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Abstract. We generalize Tollmien’s solutions of the Rayleigh problem of hydrody-
namic stability to the case of arbitrary channel cross sections, known as the extended
Rayleigh problem. We prove the existence of a neutrally stable eigensolution with wave
number ks > 0; it is also shown that instability is possible only for 0 < k < ks and not
for k > ks . Then we generalize the Tollmien–Lin perturbation formula for the behavior
of ci, the imaginary part of the phase velocity as the wave number k → ks − to the
extended Rayleigh problem and subsequently, we use this formula to demonstrate the
instability of a particular shear flow.
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1. Introduction

The stability of homogeneous and stratified shear flows of an inviscid fluid to infinitesi-
mal normal mode disturbances has been studied extensively (see [2,3]). These studies are
restricted to rectangular cross sections. To consider flows relevant to sea straits, it is nec-
essary to consider shear flows which are transversely uniform but are contained in straits
with arbitrary cross sections. That is, the velocity and stratification are allowed to vary
with the elevation z, and perhaps along with the channel direction x , but not with cross
channel direction y. The stability analysis of homogeneous and stratified shear flows in
sea straits of arbitrary cross section was initiated by Pratt et al [5] and a mathematical
approach was adapted in Deng et al [1]. In [1], the stability equation was derived and
it was found to be an extended version of the well known Taylor–Goldstein problem of
hydrodynamic stability. A number of general analytical results have been obtained for this
extended Taylor–Goldstein problem in [1,4,7].

In the special case of homogeneous shear flows, the problem reduces to the extended
Rayleigh problem of hydrodynamic stability and for this problem the following results
are already known:

(i) The necessary condition for instability is that
(

U ′
0

b

)′
changes sign atleast once in the

flow domain 0 ≤ z ≤ D, where U0(z) is the basic velocity profile, b(z) is the width
function and a prime denotes differentiation with respect to z (cf. [1]).
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(ii) If
(

U ′
0

b

)′
equals zero at z = zs and U0s =U0(zs) then a necessary condition for insta-

bility is that
(

U ′
0

b

)′
(U0−U0s)<0 atleast once in the flow domain 0≤ z ≤ D (cf. [1]).

(iii) Howard’s conjecture, namely, the growth rate kci → 0 as the wave number k → ∞
has been proved (cf. [6]).

(iv) For a class of flows, disturbances with wave length smaller than some critical wave
length are stable, that is ci = 0 when k > kc, where kc is some critical value of wave
number k. That is, short waves are stable (cf. [8]).

The instability of basic shear flows is demonstrated in two ways. For piecewise linear
velocity profiles the stability equation is solved in each layer and then by the use of the
boundary and interfacial conditions the dispersion relation between the complex wave
velocity c and the wave number k is obtained. From this dispersion relation one can con-
clude the instability of piecewise linear profiles for a given range of k. This method has
been applied to (i) the bounded vortex sheet and (ii) the bounded shear layer in Subbiah
and Ramakrishnareddy [9]. For smoothly varying basic flows the instability of a partic-
ular basic flow is demonstrated by finding a neutral eigensolution and then applying the
Tollmien–Lin’s perturbation formula for unstable modes adjacent to that neutral mode.
Though this method has been used in many examples of basic flows in the Rayleigh prob-
lem of hydrodynamic stability (cf. [2]), this has not been done for the extended Rayleigh
problem so far. So we take up this problem in this paper. First, we find sufficient condi-
tions for the existence of neutral modes. Second, if (cs , ks , Ws) is a neutral mode then we
show that unstable modes adjacent to this neutral mode exists for k < ks only. If (c, k, W )

is an unstable mode such that c → cs and W → Ws as k → ks − then we find an asymp-
totic formula for ci, the imaginary part of c, which is the extension of the Tollmien–Lin’s
perturbation formula. Then we apply this formula to a particular basic flow, namely, the
flow with U0 = ez sin z, T = 2 in the domain 0 ≤ z ≤ 2π .

To find the neutral solutions first we find series solutions of the extended Rayleigh
problem, which are extensions of the Tollmien’s solutions of the Rayleigh problem, when
the basic velocity U0(z) and the topography T (z) are analytic functions; that is, they can
be expressed as convergent power series in (z − zc) when z = zc is a point such that
U0(zc) = c. We find that one solution of the equation is regular whereas the second
linearly independent solution may have a logarithmic term. But for neutral eigensolutions
the logarithmic term will disappear and both solutions are regular in that case. However,
these series can not be found to converge to known special functions in many cases and so
they may have to be found by numerical computation. In this case a second order equation
satisfied by the regular part of the second solution is derived and it is found that the
Wronskian of these two solutions is −1

b(z) which can be used as a check on the numerical
computation.

