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Abstract. In this study, by making use of the direct integral method and the complete discrimination system for
the polynomial method, all the travelling wave solutions to the two-component Dullin-Gottwald—Holm (DGH?2)
system are obtained, including solitary wave solutions, singular periodic solutions and Jacobian elliptic function
double periodic solutions. Some of them are initially given. Moreover, concrete examples are presented to make
sure that several solutions can be realised, and the corresponding figures are also given to show their nature. This
means every solution in the paper may reflect the corresponding natural phenomenon, such as tidal waves and

tsunami waves.
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1. Introduction

The shallow water wave equation is a meaningful model
thatis used to describe the storm tide, tidal waves etc. [ 1—
3]. Scientists found that many other real-world models
could also be described by it. Thus, a growing academic
interest has been drawn in the extension of this kind of
equation [4-6].

Here, we study the two-component Dullin—Gottwald—
Holm (DGH?2) system

Up — Uxxr — Ay + 3Uly — Ullyxy — 2UxUyy
+ Yxx + ppx =0, (D
IOZ + (up)x = 09

where u(x, t) is the fluid velocity in the x direction (or
equivalently the height of the water’s free surface above
a flat bottom), p (x, 1) is related to the free surface eleva-
tion from equilibrium (or scalar density), the parameter
A(A > 0) characterises a linear underlying shear flow
propagating in the positive direction of the x-coordinate
(or the critical shallow-water speed) and the parame-
ter y is a constant determining the dispersion effect.
The above system is an extension of the DGH equa-
tion developed by Dullin, Gottwald and Holm in 2001
[7]. Related results such as well-posedness and stability
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of this system can be seen in [8-10]. Furthermore,
system (1) contains many famous models as specific
examples. For example, if y = 0 and p = 0, system
(1) becomes the noted Camassa—Holm (CH) equation
[11-13]. If y = 0 and p # O, system (1) turns into the
two-component CH system [14,15].

System (1) can be used to describe shallow water
waves with curl zero. It is applied in ocean exploita-
tion, disaster prevention etc. [ 16-23]. Thus, constructing
exact solutions to it would shed light on the related area.
Zhu and Xu gave sufficient conditions for the existence
of a strong global solution to system (1) in [24,25]. Che-
ung [26] constructed some blow-up solutions of system
(1) using the perturbation method.

The travelling wave solution mainly describes wave
propagations with constant velocity, and so has wide
applications in various areas. Different methods have
been proposed to obtain such types of solutions [27—
29], such as the F-expansion method [30], trial equation
method [31-34] and the complete discrimination sys-
tem for polynomial method (CDSPM) [35—43]. Among
these, the complete discrimination system for the poly-
nomials by Liu is more powerful, because it not only can
construct all the travelling wave solutions if the original
model is reduced to an integral form, but also can be
applied to conduct qualitative analysis [44—48].
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So in this paper, we use the CDSPM to system (1),
and all the travelling wave solutions, i.e., the
classification of travelling wave solutions are
obtained. Some solutions, such as Jacobian elliptic func-
tion double periodic solutions are obtained, which is
difficult to obtain by other methods. This also shows the
effectiveness of the method adopted in this paper.

2. Simplify system

By taking the following travelling wave transformation

ulx,t) =um), ppx,t)=pmn), pn=x—kt, (2)

where k # 0 is a real constant, and then substituting eq.
(2) into system (1), we have

k + )" —uu” —2u'u" — (A + k)u'

+ 3uu’ + pp’' =0, 3)
(up)' —
Integrating (3), once yields

kp' = 0.

1 3
—(u—k—yu" — E(u/)z—i- 5142 —(A+Kku
1
+50t =M, )
N
A

where M and N # 0 are integral constants. From system
(4), we have

1 3

—(u—k—yu" — E(u/)2 + §u2 —(A+Kku

—i—1 Ny =M 5)

2\u—-k)

Thus, the following equation can be obtained:
u// + (u/)Z

2w —k—1y)

3.2 1, N 2

sut — (A+ku+ 5(-25)% —

+2 S =0, (©
u—k—y

whose general solution is shown as follows:
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For brevity, by using the transformation ¥ = u — k,
(7) becomes

~ Y —y)
=) = / \/w4+Bsw3+Bzw2+Blw+Bod‘”
©)

In the following, we shall construct exact solutions to
the original equation according to (9).

3. Travelling wave solutions of the system

Case 1. If Bp = 0, eq. (9) turns into

(M —mno) =

dy.
(10)

/\/w3+Baw2+Bzw+Bl

According to the complete discrimination system of
third order

— 27 2B3+B B:Bs\’ 4( B B\’
- 27 =73 273
BZ

Dy = By — =3,
1 = D2 3

an

four cases can be discussed.

