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Abstract. The stochastic resonance (SR) phenomenon for a bistable system subject to signal-modulated noise and
to multiplicative and additive noise is investigated. The signal is modelled as a random-phase asymmetric square-
wave one. Based on adiabatic approximation condition and two-state theory, the system output signal-to-noise ratio
(SNR) is deduced. It is found that double SR phenomenon occurs when the SNR varies with the asymmetry of the
square-wave signal. One resonance peak appears when the SNR changes with the amplitude of the square-wave
signal. Traditional SR can be observed on the curves of the SNRs vs. the strength of the signal-modulated noise
and vs. the intensities of the multiplicative and additive noise. The non-monotonous dependence of the SNR on the
system parameter is discussed.
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1. Introduction

An actual physical system always works in a certain
environment, such as ambient temperature, humidity,
electromagnetic field, etc., leading to random distur-
bance to the system. In addition, due to the medium
discontinuity, the values of system components will
vary randomly, resulting in variable system parameters.
According to the relationship between noise, system
state variables and drive signals, noise may be divided
into several types, i.e., additive noise, multiplicative
noise and signal-modulated noise. The noise with inten-
sity independent of the system states is called additive
noise, the noise with strength related to the system state
variable is called multiplicative noise and the noise with
intensity modulated by an excitation signal is termed as
signal-modulated noise [1–8]. Signal-modulated noise
is widely applied in various scientific fields. For exam-
ple, in optical or radio astronomy, the output signal of the
amplifier is noise-modulated by periodic signals, which
has an important impact on the system performance [3–
6]. In optical communication process, when the signal

modulates the laser carrier, the signal is inevitably mod-
ulated by the noise in the laser [7,8].

Generally speaking, the addition of noise to a sys-
tem will reduce the output performance of the system.
However, under certain circumstances, with the coop-
eration between the noise, the system and the input
signal, an appropriate amount of noise can greatly
improve the output signal of the system. This non-
linear phenomenon is called stochastic resonance (SR).
The phenomenon of SR with multiplicative noise has
been widely studied by scholars [9–16]. Single-peak
[9,10] or multipeak [11] has been observed in the output
of a bistable [9,11] or a monostable system [10] with
the multiplicative noise. Meanwhile, SRs for tristable
system [12] and for fractional oscillators [13,14] sub-
ject to multiplicative noise have also been studied. The
stochastic multiresonance in an insect outbreak model
[15] and the stability for a metapopulation system [16]
with multiplicative noise are also analysed. SR for
systems subject to signal-modulated noise was also stud-
ied [17–20]. It is found that signal-modulated noise
will cause dynamic SR in a bistable system [17] and
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cause resonant behaviour in fractional oscillators [18–
20].

Due to the effects of amplifier noise [21–24] and non-
linear Kerr electro-optic [25–29], the phase of an electric
system output signal will change randomly. SR subject
to random-phase sinusoidal signal-modulated noise [17]
has been studied. On the other hand, square-wave signals
are widely used in various physical systems. For exam-
ple, in digital communication systems, square-waves are
common carriers and clock signals. Square-wave volt-
age is adopted as droplet direction actuation to achieve
asymmetric electrodes [30]. In addition, square-wave is
used to drive ionic polymer metal composite (IPMC) in
air operating [31] and to drive bistable system for energy
harvesting [32]. SR has been found in many square-
wave-driven systems, including sinusoidal potential sys-
tem [33], time-delayed bistable system [34,35], under-
damped bistable system [36], overdamped monostable
system [37,38], stochastic overdamped bistable system
[39] and energy harvesting bistable system [40]. It was
shown that the system output signal exhibits SR phe-
nomenon for different amplitudes of the square-wave
signal for time-delayed overdamped bistable system
[35] and underdamped bistable system [36] subject to
dichotomous and multiplicative noises.