2. The extended Rayleigh problem

We consider the basic flow with velocity �u = (U0(z), 0, 0) and pressure p = p0
(a constant). It is trivially seen that the governing equations (cf. [1]) are satisfied. Regard-
ing the boundary conditions, we consider for example the right side wall given by

y = yR(z). Then ň =
(

0, 1,
−∂yR

∂z

) /√
1 +

(
∂yR
∂z

)2
is the unit normal to the wall and it
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Figure 1. Vertical cross section of the channel.

is obvious that �u · ň = 0 on the wall. Many examples of topography have been given
in Deng et al [1]. Now we shall present the sketch of the flow geometry for a flow with
topography T0 = 2, which is the one considered in the example shown to be unstable later.

Let yR(z) = e2z

2 and yL(z) = − e2z

2 be the right and left walls respectively (see figure 1).

Then b(z) = e2z and T0 = b′(z)
b(z) = 2.

The extended Rayleigh problem is given by the second order ordinary differential
equation

[
(bW )′

b

]′
−

⎡
⎢⎣k2 +

b
(

U ′
0

b

)′

U0 − c

⎤
⎥⎦ W = 0, (1)

with boundary conditions

W (0) = 0 = W (D). (2)

Here, the real part of W (z)eik(x−ct) is the vertical velocity of a normal mode disturbance,
k > 0 is the wave number, c = cr + ici is the complex phase velocity, U0(z) is the basic
velocity, b(z) is the width function and T (z) = [ln · b(z)]

′
is the topography.

3. Tollmien’s series solutions

The extended Rayleigh problem can also be written as

W ′′ + T W ′ + T ′W − k2W − U ′′
0 − T U ′

0

U0 − c
W = 0. (3)
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We consider flows for which the basic velocity U0(z) and the topography T (z) are analytic
functions of z; that is, they can be expressed as convergent power series in (z − zc).

Consider now the solution of the extended Rayleigh’s equation when c is not necessar-
ily equal to cs . A point z = zc, where U0 − c = 0 and U ′

0c �= 0 is a regular singular point
of (3) with exponents 0 and 1. Thus, in a neighbourhood of zc there exists one solution
which is analytic at z = zc. It is convenient to write this solution in the form

W1(z) = (z − zc) P1(z), (4)

where P1(z) is analytic at zc and P1(zc) �= 0. For convenience, we shall choose P1(zc) =
1. The second linearly independent solution of (3), however, has a logarithmic branch
point at z = zc and it is of the form

W2 =
[(

U ′′
0 − T U ′

0

)
(zc)

b (zc) U ′
0 (zc)

]
ln(z − zc)W1(z) + P2(z), (5)

where P2(z) is also analytic at zc with P2(zc) = 1. To make this second solution definite,
it is convenient to suppose that W2(z) contains no multiple of W1(z), i.e., the coefficient
of z − zc in the power series expansion of P2(z) is zero. In the absence of topography i.e.
when T (z) = 0, these solutions become solutions of the Rayleigh problem. The solutions
of Rayleigh’s equation were first given in this form by Tollmien (cf. [3]) in connection
with his discussion of the Orr–Sommerfeld equation which is the stability equation for
viscous shear flows and they are often referred to as Tollmien’s inviscid solutions.

A more descriptive terminology was introduced by Drazin & Reid [3] where W1(z) is
the regular inviscid solution, W2(z) the singular inviscid solution and P2(z) the regular
part of the singular inviscid solution.

In case of neutral stability c, and hence zc is real, it is then necessary to specify the
correct branch of the multivalued solution given by (5). By letting ci tend to zero through
positive values we see that if U ′

0c > 0 and we let ln (z − zc) = ln |z − zc|, for z > zc then
we have ln (z − zc) = ln |z − zc| − iπ for z < zc.