Casel1.1. If A = 0, D; < O, then we get F(¢¥) =
(Y — a)*(y — B), where o # B. By the substitution

02=¢_V
v —B’
that is,
gr_u—k—y
u—k—p’

we can obtain

(u—kwu—-k-vy)

:l:(n—no)=/\/

(u —k)*+ B3(u — k)3 + Bo(u — k)2 + B1(u — k) + By

du, @)

where
By =2k — A,
By = k* —2kA —2M,

8
By = 3k*A +2kM — 2K> + ¢, ®)

By = 2k* — 2k3A — 2keog — N2,
and nog, co are arbitrary constants.

9+ 1 9 — /Y
+ a—y a—pB
£01 = 1m0) = ¥ 1|+ o ﬂln‘ a=y |’
o o U+ —
(12)
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where
¥y > 0.
a—p
O+1 — —
+(n—ng) =In vt -2 i yarctan v ﬂ_oe ,
v—1 —o oa—y
(13)
where
¥y < 0.
a—p

Case1.2. If A = 0, D; = 0, then we get F(¢¥) =
W — oz)3. Thus, the solution is as follows:

u— k y
1 —k— :Fl
t-(n—no) =%,/ I |V T (1)
2 u—k—o 2 ufkfy:tl

uka

Case1.3. If A > 0,D; < O,then F(¥) = (Y —a) (Y —
B)(y — &), where @ > f > §. Using the transformation

02:¢—V
v —a’
that is,
gr_u—k—y
u—k—o’

we deduce that

V(@ —B)(ax —96)
+ —
2@ =) (n —no)

G -a))

1

X dd (15)
V@2 + ag) (92 + by)
where
B _d-vy
ap = , bp=—.
oa—pf oa—96
Case 1.4. If A < 0, we have F(y) = (Y — a)(¥2 +
1Y + s1), where 112 —4s1 < 0. Let
ot —y
V= o —1"
Then, eq. (9) becomes
TR —/ [
gy = 51
1
d?d, (16)

X
VO (ag®? + bod +do)
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where ay = lloz—}—sl—l—ozz,bo = —yQRa+l)—la—2s
anddy = y? + 11y + s1.
Additionally, based on the above analysis, the solu-

tions of Cases 1.3 and 1.4 can be represented by the
elliptic function of the first and third types, respectively.

Case 2. If By # 0, let Yy = ¥ + 1 Bj3. Then, eq. (9)
becomes

(Y1 — 3B) (Y1 — ;B3 —¥)
£ — 10) = :
01 =m0 /\/ Yl + Pyyi + Py + Po W

(17)
where
15 1
Py =B + ng — 53233,
Py = By + i1921332 — 13133 — LBg‘.
16 4 128

We denote F (Y1) = ¥} + P2y + Piyi + Po. Then
the complete discrimination system of the fourth order
is given as follows:

Dl = 1, D2 = _PZ’
Dy = —2P3 +8PyP, — 9P},
Dy = —PP} +4PoPy + 36 Py PP} — 32P P 1)

P, =B, —

27
— —P14,
4

Ey = 9P} —32P)P,.

+ 64P;

Case21.If D4y = 0, D3 = 0, D, = 0, we have
FQ) = Wf. Then, eq. (17) turns into

J = 1B — 1By — )
0= m) = |
Ui

dy.
19)

By letting

—lB 1B+ b= 1B

a=4b3\yB3Ty), b==503—Y,

when a < 0, we get

Vu—ku—k—y)
M—k-l—iBg,

+(m—mno) =—

+ arcsin

b
2/ —a
( a(u —k+ 3B3) +2a )
X
Vb2 —da(u —k + 1B3)




86 Page4 of 7

+2In(vu — k + \/u —k—y).
When a = 0, we have
JE=Bu—k=y)
u—k+ AITB3
+2In(Vu —k +Ju—k—y)
and when a > 0, we get
Vu—kwu—k—y)
u—k+ %83
+L arccosh( 2 +a(u—k+3¢B3) )
2a V5 = da(u—k+1Bs)
+2In(Vu —k+u—k—y).

(20)

+( —no) = -2

2D

+(n —no) =

(22)

Case22. If D4 =0,D3 =0, Dy > 0, E; > 0, we
have

P, 2 P 2
F<w1>=<w1— —7> (w1+ —7).

Suppose

v [ P
1> —7

Then, eq. (17) can be rewritten as

\/(101 — 1B — ;B3 — )
0= m) = |

dy.
W1 — -2 @1 +/-2)

(23)
Then, we have
i(n—n0)=21n<\/u—k+\/u—k—y>
P
| b+2,/-2 -
— b 2
uw—ca 2<a+b —%—%)
Ll b+2/-2+y
L= fg4b /L L
2 2 24)
| b2 /B _
—bln
T P Y
1 b—2/-% +v
+ u—-c + P P '
-
2<a—b —72—72)
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where
1