Yet, to the best of our knowledge, little attention
has been paid on the nonlinear effect of a random-
phase square-wave signal-modulated noise on a bistable
system. In particular, we note that in certain physical
systems, square-wave signals can exhibit asymmetry,
as seen in digital systems powered by a single positive
supply, where the input and output digital signals are
asymmetric square-waves with two discrete voltage lev-
els, i.e., one zero volt and one voltage same as the power
supply. Single-peak phenomenon has been observed
for time-delayed overdamped bistable system [35] and
underdamped bistable system [36] with symmetric
square-wave signals. Yet, the effect of the asymmetry
of the square-wave signal is not studied. Based on this,
this paper intends to investigate the SR phenomenon in
a bistable system subject to random-phase asymmetric-
square-wave signal-modulated noise. It is found that
the asymmetry of the square-wave can induce stochas-
tic double resonance, which means that by choosing
two different amplitudes of the square-wave signal, the
system output can be maximised. This new result is dif-
ferent from those obtained in refs [35,36]. Thus, for
stochastic systems where it is difficult to regulate the
noise, it offers a more convenient approach to achieve
optimal output performance.

This paper is organised as follows. In §2, the bistable
system with random-phase asymmetric square-wave
signal-modulated noise is introduced, the transition
rates from the stable states and the system output

signal-to-noise ratio (SNR) are obtained. In §3, the
non-monotonous dependence of the system output on
the noises and on the system parameters are discussed.
Finally, some conclusions are drawn in §4.

2. The bistable system with random-phase
square-wave signal-modulated noise and
multiplicative noise

Consider a Brownian particle moving in a bistable
potential with noise environment described by the fol-
lowing equation:

ẋ = −dU (x)

dx
+ xς(t) + ψ(t) + η(t) + s(t), (1)

where x = x(t) is the displacement of the particle at
time t and ẋ = dx/dt is the velocity of the moving
particle. The potential function of the system has the
form U (x) = −ax2/2 + bx4/4 with two stable states
x± = ±√

a/b and one unstable state x0 = 0. s(t) is
a periodic square-wave with period T and asymmetric
amplitude

s(t) =
{

κB, 0 < t ≤ T/2,

−B, T/2 < t ≤ T,
(2)

where κ > 0, B > 0. κ denotes the asymmetry of the
square-wave signal. For symmetric square-wave signal
κ = 1. s(t) can be rewritten as

s(t) = Ag(t) + m, (3)

where

A = κ + 1

2
B, m = κ − 1

2
B, (4)

g(t) is a symmetric square-wave signal with unit ampli-
tude and period T

g(t) =
{

1, 0 < t ≤ T/2,

−1, T/2 ≤ t < T .
(5)

ψ(t) is a signal-modulated noise given as

ψ(t) = sn(t)ξ(t), (6)

where sn(t) is a random-phase signal with the same
amplitude and period as signal s(t), whose phase uni-
form distributed within the range (0, 2π). The three
noise terms ς(t), ξ(t) and η(t) are white ones with zero
means and correlations
〈ς(t1)ς(t2)〉 = 2Dδ(t1 − t2),

〈ξ(t1)ξ(t2)〉 = 2Pδ(t1 − t2),

〈η(t1)η(t2)〉 = 2Qδ(t1 − t2).

(7)

From eqs (6) and (7), one can see that ψ(t) is a
random-phase signal-modulated noise with zero mean
and correlation



Pramana – J. Phys.           (2024) 98:98 Page 3 of 7    98 

〈ψ(t1)ψ(t2)〉 = 2P(A2/2 + m2)δ(t1 − t2). (8)

It is worth to point out that the model studied in this paper
is different from those in refs [17,33,34,37]. In ref. [17],
only additive noises are considered, i.e., the researchers
consider additive signal-modulated noise and additive
white noise, while in this paper we also consider mul-
tiplicative noise. Another difference is that the driven
signal in this paper is of a square-wave form. In refs
[33,34,37], the square-wave signals are symmetric ones,
while in this paper they are assumed as asymmetric ones.