In the discussion of the viscous problem the circumstances under which these solutions
of Rayleigh’s equation provide approximations to the solutions of the Orr–Sommerfeld
equation has been discussed in Drazin & Reid [3]. It is likely that the solutions of the
extended Rayleigh problem presented above will be related to the viscous stability prob-
lem in sea straits in a similar way. The first few terms in the power series expansion of P1
and P2 are

P1(z) = 1 +
[

U ′′
0 (zc)

2U ′
0(zc)

− T (zc)

]
(z − zc)

+ 1

6

[
U ′′′

0 (zc)

U ′
0(zc)

+ k2 − 3T U ′′
0 (zc)

U ′
0(zc)

+ 3T 2 − 3T ′
]

(z − zc)
2 + · · ·

(6)

and

P2(z) = 1 +
[

U ′′′
0 (zc)

2U ′
0 (zc)

+ k2

2
− T ′ (zc) − T U ′′

0 (zc)

2U ′
0 (zc)

− (U ′′
0 − T U ′

0)
2 (zc)

b (zc) (U ′
0)

2 (zc)

]
(z − zc)

2 + · · · . (7)
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For velocity profiles with a sufficiently simple analytical form, the summation of these
series may be feasible. More generally, however, W1 and the regular singular part of W2
can be obtained only by direct numerical integration. When this latter method is used,
W1 can be conveniently defined as the solution of the extended Rayleigh’s equation that
satisfies the initial condition W1(zc) = 0 and W ′

1(zc) = 1. Similarly, P2 can be obtained
as the solution of the inhomogeneous equation:

(U0 − c)
[
P ′′

2 + T P ′
2 + T ′ P2 − k2 P2

] − (U ′′
0 − T U ′

0)P2

= − (U0 − c)

[
(U ′′

0 − T U ′
0) (zc)

b (zc) U ′
0 (zc)

]

×
[

2P ′
1 (z − zc) + P1 + T P1 (z − zc)

(z − zc)

]
, (8)

that satisfies the initial condition P2(zc) = 1. The Wronskian of the solutions W1 and W2
is −1

/
b(z), and this relation can provide a useful check on numerical work.

Suppose that U0(z) is monotone with a single point zs where (U ′′
0 − T U ′

0) = 0 in
0 < z < D. Then both solutions W1(z) and W2(z) are regular at zs and Ws must be
a linear combination of W1(z) and P2(z). Since Ws(zs) �= 0, we can write Ws(z) =
AW1(z) + P2(z) so that Ws(zs) = 1 and the two boundary conditions determine the
constant A and the wave number ks of a neutral mode. Thus the two Tollmien solutions
of the extended Rayleigh problem can be used to determine the neutral solution Ws .

4. Tollmien–Lin’s perturbation formula

If U0(z) is a monotone function with only one point where b
(

U ′
0

b

)′
changes sign then

a necessary condition for instability is that b
(

U ′
0

b

)′
(U0 − U0s) ≤ 0 for 0 ≤ z ≤ D

with equality only at z = zs . For the Rayleigh problem of hydrodynamic stability the
standard approach for showing that a particular smooth basic flow is unstable is to find
neutral eigensolutions and then use the Tollmien–Lin’s perturbation formula to show the
existence of unstable eigenvalues adjacent to the neutral modes (cf. [2,3]). Now we shall
extend Tollmien–Lin’s perturbation formula to the extended Rayleigh problem. First we
shall show the existence of a neutrally stable eigensolution

W = Ws, k = ks > 0, c = cs (9)

and then, by perturbing this solution, to construct neighbouring unstable modes for k close
to ks with k < ks .

To demonstrate the existence of a neutrally stable eigensolution with ks > 0, we sup-

pose that K (z) = −b
(

U ′
0

b

)′/
U0 − U0s is regular at zs , i.e., b

(
U ′

0
b

)′
(zs) = 0, and let

λ = −k2. If c = cs = U0s , then (1) can be rewritten in the form
[
(bW )′

b

]′
+ [λ + K (z)] W = 0,
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which, together with boundary conditions (2), is a standard Sturm–Liouville problem for
which there exists an infinite sequence of eigenvalues with limit point at ∞. The least
eigenvalue of this problem is given by the variational principle

ks = min

⎡
⎣

∫ |(bW )′|2

b dz − ∫
K (z)b |W |2 dz∫

b |W |2 dz

⎤
⎦ , (10)

where the minimum is to be taken over functions W that satisfy the boundary conditions
and have square-integrable derivatives. From the well-known Rayleigh–Ritz inequality,

