 〈x〉 ∩ K = 〈x〉 and so K = G. This implies that 〈x〉 is a NE-
subgroup of G, and so normal in G by Lemma 2.1(2), a contradiction. Thus 〈x〉 ∩ K

must be 1, and so K � G since |G : K| = 2. It follows that G2′ is a Hall 2-subgroup
of K because G2′ ≤ K . It follows that [O2(G),G2′ ] ≤ O2(G) ∩ K = O2(K). If we
argue by the induction on the order of G, we can deduce by inductive hypothesis that
[O2(G), (G2′)′, (G2′)′] ≤ [O2(K), (G2′)′] = 1. This means that [O2(G), (G2′)′] = 1 by
co-prime action. So G2′/CG2′ (O2(G)) is abelian and the proof is complete. �
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