Applying the statistical characteristics of the noises,
the Fokker–Planck equation for the probability density
function ρ(x, t) corresponding to eq. (1) can be derived
as

∂

∂t
ρ(x, t) = − ∂

∂x
[F(x)ρ(x, t)] + ∂2

∂x2 [G(x)ρ(x, t)],
(9)

where

F(x) = ax + Dx − bx3 + s(t) (10)

G(x) = Dx2 + A2

2
P + m2P + Q = Dx2 + M

M = A2

2
P + m2P + Q. (11)

Let the frequency � = 2π/T of the square-wave signal
is slow enough so that the system has plenty of time to
reach the equilibrium during period T , i.e., the system
meets adiabatic proximation condition [41]. The quasis-
tationary probability density can be given by

ρst = N√
G(x)

exp

[∫ x

dx ′ F(x ′)
G(x ′)

]

= N√
G(x)

exp [−�(x)] , (12)

where

�(x) = −
∫ x F(x ′)

G(x ′)
dx ′

= b

2D
x2 − a + D + b/D

2D
ln(Dx2 + M)

+ s(t)√
DM

arctan

(
x

√
D

M

)
. (13)

By virtue of the two-state theory [41], the transition
rates out of x± can be written as

W±(t) =
√|U ′′(x±)U ′′(x0)|

2π
exp

[
�(x±) − �(x0)

]
= W0 exp[∓γ s(t)] (14)

with

U ′′(x) = d2U (x)

dx2 ,

γ = 1√
DM

arctan

(√
aD

bM

)
.

(15)

Here, W0 is the characteristic transition rate for the
bistable system when it is only subjected to the noises,
which can be expressed as

W0 = a√
2π

exp

[
a

2D
−

(
a

2D
+ 1

2
+ b

2D2

)

× ln

(
aD

bM
+ 1

)]
. (16)

Assuming that the system output switches between a
dichotomous variable d(t), then the correlation func-
tion, averaged by d(t), can be deduced as [17]

H(t1, t2) = 〈x(t1)x(t2)〉d
= ω(t1)ω(t2)+ 8W+(t1)W−(t1)

[W+(t1)+W−(t1)]3 δ(t1−t2)

(17)

〈x(t)〉d = ω(t) =
√
a

b

W+(t1) − W−(t1)

W+(t1) + W−(t1)
. (18)

The autocorrelation function, averaged by d(t) and by
phase of periodic force s(t), for the system output signal
can be given by [36,42]

K (t0) = K (t1 − t2)

= 〈H(t1, t2)〉d,s − 〈x(t1)〉d,s 〈x(t2)〉d,s

= 〈ω(t1)ω(t2)〉d,s − 〈ω(t1)〉d,s 〈ω(t2)〉d,s

+8

〈
W+(t1)W−(t1)

[W+(t1) + W−(t1)]3

〉
d,s

δ(t1 − t2)

= B(m, A)ϕ(t0) + C(m, A)δ(t0) (19)

where

ϕ(t0) = 4

π2

∞∑
j=0

(2 j + 1)−2 exp[−i(2 j + 1)�t0],

B = 1

4
[ω(m + A) − ω(m − A)]2, (20)

C = 1

2
[C0(m + A) + C0(m − A)],

C0(μ) = 8W 2
0

[W−(μ) + W+(μ)]3 . (21)

Performing Fourier transform on both sides of eq. (19),
the system output power spectrum can be obtained, i.e.,

S(ω) = S1(0) + S2(ω), (22)

where
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S1(0) = C(m, A)

S2(ω) = B2(m, A)ϕ(ω)

ϕ(ω) = 8

π

∞∑
j=0

(2 j + 1)−2δ[ω − (2 j + 1)�]. (23)

Here S1(0) denotes the power density at zero frequency
associated with the noise background and S2(ω) is the
power spectrum of the output signal. The output SNR,
defined as the ratio between the power density of the
signal and that of the noise at the signal frequency, can
be deduced as

SNR = 8

π

B(m, A)

C(m, A)
. (24)

3. Discussion

In this paper, a random-phase signal-modulated noise is
introduced to a bistable system. Based on the statistical
characteristics of the noises, stationary probability is
obtained. Finally, by virtue of the two-state theory, the
transition rates out of the two stable states and the system
output SNR are obtained. Now let us discuss the non-
monotonous dependence of the SNR on the parameters
of the noises, on the parameters of the driven force and
on those of the system.