∫
|(bW )′|2dz ≥ π2

D2

∫
|bW |2 dz, (11)

we see that if K (z) bmin
bmax

> π2

D2 everywhere then λs < 0 and hence ks > 0.
Multiplying (1) by bW*, integrating over [0, D] and applying (2), we get

∫ [ |(bW )′|2
b

+ k2b |W |2
]

dz +
∫ b

(
U ′

0
b

)′

U0 − c
b |W |2 dz = 0. (12)

Now we shall prove that there is instability only for k < ks . To show this, suppose
K (z) > 0 throughout the flow and that ci �= 0. Then the real and imaginary parts of (12)
are given by

∫ [ |(bW )′|2
b

+ k2b |W |2
]

dz +
∫ b

(
U ′

0
b

)′
(U0 − cr)

|U0 − c|2 b |W |2 dz = 0 (13)

and

ci

∫ b
(

U ′
0

b

)′

|U0 − c|2 b |W |2 dz = 0. (14)

Multiplying (14) by (U0s−cr)
ci

and adding the resultant equation to (13), we get

∫ [ |(bW )′|2
b

+ k2b |W |2
]

dz

−
∫ [

(U0 − cr)
2 − (U0s − cr)

2

|U0 − c|2
]

K (z)b |W |2 dz = 0;

i.e.,

k2
∫

b |W |2 dz <

∫
K (z)b |W |2 dz, (15)
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from which it immediately follows that

k2 < −λs = k2
s . (16)

Hence instability is possible only when 0 < k < ks and we have stability (ci = 0) for
k ≥ ks .

But this argument does not show that if 0 < k < ks then ci �= 0, for we have not
excluded the possibility of the eigensolution defined by (9) being an isolated neutral mode.

If, however, we assume the existence of unstable modes for k close to ks with k < ks ,
whose limit as ci ↓ 0 is the neutrally stable eigensolution defined by (9), then they can
be found by a simple perturbation procedure. For this purpose it is necessary to consider
a second solution Gs (say) of (1) with k = ks and c = U0s = cs . (This solution does
not of course satisfy the boundary conditions.) A standard form of this solution can be
conveniently defined by

Gs = Ws

z∫

zs

dz

bW 2
s

, (17)

provided Ws(zs) �= 0 and a few of its properties may be briefly noted. The Wronskian of
the two solutions is given by W [Ws, Gs] = 1

b . We also have

Gs(0) = −1

b (0) W ′
s(0)

, Gs(D) = −1

b (D) W ′
s(D)

,

Gs(zs) = 0, G ′
s(zs) = −1

b(zs)Ws(zs)
. (18)

For (k, c) near (ks , cs) we now assume that W (z; k, c) can be expanded in powers of both
(k − ks) and (c − cs) in the form

W (z) = Ws(z) + (k − ks) W1(z) + (c − cs) W2(z) + · · · , (19)

where W1 and W2 must satisfy the equations

(U0 − cs)

[[
(bW1)

′

b

]′
− k2

s W1

]
− b

(
U ′

0

b

)′
W1 = 2 (U0 − cs) ks Ws (20)

and

(U0 − cs)

[[
(bW2)

′

b

]′
− k2

s W2

]
−b

(
U ′

0

b

)′
W2 =

[
(bWs)

′

b

]′
−k2

s Ws . (21)

The solutions of these equations that vanish at z = 0 are

W1 = 2ks

⎡
⎣Gs

z∫

0

bW 2
s dz − Ws

z∫

0

bWs Gsdz

⎤
⎦ (22)
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and

W2 = Ws

⎡
⎢⎣−

z∫

0

b
(

U ′
0

b

)′

(U0 − cs)
2

bWs Gsdz

⎤
⎥⎦ + Gs

⎡
⎢⎣

z∫

0

b
(

U ′
0

b

)′

(U0 − cs)
2

bW 2
s dz

⎤
⎥⎦ .