= -B3| -B ,
a 1 3(4 3+V>

1
b=—=B3—y,

) 3~V

P -
Cl_ 2 4 3’

k P 1y
¢ =k—,/——— — —Bs.
2 2 173

Case23. If D4 =0,D3 =0, Dy <0, E; < 0, we
have

P\?
F(wo =7+ 7) :
Similarly, we can get

1 ar g1 ai

1
+ —mn— )=—<———)arctan(t —
2y2 O Jarfihi  Co fi
L (ﬂ_a_l>
Jagi\Co h

ai
X arctan (t —>
81

FRLIES NSRRI NPT
Coaq Coaq
3(/1—g1) » N
———— " In|t —1, 25
+ 2Coa; 1 +a1 5)
where
1 P,
__B2 =,
MN=16" 772
by = 1B 1B + P
1= ) 3 4 3TV 25
a=(Lpay) 2
1= 4 3Ty 7
hy = /b7 — daid,,
by 1
= — — —hy,
1 5 ~ M
hy L,
bihy  hy  b*hy—h3
Co=—+—+—"—F1.
aj ai 4aj

Case24. If Dy =0,D3 =0, D, > 0, E; = 0, then
we have F (/1) = (Y1 —a)> (1 +3a), with the solution
given by

L )_/\/(%—}133)(1#1—%33—)/)
T | —e) W —a) (W1 F3a)

dyri, (26)
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where

P
o2
6

In the same way, let

1B 1B = 1B
<¢1—Z 3)(1,01—1 3—J/>—f(¢1—4—l 3),

we obtain

(;@ _ a>\/<;133 _ a> (533 + 3a)

2)/2 (77 - 770)

1 1
:/{r2+R1 B (t2—1)(t2—|—R1)}
1

X dr,
V@2 + R + Ry)

+

27)

where

1
a— 1By
R = 703 Y

’

1
ZB3—C(

30(—%33—]/

Ry, =
%33 + 3«

and

1B
— > .
153

Case 2.5. If D4 =0, D3 > 0, D, > 0, we have
2
FO) = W1 — )y — ﬁ)(% + #) .

Equation (9) can be rewritten as

L ) f \/(Wl—%&)(lﬁl—%l%—)/) dy
n—no) = s
’ W+ ST W =B
(28)

where @ > B, and B # —3a, B # —5.
Similar to the above case, let

1B 1B = 1B
<¢1—Z 3)(%—1 3—J/>—f(¢1—1 3),
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then we infer that

(1 +=52) (1) (4230

+ —
2,2 (n —no)
_/ 1 1
)2+ R 2 -DE+R)
1
X dz.
V(2 + Ro)(12 + Rs)
(29)
Here,
x o+ B+ 5B3+2y
1= ’
3B t+a+p
o — %33 -y
Ry=——
ZB3 —
B—1iBs—y
Ry=——+—+~.
B3 — B

Case 2.6. If D4 =0, D3 < 0, we have F({r1) = (Y1 —
a)?[(Y1 + a)? + B2]. We get

Jn = 1B — 1By — )
i(n—no)=/ dy,
(Y1 — o)V (Y1 + ) + B2

(30)
where 8 # 0. From eq. (30), we have
1
B3 —«
+47° =
2,7 (1 = no)
B / 1 1
B >+ R (2 - D@+ Ry)
1
X dr, 31)
\/R2l4 + R3t3 4+ Ry
where
1
o— 3B3 —
R, = Ly’

1
ZB3 —

1 2
R2=ZB3+Ol—ﬁ ,

1 1
R3 = —2(133 +a> <a + B+ y) — 282
and

|
Ry = (a+ZBs+y>+ﬂz-
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Case 2.7. If (D4 > 0, D3 > 0, D > 0),0r (D4 < O,
Dy >0|Ds<0,Dy<0,D3<0]| Dg<0,Dy=0,
D3 <0),or(Dg >0,Dy <0 Dy >0,D3 <0,
D, > 0), we have

+( —no)

_/\/ =B =B —p)
TNV W —@ - =W —g)

(32)

where p = a 4+ B + 6.

From Cases 2.4-2.7, these solutions can be repre-
sented by elliptic integral or elliptic functions. From
all the cases we have discussed, the forms of travelling
wave solutions of system (1) include solitary wave solu-
tions, singular periodic solutions and double periodic
solutions.

4. Physical representation
In this section, we show images of two types of solutions

we obtained by adjusting the corresponding parameters.
Other cases can be obtained in the same way.

Example 1. Takek =1,y =5, =6, =2,10 =0,
then solution (12) becomes

u—6 1
JE8 41 u§
vV uT \/ + 2

Therefore, the graph of solution (12) can be seen in
figure 1.

x—t=In|"—— (33)

Example 2. Take k = 1,y =3, = 2, ng = 0, then

solution (14) becomes
. / :F 1

:l:(x—t):,/ \/>:|:1

Therefore, the graph of solution (14) can be seen in
figure 2.

(34)

5. Conclusion

This study has shown all travelling wave solutions of
the two-component DGH system. By the direct integral
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Figure 1.

Expression of eq. (12).

Figure 2. Expression of eq. (14).

method and CDSPM, we attained solitary wave solu-
tions, singular periodic solutions and double periodic
solutions. In addition, double periodic solutions were
initially presented. These travelling wave solutions will
help us to better understand the propagation forms of
shallow water waves.
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