One can analyse the influence of the asymmetry of
the square-wave signal on SNR from figures 1 and
2. From these two figures, one can easily find that
the SNR can obtain two maximum values with the
increase of asymmetry κ of the square-wave signal, i.e.,
stochastic double-resonance phenomenon appears. It is
worth to mention that this double-peak phenomenon
is a new result not studied in refs [17,33,34,37]. This

Figure 1. The SNR vs. asymmetry κ of the square-wave
signal for a = 1, b = 0.4, B = 0.7, D = 0.25 and
Q = 0.2 for different values of P of the random-phase signal-
modulated noise.

Figure 2. The SNR vs. asymmetry κ of the square-wave
signal for a = 1, b = 0.4, B = 0.7, Q = 0.2 and P = 0.6
for different values of D.

phenomenon suggests that the asymmetry of the square-
wave signal can induce resonance peak at certain values
of asymmetry. Thus, by tuning the asymmetry of the
square-wave, the system output can be optimised. Par-
ticularly, as the asymmetry parameter varies, the output
SNR ratio can exhibit two resonance peaks. This phe-
nomenon suggests the existence of two separate asym-
metry parameter values κ that can be chosen to optimise
the system’s output performance. Given that the exci-
tation signal is more controllable than the noise, this
provides a more convenient and accessible means in
engineering applications to enhance the quality of the
system’s output. The double maximum phenomenon can
be explained by virtue of the power spectrum for the out-
put signal B and that for the output noise background C
for the range 1 < κ < 10, as shown in figure 3. From
this figure we can see that, at κ ≈ 1.4, the noise spec-
trum C reaches a minimum while the signal spectrum
B decreases gradually, leading to the first peak in the
output SNR ratio. When κ exceeds 2, although both the
signal spectrum and the noise spectrum decrease mono-
tonically with the increase of κ , their decline rates are
different. Specifically, the decline rate of the decrease
in the noise spectrum is notably faster than that of the
signal spectrum, thereby enhancing the output SNR as
κ increases. However, when κ > 6, the rate of decline
in noise spectrum starts to slow down, becoming less
than that of the signal spectrum, resulting in a second
maximum for the SNR. It is worth to note that the SNR
for κ �= 1 (corresponding to an asymmetric signal) can
be larger than that for κ = 1 (corresponding to a sym-
metric signal), which means that the asymmetry of the
square-wave can improve the system output SNR. In
addition, the multiplicative noise intensity D affects the
SNR non-monotonously. As seen from figure 2, for rel-
atively smaller values of κ (κ < 2.2), the SNR increases
with the increase of D, while for relatively larger values
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Figure 3. The power spectrum B and C vs. asymmetry κ
of the square-wave signal for a = 1, b = 0.4, B = 0.7,
Q = 0.2, P = 0.6 and D = 0.2.

Figure 4. The SNR vs. amplitude B of the square-wave
signal for a = 1, b = 1, D = 0.3, P = 0.9 and κ = 4
for different values of Q.

of κ (κ > 2.5), the SNR decreases with the increase
of D.

The non-monotonous dependence of the SNR on the
amplitude B of the square-wave signal can be analysed
from figures 4 and 5. With the increase in B, the SNR
increases firstly. After it reaches a maximum value, it
decreases monotonously. Single resonance means that
by adjusting the amplitude of the square-wave signal,
the system output can also be maximised. We note that
this single-peak phenomenon is neither investigated in
an asymmetric bistable system (ref. [34]) nor studied in
bias monostable system (ref. [37]). This phenomenon
is different from the phenomenon occurred in under-
damped bistable system (ref. [36]). In ref. [36] the SNR
can obtain one maximum and one minimum value with
the increase in amplitude of the square-wave signal. In
addition, the additive noise intensity Q influences the
SNR non-monotonously, as shown in figure 4. For small
values of B (B < 0.22), the SNR increases with the
increase in Q, while the SNR decreases with increasing

Figure 5. The SNR vs. amplitude B of the square-wave
signal for a = 1, b = 1, D = 0.7, P = 0.9 and Q = 0.05
for different values of κ of the square-wave signal.