(23)

In accordance with the requirement that ci tend to zero through positive values, the path
of integration for the first integral in (23) must lie below zs if U ′

0s > 0 and above zs

if U ′
0s < 0; the integrand of the second integral, however, is regular at zs . At z = D,

W1 and W2 have the values

W1(D) = −2ks

b (D) W ′
s(D)

D∫

0

bW 2
s dz,

and

W2(D) = −1

b (D) W ′
s(D)

D∫

0

b
(

U ′
0

b

)′

(U0 − cs)
2

bW 2
s dz, (24)

and are thus independent of Gs . It may be noticed that W1(D) is real but W2(D) is
complex with real and imaginary parts given by

W2r (D) =
( −1

bW ′
s(D)

)
P

D∫

0

b
(

U ′
0

b

)′

(U0 − cs)
2

bW 2
s dz

and

W2i (D) = −π

b(D)W ′
s(D)

⎡
⎢⎢⎢⎣

(
b

(
U ′

0
b

)′)′
(zs)b(zs)W 2

s (zs) sgn(U ′
0s)

(U ′
0(zs))2

⎤
⎥⎥⎥⎦ , (25)

where P denotes the Cauchy principle value of the integral. With W1 and W2 determined
in this manner, W in (19) automatically vanishes at z = 0; the requirement that it also
vanishes at z = D shows that

c − cs ∼ W1(D)W ∗
2 (D)(ks − k)

|W2(D)|2 . (26)

In particular, the imaginary part of (26) is

ci ∼ −W1(D)W2i(D)(ks − k)

|W2(D)|2 . (27)

The sign of the coefficient in this expression is determined by the sign of[
b

(
U ′

0
b

)′]′
(zs) sgn U ′

0s ; alternatively if K (zs) = −
[

b
(

U ′
0

b

)′]′
(zs)

/
U ′

0s(zs) > 0 then ci

is positive for k just less than ks .
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When the width function b(z) is a constant we have T ≡ 0 and this perturbation for-
mula reduces to the Tollmien–Lin’s perturbation formula for the Rayleigh problem of
hydrodynamic stability. For the Rayleigh problem it is shown in [3] that the basic flow
with velocity U0 = sin z, 0 ≤ z ≤ 2π is unstable by the application of this perturba-
tion formula. For the problem with topography we modify the above flow by taking the
velocity to be U0 = ez sin z and the width function b(z) = e2z in the same flow domain
0 ≤ z ≤ 2π . For this problem we have topography T = 2 and U ′′

0 − T U ′
0 = −2ez sin z. It

is seen that it changes sign at zs = π thus satisfying the necessary condition for instabil-
ity. The extended Rayleigh problem can be solved to get the neutral eigensolution cs = 0,
ks = √

3/2 and Ws = e−z sin
( z

2

)
. To find ci as k → ks− we have to find W1(z) and W2(z)

and they are found to be W1(z) = √
3

[
e−z cos

( z
2

)
[sin z − z] + e−z sin

( z
2

)
[1 − cos z]

]
,

W2(z) = −2e−z sin
( z

2

) [e−z − 1] + 2e−z cos
( z

2

) z∫
0

e−z tan
( z

2

)
dz. Substituting these in

the perturbation formula (27), we get ci ∼−0.010548083
(

k −
√

3
2

)
. Since ci > 0 for

k < ks =
√

3
2 , we get instability of the basic flow. So far this is the first and only exam-

ple of a smoothly varying basic flow whose instability has been proved for the extended
Rayleigh problem of hydrodynamic stability.

5. Concluding remarks

In this paper we have found series solutions to the extended Rayleigh equation of hydro-
dynamic stability. When the topography T = 0 these series solutions reduce to the
Tollmien’s series solutions of the Rayleigh problem. Moreover, we have discussed the
conditions under which neutral eigensolutions to the extended Rayleigh problem exist and
the formula for finding unstable eigenmodes which are adjacent to these neutral modes by
perturbing the neutral eigensolutions. This method is also used in demonstrating the insta-
bility of a particular basic shear flow in a channel with a particular topography, namely,
the flow with velocity U0 = ez sin z and the width function b(z) = e2z in the flow domain
0 ≤ z ≤ 2π . It may be remarked here that this basic flow is an exchange flow, that is
the velocity is positive in some part of the domain and is negative in some other part of
the domain. As Pratt et al [5] have observed only exchange flows in the sea strait Bab al
Mandab connecting the Red Sea to the Indian Ocean, the above example is likely to help
in understanding of the instability of flows in sea straits.

For demonstrating the instability of smoothly varying basic flows one should first find
a neutral eigensolution of the stability problem and then use the perturbation formula. For
the extended Rayleigh problem we have done it only for the above example whereas for
the Rayleigh problem, to which our problem reduces when T ≡ 0, many examples of
unstable basic flows have been found and these examples are presented in [2]. It is hoped
that the instability of many basic flows of the extended Rayleigh problem will be found
in the future.
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