Figure 6. The SNR vs. intensity P of the random-phase
signal-modulated noise for a = 1, b = 2, D = 0.25, B = 0.8
and Q = 0.6 for different values of κ of the square-wave
signal.

additive noise intensity Q for relatively larger values of
B (B > 0.45). Thus, relatively more amount of additive
noise can improve the SNR when the amplitude B is
relatively smaller, and relatively less amount of additive
noise can enhance the system output performance when
the amplitude B is relatively larger. Moreover, the asym-
metry κ impacts the system SNR non-monotonously,
which is consistent with the phenomenon presented in
figures 1 and 2. As shown in figure 5, for small values
of B (B < 0.4), the SNR increases with the increase
in κ , while for large values of B (B < 0.4), the SNR
decreases with the increase in κ .

The non-monotonous dependence of the SNR on the
intensity of the random-phase signal-modulated noise,
on the strengths of the multiplicative noise and the
additive noise can be investigated from figures 6–8,
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Figure 7. The SNR vs. multiplicative intensity D for a = 1,
b = 1, B = 0.7, P = 0.3 and Q = 0.2 for different values
of κ of the square-wave signal.

Figure 8. The SNR vs. additive noise intensity Q for b = 1,
D = 0.25, B = 0.5, P = 0.9 and κ = 1.5 for different values
of a.

respectively. From these three figures, one can find that
the SNR can obtain one resonance peak with the incre-
ment of the three noise strengths, i.e., traditional SR
phenomenon takes place. Therefore, one can add appro-
priate amount of these noises to enhance the system
output signal. This phenomenon can be explained as
the synergistic effect between the system nonlinearity
and the noises. When the particle moves in the noise-
free bistable system, the potential barrier is too high for
the particle to cross over, which results in a low sys-
tem output signal. In the presence of certain amount of
noises, the noises may help the particle to jump over
the potential barrier and move between the two poten-
tial wells, thus the system output can be enhanced. It
is worth to mention that the resonance behaviour of the

system output vs. the multiplicative noise intensity is not
considered in ref. [17]. The single-peak phenomenon
of the system output vs. the signal-modulated noise
is neither studied in sinusoidal potential systems (ref.
[33]), nor studied in bistable systems (refs [34,36]) nor
investigated in monostable system (ref. [37]). The SR
behaviour of the SNR vs. the multiplicative and addi-
tive noise strengths is similar to those presented in refs
[34,36]. From figures 6 and 7, one can conclude that the
asymmetry κ of the square-wave signal affects the SNR
non-monotonously, which agrees with the behaviour
shown in figures 1 and 2. Furthermore, system parame-
ter a influences the SNR non-monotonously, too. It can
be seen from figure 8 that for very weak additive noise
intensity Q (Q < 0.05), the SNR becomes smaller as
parameter a increases, while for relatively strong addi-
tive noise (Q > 0.2), the SNR becomes greater as a
increases. This phenomenon indicates that a relatively
larger value a can enhance the system SNR for relatively
stronger additive noise level.

4. Conclusions

In this work, a bistable system driven by random-
phase asymmetric square-wave signal-modulated noise
and multiplicative noise was considered. Based on the
statistical characteristics of the noises, the Fokker–
Planck equation for the probability density function was
deduced. Under adiabatic proximation condition and
two-state theory, the stationary probability and transi-
tion rates out of the two stable states were obtained.
Finally, by applying Fourier transform on the corre-
lation function of the system output signal, the SNR
was derived. Analysis results show that the asymme-
try of the square-wave signal can induce double SR
phenomenon, while the amplitude of the square-wave
signal can lead to single-peak phenomenon on the SNR
curves. Traditional SR behaviour occurs when the SNR
varies with the intensity of the random-phase signal-
modulated noise, with the intensity of the multiplicative
and additive noise. At the same time, the system param-
eter affects the SNR non-monotonically. As asymmetric
square-wave signal and signal-modulated noise widely
exist in various scientific fields, it is believed that the
results obtained in this paper has certain theoretical sig-
nificance for studying the SR behaviour in nonlinear
systems.
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